直流电动机转速电流双闭环调速系统设计

直流电动机转速电流双闭环调速系统设计
直流电动机转速电流双闭环调速系统设计

直流电动机调速系统课程设计

班级:电气0802

姓名:刘志勇

学号: 08140218

目录

第一章:设计内容 (2)

1.1设计内容: (2)

第二章:设计要求 (2)

2.1设计要求 (2)

2.2设计参数: (2)

第三章:双闭环直流调速系统设计 (3)

3.1转速、电流双闭环直流调速系统的成 (3)

3.2系统电路结构 (4)

3.3调节器的设计 (7)

第四章单闭环直流调速系统设计 (14)

4.1闭环系统调速的组成及其静特性 (14)

4.2 稳态参数计算 (16)

第五章相关原理图设计波形图 (19)

5.1.主电路图 (19)

5.2.控制电路图 (20)

第六章设计总结及参考文献 (23)

6.1设计总结 (23)

6.2 参考资料 (23)

1

第一章:设计内容

1.1设计内容:

(1)根据给定参数设计转速电流双闭环直流调速系统

(2)根据给定参数设计转速单闭环直流调速系统,使用模拟电路元件实现转速单闭环直流调速系统

第二章:设计要求

2.1设计要求

2.1.1根据设计要求完成双闭环系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结构图

2.1.2直流调速系统的调节器,选择调节器结构、利用伯德图完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘系统动态结构图

2.1.3设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电路及主电路电路图

2.1.4测试单闭环调速系统的PWM驱动信号波形、电压电流波形、转速反馈波形和直流电动机转速及控制电路各单元的相关波形。

2.2设计参数:

=1.8Ω

2.2.1电枢电阻R

a

电枢电感L

=9.76mH、GD2=16.68N·cm2、Tm=35ms

a

2

2.2.2测速发电机参数:U

n =80V,n

N

=3000r/min,

P N =16W,I

N

=200mA,负载电阻R=400Ω

2.2.3PWM主电路:驱动频率f≥10kHz,R=2.7+1.8=4.5Ω2.2.4设计指标

转速电流双闭环直流调速系统:U*

n =5V,U

im

=5V,I

dm

=1.5I

N

σ

i ≤5%,σ

n

≤10%。

第三章:双闭环直流调速系统设计

3.1转速、电流双闭环直流调速系统的成

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。

3

图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流双闭环调速系统。

3.2系统电路结构

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用 P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

3.2.1稳态结构框图和静特性

4

5

双闭环直流调速系统的稳态结构图

α—转速反馈系数; β —电流反馈系数

分析静特性的关键是掌握这样的PI 调节器的稳态特征,一般存在两种状况:①饱和——输出达到限幅值。即饱和调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。②不饱和——输出未达到限幅值。即PI 的作用使输入偏差电压U ?在稳态时总为零。

实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有调速调节器饱和与不饱和两种状况:

(1)转速调节器不饱和:稳态时,他们的输入偏差电压都

是零,因此*0n

U n n α

==,而得到下图静特性的CA 段。 (2)转速调节器饱和: 输出达到限幅值*

im U ,转速外环呈

开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的点电流闭环调节系统。稳态时

*im

d dm U I I β==,从而得到下图静特性的AB 段。

这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷

6

大,特别是为了避免零点漂移而采用“准PI 调节器”时,静特性的两段实际上都N 略有很小的静差,见图的虚线。

3.2.3 稳态参数的计算

双闭环调速系统的稳态参数计算与单闭环有静差系统完全不同,而是和无静差系统的稳态计算相似,即根据各调节器的给定与反馈值计算有关的反馈系数: 速反馈转系数

电流反馈系数

电动机的电动势常数

r /min 0071.0min/3000

8

.15.124?=??-=

-=V r V Ce n

R I U

N

a

N N

r

V r V n U min/.0017.0min

/30005max *nm ===αA

V A

V I U /22.25.15.15dm *im =?==β

7

3.3调节器的设计

双闭环调速系统的动态结构图

3.3.1确定时间常数

(1)整流装置滞后时间常数Ts 。由附表6.1知,PWM 装置的延长时间 Ts=0. 1ms=0.0001s 。

(2)电流滤波时间常数Toi 。单相全控桥PWM 波形的周期为

ms s f T 1.010

10113=?==

(1~2)Toi=0.1ms ,因此取Toi=0.08ms=0.00008s 。 (3)电流环小时间常数之和i T ∑。按小时间常数近似处理,取i T ∑= Ts+Toi=0.00018s 。

(4)电磁时间常数TL

s R L

T

a

l

0217.05

.41076.93=?==- 2. 选择电流调节器的结构

8

根据设计要求5%i σ≤,并保证稳态电流无静差,可按典型I 型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型调节器,其传递函数为

()(1)

i i ACR s i K s W s

ττ+=

式中 i K ------电流调节器的比例系数;

i τ-------电流调节器的超前时间常数。 检查对电源电压的抗扰性能:

06.1200018

.000217

.0==

T T i

l

,参照附表6.2的典型I 型系统动态抗扰性能,各项指标都是可以接受的,因此基本确定电流调节器按典型I 型系统设计。

3. 计算电流调节器的参数

电流调节器超前时间常数:

00217.0==T

l

i

τ。

电流开环增益:要求5%i σ≤时,取0.5I i K T ∑=,

因此

118.277700018

.05

.0--==

s s K

I

于是,ACR 的比例系数为

55.244

.44.25

.400217.08.2777=???=

=

β

τK R K K s

i I

i

4. 校验近似条件

电流环截止频率: ==I ci K ω31251-s (1) PWM 装置传递函数的近似条件

9

=s

T 31

3333.33 满足近似条件。 (2) 忽略反电动势变化对电流环动态影响的条件

=l

m T T 1

3

369.274 满足近似条件。

(1) PWM 装置传递函数的近似条件

w T ci s s >=?=-13.33330001.03131满足近似条件。 (2) 忽略反电动势变化对电流环动态影响的条件

=l

m T T 13

13

00217.010351

3--???s =344.241-s w ci < 满足近似条件。

(3) 电流环小时间常数近似处理条件

ci oi s w s T T >=??=?-18.312600008.00001.0131131 满足近似条件。 5. 计算调节器电阻和电容

按所用运算放大器取R 0=40k Ω,各电阻和电容值为 Ω=?==k 8.1014055.2R K R 0i i , 取102ΩK F F Ri

i

Ci μτ0213.01013.210

10200217

.083

=?=?=

=

-,取0.022F μ ,008.010810

4000008

.044930F F R T C oi oi μ=?=??==

-取0.008F μ

10

按照上述参数,电流环可以达到的动态跟随性能指标为4.3%5%i σ=<,满足设计要求。

按照上述参数,电流环可以达到的动态跟随性能指标为4.3%5%i σ=<,满足设计要求。

3.3.2转速调节器的设计 1. 确定时间

1)电流环等效时间常数1/K I 。由前述已知,0.5I i K T ∑=,则

s s T K i I

00036.000018.0221

=?==∑ (2)转速滤波时间常数on T ,根据所用测速发电机纹波情况,取s T on 003.0=.

(3)转速环小时间常数n T ∑。按小时间常数近似处理,取

如图 含滤波环节的PI 型电流调节器

11

s s s T K T on I

n 00136.0001.000036.01

=+=+=

∑ 2. 选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数式为

(1)

()n n ASR n K s W s s

ττ+=

3. 计算转速调节器参数

按跟随和抗扰性能都较好的原则,先取h=5,则ASR 的超前时间常数为

==∑n n hT τ0.0068

则转速环开环增益

89.6487921

22

=+=

∑n

N T h h K 可得ASR 的比例系数为

48.3200136.05.400333.052035.00071.044.4)15(2)1(=???????+=+=∑n m e n RT h T C h K αβ

式中 电动势常数。r V n R I U C N

a

N N e min/.0071.0=-=。 。

4.检验近似条件 转速截止频率为 11

18.441-===

s K K n N N

cn τωω

12

(1)电流环传递函数简化条件为 cn i I w s s

T K >==--∑11

46.130900018

.08.27773131 满足简化条件。

(2)转速环小时间常数近似处理条件为

cn on I w T K >==56.555001

.08

.27773131 满足近似条件。 5.计算调节器电阻和电容

取040R k =Ω,则

,2.12994048.320Ω=?==K R K R n n 取ΩK 1300 PF F F R C n

n

n 523110231.510

13000068

.093

=?=?=

=

-τ, 取PF 5231 F R T C on

on μ1.040

==

, 取F μ1.0

如图 含滤波环节的PI 型转速调节器

13

6.校核转速超调量

当h=5时,查附表6.3典型∏型系统阶跃输入跟随性能指标得,37.6%n σ=,不能满足设计要求。实际上,由于附表6.3是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。计算超调量。

设理想空载起动时,负载系数0=Z ,已知A I N 5.1=,

min /3000r n N =,5.1=λ,Ω=5.4R , r V C e m in/0071.0?=,

s T m 035.0=,s T n 00136.0=∑。当5=h 时,由附表6.4查得,

%2.81/max =?b C C 而调速系统开环机械特性的额定稳态速降

m n

N b b b n T T

n n Z C C n n C C ∑?-???

? ???=????? ???=*)(2*max max λσ (6-24) 调速系统开环机械特性的额定稳态速降

min;/7.950r C R

I n e

N N ==?

*n 为基准值,对应为额定转速min /3000r n N =。

根据式(6-24)计算得

%10%00.3<=n σ 满足设计要求。

3.3.3调速系统的开环传递函数

)

1()1()(2

++=

∑s T s s K s W n n N n τ,其中m e n n N T C aR

K K βτ=; 代入以求数据得)(s W n =

)

100282.0(23

.109142.1812++s s s ;

num=[212.7,15088.5]; >> den=[0.00282,1,0,0];

>> bode(num,den)

>> [Gm,Pm,Wcg,Wcp]=margin(num,den)

Gm =Inf

Pm =41.1284

Wcg =Inf

Wcp =197.4600

直流双闭环调速系统伯德图

第四章单闭环直流调速系统设计4.1闭环系统调速的组成及其静特性

14

闭环系统调速的组成及其静特性根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。

调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统应该能够大大减少转速降落。

调节原理:在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机 TG ,从而引出与被调量转速成正比的负反馈电压U n,与给定电压U*n相比较后,得到转速偏差电压 U n,经过放大器 A,产生电力电子变换器UPE的控制电U c

15

16

用以控制电动机转速 n

图中各方块内的符号代表该环节的放大系数。运用结构图运算法同样可以推出下式:

4.2 稳态参数计算

方波发生器upc4570 振荡周期

s

8.96)]1012102021(ln 10330010102[)R 2R 1(ln C R 2T 3

312

32311μ=???+????=+=-高电平持续时间s 48.4s 8.965.0T 2

1

T on μμ=?==

低电平持续时间s 4.48T 2

1

T off μ==

占空比5.0T

T D on

==

)

1(e *

n

s p K C U K K n +=

17

振荡频率kH 33.10

108.961T 1f 5

=?==

- 三角波发生器upc4570 周期s 8.96T μ= 上升时间s 4.48T 1μ= 下降时间s 4.48T 2μ=

与门74HC08 死区时间s 3s 101.030RC t 6μ=??==- 4.2传递函数

由图可见,反馈控制闭环直流调速系统的开环传递函数是 :

=

)

103.0000066.0)(10001.0(120

2

+++s s s )1)(1()(m 2

m s +++=s T s T T s T K

s W l

18

1W =10000 1-s 2W =418.241-s 3W =36.221-s

201gK=201g120=41.58dB 应用MATLAB 编程画伯德图: num=[0.0068,1];

den=conv([1,0],conv([1,0],[0.00136,1])); k=64878.89; bode(num,den)

[Gm,Pm,Wcg,Wcp]=margin(num,den) Gm =Inf Pm =0.3117 Wcg =Inf Wcp =1.0000

直流单闭环调速系统伯德图

第五章相关原理图设计波形图5.1.主电路图

19

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

电流转速双闭环直流调速系统matlab仿真实验Word版

仿真设计报告 内容 学院 专业 班级 学号 学生姓名 指导教师 完成日期年月日 转速、电流双闭环直流调速系统的Simulink仿真设计

一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink 对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK 进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1 双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化,校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度稳定于某一转速。 2.2 双闭环直流调速系统组成 为实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。两者实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成转速、电流双闭环调速系统。 图1 转速、电流双闭环直流调速系统 其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子 变换器 *Un -转速给定电压 Un-转速反馈电压 * Ui -电流给定电压 Ui -电流反馈电压

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

数字化直流电机双闭环调速系统

数字化直流电机双闭调速系统 摘要本文叙述了直流电动机的基本原理和调速原理,介绍了直流电动机开环和双闭环调速系统的组成及静、动态特性,并且根据直流电动机的基本方程建立了调速系统的数学模型,给出了动态结构框图,用工程设计方法设计了直流电动机双闭环调速系统。最后用MATLAB 软件搭建了仿真模型,对调速系统进行了仿真研究。通过对直流电动机双闭环调速系统动态特性的研究与仿真,可以清楚地看到,直流电动机双闭环调速系统具有较好的动态特性,可以在给定调速范围内,实现无静差平滑调速,这为直流电动机调速系统的硬件实验提供了理论依据。 关键词:直流调速;双闭环调速;转速环;电流环;MATLAB 仿真 目录 第1 章绪论 (1) 第2 章课程设计的方案 (2) 2.1 概述 (2) 2.2 方案选择 (2) 2.3 系统组成总体结构 (4) 第3 章硬件设计 (5) 3.1 单片机控制器 (5) 3.2 接口电路 (5)

3.3 D/A 转换电路 (6) 3.4 触发电路 (6) 3.5 三相整流电路 (7) 3.6 电流检测电路 (7) 3.7 A/D 转换电路 (8) 3.8 转速检测电路 (8) 3.9 键盘显示电路 (9) 第4 章软件设计 (11) 4.1 设计要求 (11) 4.2 电流环的设计 (11) 4.3 转速环的设计 (12) 4.4 闭环动态结构框图设计 (12) 4.5 程序设计 (13) 第5 章系统测试与分析/实验数据及分析 (15) 第6 章课程设计总结 (17) 参考文献 (18) 第1章绪论 三十多年来,直流电机调速控制经历了重大的变革。传统的控制系统采用模拟元件,虽在一定程度上满足生产要求,但是因为元件容易老化,在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受器件性能、温度等因素的影响,故系统的运行可靠性及标准性得不到保证,甚至出现事故。而如今首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。大功率直流调速系统通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、高层电梯等需要高性能可控电力拖动领域应用历史悠久。近年来,

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

转速、电流双闭环直流调速系统设计

运动控制课程设计 专业:自动化 班级: 姓名: 学号: 指导教师: 2015年07月 16 日

转速、电流双闭环直流调速系统设计 1.设计目的 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。故采用转速、电流双闭环控制系统。 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路;基本数据如下: (1)直流电动机:220V、160A、1460r/min、Ce=0.129Vmin/r,允许过载倍数λ=1.5; (2)晶闸管装置放大系数:K s=40; (3)电枢回路总电阻:R=0.5Ω; (4)时间常数:T l=0.03s,T m=0.19s; (5)电流反馈系数:β=0.042V/A; (6)转速反馈系数:α=0.0068Vmin/r; 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 3.设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统: (1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; (2)分析电流环不同参数下的仿真曲线; (3)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线 (5)进行Simulink仿真,验证设计的有效性。 4.设计内容 4.1双闭环直流调速系统的组成

转速电流双闭环直流调速系统设计

《电力拖动自动控制系统》课程设计 设计报告 题目:转速电流双闭环直流调速系统设计 学院信息科学与工程学院 专业自动化 班级0603 学号 2 学生姓名杨明 指导老师潘炼 日期2009/7/2

转速电流双闭环直流调速系统设计 1. 设计题目 转速、电流双闭环直流调速系统设计 2. 设计任务 已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 1)直流电动机:160V、120A、1000r/min、C e=0.136Vmin/r,允许过载倍数λ=1.4 2)晶闸管装置放大系数:K s=30 3)电枢回路总电阻:R=0.4Ω 4)时间常数:T l=0.023s,T m=0.2s,转速滤波环节时间常数T on取0.01s 5)电压调节器和电流调节器的给定电压均为10V 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 系统要求: 1)稳态指标:无静差 2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10% 3. 设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下: 1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; 2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; 3)进行Simulink仿真,验证设计的有效性。 4.设计内容 1)设计思路: 带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。 当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速。 对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

直流电动机双闭环调速系统(1)

直流电动机双闭环调速系统 一、系统发展背景 直流电动机双闭环调速系统是一种当前应用广泛,经济的电力传动系统,在现代化工业生产中已经得到广泛应用,具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。针对直流电机调速的方法也很多,目前国内外也研究了一些调速的控制器。例如已经用于实际生产的直流电机无级电子调速控制器采用国际先进的IGBT大功率模块器件和独特自行设计的PWM 微电子控制技术,以及节能反馈电路和丰富的保护功能控制电路。适用于无轨机车、矿山井下窄轨机车、磨床、木工机械、服装制作、纺织、造纸印刷等场所。 二、系统原理图 三、系统方块图

四、系统的工作原理分析 总述:分析系统原理图,可知这是一个双闭环调速系统,在双闭环系统中,系统的输出量通过检测装置引向系统的输入端,与系统的输入量进行比较,由于扰动作用使被控参数偏离给定值,从而产生偏差,调节器将此偏差信号进行调节,并输出一标准信号,去控制执行机构的动作。 下面,针对此直流电机双闭环调速系统,对其原理进行具体的分析: 1、双环的构成 直流电机双闭环调速系统同时具有速度反馈和电流反馈,实现了转速和电流两种负反馈的调节。二者之间如图所示实行嵌套模式,从闭环的结构上看,电流调节环属内环,速度调节环属外环,这样就形成了速度,电流双闭环调节系统。 2、电流环 速度调节器的输出作为电流调节器的输入,可控制电路的电流输出经电流互感器形成局部反馈,即电流反馈。其中,电流互感器是电流反馈的检测元件,电流调节器对其输入信号给定量和反馈量进行加法,减法,比例,积分等运算,使其按照某种预定规律运行。 3、速度环 可控硅电路的电压输入加在直流电动机的电枢上,使电动机旋转,电动机输

转速电流双闭环直流调速系统的设计说明

《电力拖动与运动控制系统》课程设计------ 转速电流双闭环直流调速 系统的设计 学院: 年级: 班级: 姓名: 座号: 学号: 指导老师:

目录 一设计任务 (3) 二设计要求 (3) 三.设计的基本思路: (3) 四.设计过程 (4) 1确定转速、电流反馈系数 (4) 2.电流环的设计 (5) 3.转速环的设计 (6) 五.硬件电路图设计 (9) 1 系统主电路图绘制 (9) 2 系统触发电路图 (9) 3 电流环电路 (12) 4.转速环电路: (13) 4.控制电路总体电路图 (14) 六.心得体会: (15) 七参考资料 (15)

一 设计任务 设计一转速、电流双闭环直流调速系统,采用他励直流电动机、晶闸管三相全控桥式整流电路,其数据如下: 直流电动机:PN=60KW ,UN=220V ,IN=305A ,Nn=1000r/min ; 晶闸管整流触发装置的放大系数 Ks=30 电磁时间常数:T1=0.012S; 机电时间常数:Tm=0.12s; 反馈滤波时间常数:Toi=0.0025s,Ton=0.014s; 额定转速时的给定电压:Unm=10V; 调节器饱和输出电压:10V ; 系统调速围:D=20; 系统的静、动态性能指标:无静差,电流超调量5%i δ≤,启动到额定转速时的超调量10%δ≤ 二 设计要求 1.确定转速、电流反馈系数; 2.设计电流调节器; 3.用min r M 准则设计转速环,确定转速调节器的结构和参数; 4.计算最低速启动时的转速超调量; 5.绘制系统线路图(主电路、触发电路、控制电路)。 三.设计的基本思路: 转速,电流双闭环调速系统属于多环控制系统。对电流双闭环调速系统而言,先从环(即电流环)出发,根据电流控制要求,确定把电流环校正为那种典型系统。按照调节对象选择调节器及其参数。设计完电流环环节之后,把它等效成一个小

转速电流双闭环直流调速系统

课程设计说明书 课程名称:电力拖动自动控制系统 设计题目:转速电流双闭环直流调速系统 院系: 学生姓名: 学号: 专业班级: 指导教师:

2010年12 月30 日

转速电流双闭环直流调速控制系统 摘要:此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 关键词:双闭环,晶闸管,转速调节器,电流调节器

目录 第一章.直流拖动控制系统总体设计 (1) 一、直流调速系统拖动方案的对比 (1) 二、直流调速系统控制方案的确定 (2) 三、直流电动机的调速方式 (2) 第二章.主电路参数计算和保护环节设计 (3) 一、整流变压器额定参数的计算 (3) 二、主电路器件的计算与选择 (3) 三、主电路保护环节的设计与计算 (3) 四、电抗器参数计算与选择 (4) 第三章.调速系统控制单元的确定和调整 (4) 一、检测环节 (4) 二、调节器的选择与调整 (5) 三、系统的给定电源 (11) 第四章.触发电路的设计 (12) 第五章.调速系统动态参数的工程计 (12) 心得体会 (12) 参考文献 (13) 附件.课程设计要求 (13)

双闭环直流调速系统的设计

双闭环直流调速系统设计 一、系统组成与数学建模 1)系统组成 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。 L + - 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

2)数学建模 图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有 s s K s W i i i ACR 1 )(ττ+= s s K s W n n n ASR 1 )(ττ+= 二、 设计方法 采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记; 双闭环直流调速系统的动态结构图

(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。 2、工程设计方法的基本思路: (1)选择调节器结构,使系统典型化并满足稳定和稳态精度。 (2)设计调节器的参数,以满足动态性能指标的要求。 一般来说,许多控制系统的开环传递函数都可表示为 ∏∏==++= n 1 i i r m 1j j ) 1() 1()(s T s s K s W τ 上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。 自动控制理论已经证明,0型系统稳态精度低,而Ⅲ型和Ⅲ型以上的系统很难稳定。 因此,为了保证稳定性和较好的稳态精度,多选用I 型和II 型系统。 三、 电流环设计 反电动势与电流反馈的作用相互交叉,给设计工作带来麻烦。 转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,0≈?E 。 忽略反电动势对电流环作用的近似条件是 l m ci T T 1 3 ≥ω (3-45) 式中ωci ——电流环开环频率特性的截止频率。 图3-19 电流环的动态结构图及其化简 (a)忽略反电动势的动态影响 把给定滤波和反馈滤波同时等效地移到环内前向通道上,再把给定信号改成 ,则电流环便等效成单位负反馈系统。 ) (s W R (s ) C (s )

相关文档
最新文档