《数值计算方法》复习资料

《数值计算方法》复习资料
《数值计算方法》复习资料

《数值计算方法》复习资料

第一章数值计算方法与误差分析

第二章非线性方程的数值解法

第三章线性方程组的数值解法

第四章插值与曲线拟合

第五章数值积分与数值微分

第六章常微分方程的数值解法

自测题

课程的性质与任务

数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析

一考核知识点

误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求

1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及

它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题

例1设x*= π=3.1415926…

近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有

即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.

又近似值x=3.1416,它的绝对误差是0.0000074…,有

即m=1,n=5,x=3.1416有5位有效数字.

而近似值x=3.1415,它的绝对误差是0.0000926…,有

即m=1,n=4,x=3.1415有4位有效数字.

这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;

例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:

2.000 4 -0.002 009 0009 000.00

解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限

x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有

效数字. a1=2,相对误差限εr==0.002 5

x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,

a=9,相对误差限εr==0.000 056

x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相

对误差限为εr==0.000 000 56

由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.

例3 ln2=0.69314718…,精确到10-3的近似值是多少?

解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。故ln2≈0.693。

第二章非线性方程的数值解法

一考核知识点

二分法;迭代法;牛顿法;弦截法。

二复习要求

1. 知道有根区间概念,和方程f(x)=0在区间(a,b)有根的充分条件。

2. 掌握方程求根的二分法,知道其收敛性;掌握二分法二分次数公式,掌握迭代法,知道其收敛性。

3. 熟练掌握牛顿法。掌握初始值的选择条件。

4. 掌握弦截法。

三例题

例1证明方程1-x-sin x=0在区间[0,1]内有一个根,使用二分法求误差不超过

0.5×10-4的根要迭代多少次?

证明令f(x)=1-x-sin x,

∵f(0)=1>0,f(1)=-sin1<0

∴f(x)=1-x-sin x=0在[0,1]有根.又

f'(x)=1-c os x>0(x∈[0.1]),故f(x)=0在区间[0,1]内有唯一实根.

给定误差限ε=0.5×10-4,有

只要取n=14.

例2用迭代法求方程x5-4x-2=0的最小正根.计算过程保留4位小数.

[分析] 容易判断[1,2]是方程的有根区间.若建立迭代格式

,此时迭代发散.

建立迭代格式,此时迭代收敛.

解建立迭代格式

取 1.5185

例3 用弦截法求方程x3-x2-1=0,在x=1.5附近的根.计算中保留5位小数点. [分析] 先确定有根区间.再代公式.

解f(x)= x3-x2-1,f(1)=-1,f(2)=3,有根区间取[1,2].

取x1=1, 迭代公式为

(n=1,2,…)

取 1.46553,f(1.46553)≈-0.000145

例4选择填空题

1. 设函数f(x)在区间[a,b]上连续,若满足,则方程f(x)=0在区间[a,b]一定有实根.

答案:f(a)f(b)<0

解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根.

2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=?(x),则f(x)=0的根是( )

(A)y=x与y=?(x)的交点(B) y=x与y=?(x)交点的横坐标

(C) y=x与x轴的交点的横坐标(D) y=?(x)与x轴交点的横坐标

答案:(B)

解答:把f(x)=0表成x=?(x), 满足x=?(x)的x是方程的解,它正是y=x与y=?(x)的交点的横坐标.

3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建

立相应的迭代公式,迭代公式不收敛的是( ) 

(A)

(B)

(C)

(D)

答案:(A)

解答:

在(A)中

故迭代发散.

在(B)中,故迭代收敛. 

在(C)中,,

故迭代收敛. 

在(D)中,类似证明,迭代收敛.

第三章线性方程组的数值解法

一、考核知识点

高斯顺序消去法,列主元消去法;雅可比迭代法,高斯――赛德尔迭代法,超松弛

迭代法;消去法消元能进行到底的条件,迭代解数列收敛的条件。

二、复习要求

1. 知道高斯消去法的基本思想,熟练掌握高斯顺序消去法和列主元消去法。

2. 掌握线性方程组雅可比迭代法和高斯――赛德尔迭代法。

3. 知道解线性方程组的高斯消去法消元能进行到底的条件,知道迭代解数列收敛概

念和上述两种迭代法的收敛性的充分条件。

三、例题

例1用顺序消去法解线性方程组

解顺序消元

于是有同解方程组:

回代得解:x3=-1, x2=1,x1=1。原线性方程组的解为X=(1,1,-1)T。例2取初始向量X(0)=(0,0,0)T,用雅可比迭代法求解线性方程组

解建立迭代公式

(k=1,2,3,…)

第1次迭代,k=0,X(0)=0,得到X(1)=(1,3,5)T,

第2次迭代,k=1,

,得到X(2)=(5,-3,-3)T

第3次迭代,k=2,

,得到X(3)=(1,1,1)T 第4次迭代,k=3,

,得到X(4)=(1,1,1)T

例3填空选择题:

1.

用高斯列主元消去法解线性方程组

作第1次消元后的第2,3个方程分别为。

解答 1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3

,消元得到

是应填写的内容。

2.用高斯-赛德尔迭代法解线性方程组的迭代格式中

=(k=0,1,2,…)

解答高斯-赛德尔迭代法就是充分利用已经得到的结果,求x2的值时应该用x1的新值。答案是:

3. 当( )时,线性方程组

的迭代解一定收敛。

(A) >6 (B) =6 (C) <6 (D) >∣6∣

解答:当∣a∣>6时,线性方程组的系数矩阵是严格对角占优矩阵,由教材第3章定理知,迭代解一定收敛。应选择(A)。

第四章插值与曲线拟合

一考核知识点

插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;差商及其性质,牛顿插值多项式;分段线性插值、线性插值基函数,最小二乘法,直线拟合。

二复习要求

1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,了解差商概念和性质,掌握差商表的计算,知道牛顿插值多项式的余项。

4. 掌握分段线性插值的方法和线性插值基函数的构造。

5.了解曲线拟合最小二乘法的意义和推导过程,以及线性拟合和二次多项式拟合的方法,

三例题

例1已知函数y=f(x)的观察数据为

x k -2045

y k 51-31

试构造f(x)的拉格朗日多项式P n(x),并计算f(-1)。

解先构造基函数

所求三次多项式为

P3(x)=

=+-+

P3(-1)=

例2已知函数y=f(x)的数据如表中第2,3列。计算它的各阶均差。

解依据均差计算公式,结果列表中。

k x k f(x k)一阶均差二阶均差三阶均差四阶均差

00.400.410 75

10.550.578 15 1.116 00

20.650.696 75 1.168 000.280 00

30.800.888 11 1.275 730.358 930.197 33

40.90 1.201 52 1.384 100.433 480.213 000.031 34

计算公式为:

一阶均差

二阶均差

………

例3设是n+1个互异的插值节点,是拉格

朗日插值基函数,证明:

证明P n(x)=y0l0(x)+y1l1(x)+…+y n l n(x)=

当f(x) 1时,1=

由于 ,故有

例4满足条件

的插值多项式p(x)=_________________

解设所求的为p(x)=a0+a1x+a2x2+a3x3

由插值条件知

解之得a2 =3/2 a3 = - 1/2

所求的插值多项式为p(x)= -1/2x3 + 3/2x2

例5选择填空题

1.通过四个互异节点的插值多项式P(x),只要满足( ),则P(x)是不超过一次的多项式。

(A) 初始值y0=0 (B) 一阶均差为0 (C) 二阶均差为0 (D)三阶均差为0

解答:因为二阶均差为0,那么牛顿插值多项式为N(x)=f(x0)+f(x0,x1)(x-x0)

它是不超过一次的多项式。故选择(C)正确。

2. 拉格朗日插值多项式的余项是( ),牛顿插值多项式的余项是( )

(A) (B) f(x,x0,x1,x2,…,x n)(x-x1)(x-x2)…(x-x n-1)(x-x n)

(C) (D) f(x,x0,x1,x2,…,x n)(x-x0)(x-x1)(x-x2)…(x-x n-1)(x-x n)

解答:(A),(D)。

第五章数值积分与数值微分

一考核知识点

数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿――柯特

斯求积公式,柯特斯系数及其性质,(复化)梯形求积公式,(复化)辛卜生求积公式;高斯型求积公式,高斯点,(二点、三点)高斯――勒让德求积公式;(二点、三点)插值型求导公式。

二复习要求

1. 了解数值积分和代数精度等基本概念。

2. 了解牛顿?柯特斯求积公式和柯特斯系数的性质。熟练掌握并推导(复化)梯形求积公式和(复化)辛卜生求积公式。

3. 知道高斯求积公式和高斯点概念。会用高斯?勒让德求积公式求定积分的近似值。

4. 知道插值型求导公式概念,掌握两点求导公式和三点求导公式。

三例题

例1试确定求积公式的代数精度。

解当f(x)取1,x,x2,…计算求积公式何时精确成立。

(1) 取f(x)=1,有:左边=, 右边=2

(2) 取f(x)=x,有:左边=, 右边=0

(3)类似导出,取f(x)=x2, x3, 有左边=右边

(5) 取f(x)=x4,有:左边=2/5, 右边=2/9

当k≤3求积公式精确成立,而x4公式不成立,可见该求积公式具有3次代数精度。例2试用梯形公式、科茨公式和辛卜生公式计算定积分

(计算结果取5位有效数字)

(1)用梯形公式计算

(2)用柯特斯公式系数为

(3)如果要求精确到10-5,用复化辛卜生公式,截断误差为

∣R N[f]∣, N≥2

只需把[0.5,1]4等分,分点为0.5,0.625,0.75,0.875,1

例3用三点高斯-勒让德求积公式计算积分

解做变量替换,有=。

查表得节点为 0.774 596 669 和0;系数分别为0.555 555 5556和0.888 888 8889

+0.888 888 889×+=0.94083124例4已知函数值f(1.0)=0.250 000,f(1.1)=0.226757,f(1.2)=0.206 612,用三点公式计算

在x=1.0,1.1,1.2处的导数值。

解三点导数公式为

k=1,2,3,…,n-1

本例取x0=1.0, x1=1.1, x2=1.2, y0=0.250 000,y1=0.226757,y2=0.206 612,h=0.1。于是有

例5选择填空题

1. 如果用复化梯形公式计算定积分,要求截断误差不超过0.5×10-4,试问n≥( )

(A) 41 (B) 42 (C) 43 (D) 40

解答;复化的梯形公式的截断误差为

,n=40.8 ,取n≥41。故选择(A)。

2.已知n=3时,柯特斯系数,那么=

解答:由柯特斯系数的归一性质,

第六章常微分方程的数值解法

一考核知识点

尤拉公式,梯形公式,改进尤拉法,局部截断误差;龙格――库塔法,局部截断误差。

二复习要求

1.掌握尤拉法和改进的尤拉法(梯形公式、预报-校正公式),知道其局部截断误差。

2. 知道龙格?库塔法的基本思想。知道二阶、三阶龙格?库塔法。掌握四阶龙格――库塔法,知道龙格?库塔法的局部截断误差。

三例题

例1用尤拉法解初值问题,取步长h=0.2。计算过程保留6位小数。

解h=0.2, f(x)=-y-xy2。首先建立尤拉迭代格式

当k=0,x1=0.2时,已知x0=0,y0=1,有y(0.2)≈y1=0.2×1(4-0×1)=0.8

当k=1,x2=0.4时,已知x1=0.2, y1=0.8,有y(0.4)≈y2=0.2×0.8×(4-0.2×0.8)=0.614 4当k=2,x3=0.6时,已知x2=0.4,y2=0.6144,有y(0.6)≈y3=0.2×0.6144×(4-0.4×0.4613)=0.8

例2用尤拉预报-校正公式求解初值问题,取步长h=0.2,计算y(0.2),y(0.4)的近似值,小数点后至少保留5位。

解步长h=0.2, 此时f(x,y)=-y-y2sin x

尤拉预报-校正公式为:

有迭代公式:

当k=0,x0=1, y0=1时,x1=1.2,有

当k=1,x1=1.2, y1=0.71549时,x2=1.4,有

=0.52608

例3写出用四阶龙格-库塔法求解初值问题的计算公式,取步长h=0.2计算y(0.4)的近似值。至少保留四位小数。

解此处f(x,y)=8-3y, 四阶龙格-库塔法公式为

其中κ1=f(x k,y k);κ2=f(x n+h,y k+hκ1);κ3=f(x k+h,y n+hκ2);κ4=f(x k+h,y k+hκ3)

本例计算公式为:

其中κ1=8-3 y k;κ2=5.6-2.1 y k;κ3=6.32-2.37y k; κ4=4.208+1.578y k

当x0=0,y0==2,

浙江中医学院计算机科学与技术系

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值计算方法复习题2

习题二 1. 已知,求的二次值多项式。 2. 令求的一次插值多项式,并估计插值误差。 解:;,介于x和0,1决定的区间;,当时。 3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。0.54667,0.000470;0.54714,0.000029 4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。 5. 已知,求及的值。1,0 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。, 7. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 向后插值公式 8. 下表为概率积分的数据表,试问:1)时,积分2)为何值时,积分?。

9. 利用在各点的数据(取五位有效数字),求方程在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 12. 在上给出的等距节点函数表,用分段线性插值求的近似值,要使截断误差不超过,问函数表的步长h应怎样选取? 13. 将区间分成n等分,求在上的分段三次埃尔米特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值

误差限,故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近 似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式,

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲 第一章数值计算中的误差分析 1 2.了解误差 ( 绝对误差、相对误差 ) 3.掌握算法及其稳定性,设计算法遵循的原则。 1、误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差E(x)=x-x * 绝对误差限x*x x* 相对误差E r (x) ( x x* ) / x ( x x* ) / x* 有效数字 x*0.a1 a2 ....a n10 m 若x x*110m n ,称x*有n位有效数字。 2 有效数字与误差关系 ( 1)m 一定时,有效数字n 越多,绝对误差限越小; ( 2)x*有 n 位有效数字,则相对误差限为E r (x)1 10 (n 1)。 2a1 选择算法应遵循的原则 1、选用数值稳定的算法,控制误差传播; 例 I n 11n x dx e x e I 0 1 1 I n1nI n1 e △ x n n! △x0 2、简化计算步骤,减少运算次数; 3、避免两个相近数相减,和接近零的数作分母;避免

第二章线性方程组的数值解法 1.了解 Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解; Crout分解; Cholesky分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel 4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。 本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解? a 11x 1 a 12 x 2... a 1n x n b1 a 21x 1 a 22 x 2... a 2n x n b2 ... a n1x 1 a n 2 x 2... a nn x n b n 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。 一、Gauss消去法 1、顺序G auss 消去法 记方程组为: a11(1) x1a12(1) x2... a1(1n) x n b1(1) a21(1) x1a22(1) x2... a2(1n) x n b2(1) ... a n(11) x1a n(12) x2... a nn(1) x n b n(1) 消元过程: 经n-1步消元,化为上三角方程组 a11(1) x1b1(1) a 21(2) x1a22(2 ) x2b2( 2 ) ... a n(1n) x1a n(n2) x2...a nn(n ) x n b n( n ) 第k步 若a kk(k)0 ( k 1)( k) a ik(k )(k )( k 1)( k )a ik(k )( k) a ij a ij a kk(k ) a kj b i b i a kk(k )b k k 1,...n 1 i, j k 1,....,n 回代过程:

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

数值计算方法学习心得

数值计算方法学习心得 在研究生一年级的上半学期,我们安排了计算方法的课程,通过课堂授课、网上学习、学术报告以及课堂监督等方式的引导,我们对计算方法有了全新的认识。我们知道,数学是一门重要的基础学科。离开了数学,科技便无法发展。而在数学这门学科中,数值计算方法有着其不可取代的重要地位。 在授课的过程中,首先利用前几讲课的时间对计算方法的基础进行补充,考虑到有部分专业的学生在本科时期没有接触过计算方法这门课程;计算方法主要研究实际问题,当今社会计算机高速的发展,为人们使用数值计算方法解决科学技术中的各种数学问题提供了有力的硬件条件。要将关于数值计算的实际问题借助于计算机来解决,那么实际的上机操作就显得十分重要。因此,老师在平时课堂授课的同时,也推广网上学习,通过课堂掌握知识、网上复习内容双重方式学习,更有利于我们掌握知识,另外对于我们上机操作也具有十分重要的指导意义。通过网上看教学视频,一方面我们对课上学习的内用加深了印象,另一方面由于课堂上时间有限,对于某些知识,我们在听课时不是很清楚,似懂非懂,在网上学习的帮助下,我们可以在课后及时对这些知识进行进一步的消化,对于我们吸收知识也是一种很好的方式。此外,网上学习具有可重复性的优点,这是课堂上所不具有的特点,在课堂上不懂的知识,在网上可以反复学习,在网上学习中遇到的问题也能够反馈到课堂。所以课堂授课与网上学习相辅相成,各有优点,弥补了各自的不足之处。 很多课应用却是另一码事,学是一码事,当然课程的学术报告也十分重要, 程中,我们学会了,遇到问题却不会解决,所以课程学术报告此时起了关键作用。

学术报告是基于每组学生各自的专业设置的,这样做一方面检验学生应用计算方法的能力,另一方面也是为了引导学生将计算方法与本专业联系起来,学会应用学过的知识对现象进行描述、建模以及采用编程的方法处理数据等。 本学期的计算方法课程相当充实,在老师课上精心的授课、学生课下利用网上资源认真复习、对课程学术报告的完成以及课堂监督下,同学们都受益匪浅,尤其是对于数据处理方法的学习、思维的形成都有极其重要的作用,对于后期的专业研究也有深远的影响。 本学期已经接近尾声,计算方法课程也已经结束,在此向老师表示敬意和感谢。.

数值计算方法(2)

数值计算(一) 主讲:张森 2011-7-9 一、矩阵的数值计算相关MATLAB函数提示: 二、插值法 1、插值有关的MATLAB函数:

2、拉格朗日和牛顿插值法 (1) 拉格朗日多项式和基函数的MATLAB 程序 求拉格朗日插值多项式和基函数的MATLAB 主程序 function [C, L,L1,l]=lagran1(X,Y) m=length(X); L=ones(m,m); for k=1: m V=1; for i=1:m if k~=i V=conv(V,poly(X(i)))/(X(k)-X(i)); end end L1(k,:)=V; l(k,:)=poly2sym (V) end C=Y*L1;L=Y*l 例1 给出节点数据03.17)15.2(=-f ,24.7)00.1(=-f ,05.1)01.0(=f , 03.2)02.1(=f , 06.17)03.2(=f ,05.23)25.3(=f ,作五次拉格朗日插值多项式和基函数,并写出估计其误差的公式. 解 在MATLAB 工作窗口输入程序 >> X=[-2.15 -1.00 0.01 1.02 2.03 3.25]; Y=[17.03 7.24 1.05 2.03 17.06 23.05]; [C, L ,L1,l]= lagran1(X,Y) 运行后输出五次拉格朗日插值多项式L 及其系数向量C ,基函数l 及其系数矩阵L 1如下 C = -0.2169 0.0648 2.1076 3.3960 -4.5745 1.0954 L = 1.0954-4.5745*x+3.3960*x^2+ 2.1076*x^3+0.0648*x^4-0.2169*x^5 L1 = -0.0056 0.0299 -0.0323 -0.0292 0.0382 -0.0004 0.0331 -0.1377 -0.0503 0.6305 -0.4852 0.0048 -0.0693 0.2184 0.3961 -1.2116 -0.3166 1.0033 0.0687 -0.1469 -0.5398 0.6528 0.9673 -0.0097 -0.0317 0.0358 0.2530 -0.0426 -0.2257 0.0023 0.0049 0.0004 -0.0266 0.0001 0.0220 -0.0002 l = [ -0.0056*x^5+0.0299*x^4-0.0323*x^3-0.0292*x^2+0.0382*x-0.0004] [ 0.0331*x^5-0.1377*x^4-0.0503*x^3+0.6305*x^2-0.4852*x+0.0048] [ -0.0693*x^5+0.2184*x^4+0.3961*x^3-1.2116*x^2-0.3166*x+1.0033] [ 0.0687*x^5-0.1469*x^4-0.5398*x^3+0.6528*x^2+0.9673*x-0.0097] [ -0.0317*x^5+0.0358*x^4+0.2530*x^3-0.0426*x^2-0.2257*x+0.0023] [ 0.0049*x^5+0.0004 *x^4-0.0266*x^3+0.0001*x^2+0.0220*x-0.0002] 估计其误差的公式为 )(5x R )25.3)(03.2)(02.1)(01.0()00.1)(15.2(! 6) () 6(----++= x x x x x x f ξ,)3.25,-2.15(∈ξ.

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值计算方法课程总结

标题:数值计算及其应用随着计算机的迅速发展和广泛应用,在众多领域内,人们越来使越认识到科学计算是科学研究的第三种方法,数值计算是研究数学问题的数值解及其理论的一个数学分支,它涉及面很广,如:代数、微积分、微分方程、无穷级数、概率论等多方面数学基础知识。自计算机成为数值计算的主要工具来,人们主要研究适合于在计算机上用的数值计算方法及与此相关的理论,包括方法的敛散性、稳定性及误差分析,还要根据计算机的特点研究计算时间最短、需要内存最少的计算方法。它除了具有数学的抽象性与严格性外,还具有应用的广泛性与实际实验的技术性。 数值计算有很多重要的应用,下面举例说明: 1. 在科学技术工程和实验中,经常需要从实验数据中寻找拟合直线,如:天文学家通过对天体运行的观测数据进行分析和处理得到天体的运动轨迹,这就需要用到“多项式逼近”理论和“曲线拟合”的相关知识。 2. 现实生活中经常遇到最优化问题,如:商家寻求最大收益、投资者寻求最小风险等。这就需要用到“数值优化”的知识。 3. 很多数学物理问题都涉及到偏(常)微分方程、科学工程领域建立的许多数学模型也经常用到微分方程,但通常我们无法计算其解析解(事实上也没有必要计算解析解),那么此时数值近似解就具有重要的意义,要求得其数值解就要用到“微分方程求解”的相关理论。

4. 在很多关键领域:如航天领域要研究系统的稳定性,实际上就是研究“收敛”和“发散”,对与这些问题就要用到“方程根的求解”的相关知识。 5. 现实中还有很大一类问题需要求解线性方程组,这就需要“线性方程组求解”及“特征值与特征向量”理论。 综上所述:数值计算在现实生活中发挥着重要的作用,在高科技领域占中有举足轻重的地位!

相关文档
最新文档