小功率调频发射机电路的设计

小功率调频发射机电路的设计
小功率调频发射机电路的设计

信息职业技术学院

毕业设计说明书(论文)

设计(论文)题目: 小功率调频发射机

电路的设计

专业: 通信技术

班级:

学号:

姓名:

指导教师:

二ΟΟ八年十二月三十日

息职业技术学院毕业设计(论文)任务书

备注:任务书由指导教师填写,一式二份。其中学生一份,指导教师一份。

目录

摘要 0

第1章绪论 (1)

第2章方案设计 (2)

方案比较与论证 (2)

方案选择 (2)

第3章单元电路设计 (4)

功率激励与末级功放电路设计 (4)

末级功放电路设计 (4)

激励级宽带功放电路设计 (7)

缓冲隔离级电路设计 (9)

LC调频振荡器设计 (11)

间接调频电路设计 (11)

LC振荡器的设计 (13)

总结 (15)

致谢 (16)

参考文献 (17)

附录1 总电路原理图 (18)

附录2 元器件明细表 (19)

摘要

在无线电通讯和广播中,需要传送由语言、音乐、文字、图像等转换成的电信号。由于这些信号频率比较低,根据电磁理论,低频信号不能直接以电磁波的形式有效地从天线上发射出去。因此,在发送端须采用调制的方式,将低频信号加到高频信号之上,然后将这种带有低频信号的高频信号发射出去,在接收端则把带有这种低频信号的高频信号接收下来,经过频率变换和相应的解调方式"检出"原来的低频信号,从而达到通讯和广播的目的。

本设计针对小功率调频发射机进行设计,它主要有调频振荡、缓冲隔离、功率激励和末级功放各部分电路组成。最主要将调制信号进行调制后,振荡信号随着调制信号的变化而产生变化,振荡级将产生5MHz的工作频率,功率激励即对电压进行放大,末级功放将工作在丙类状态ηA>50%,最后将对信号由天线发射出去。

关键词发射机;调频;无线话筒

第1章绪论

无线电技术诞生以来,信息传输和信息处理始终是其主要任务。要将无线电信号有效地发射出去,天线的尺寸必须和电信号的波长为同一数量级,为了有效地进行传输。必须将携带信息的低频电信号调制到几十MHz至几百MHz以上的高频振荡信号上,再经天线发送出去,调频是信号发射必不可少的一个环节。调频发射机目前处于快速发展之中,在很多领域都有了很广泛的应用,可以用于演讲、教学、玩具、防盗监控等诸多领域。

低频小功率调频发射机是将待传送的音频信号通过一定的方式调制到高频载波信号上,放大到额定的功率,然后利用天线以电磁波的方式发射出去,覆盖一定的范围。随着器件技术的发展,调频发射机的体积越来越趋于微型化,工作电压越来越低,信号覆盖的范围越来越广。就目前接、发射技术来说,调频发射因为起得天独厚的性能优势,在接收机技术上可以有广阔的发展前景是因为发送信号的频率比较高,那么如何能够最大限度的减少干扰,如何把这种信号很好的解出来,这成了调频技术的一种考验。本文主要就是研究利用频率调制技术调制高频信号,并把它发送出去。

第2章方案设计

方案比较与论证

无线调频话筒的设计中在LC振荡调频电路中其采用的调频方法有两种:一种是直接调频;另一种是间接调频。

方案一:直接调频。这种方法一般采用调制电压直接控制振荡器的振荡频率,振荡频率f(t)按调制电压规律变化。在此设计的电路中被控制的是LC振荡器,则只需要控制振荡回路的某个元件(L或C),使其参数随调制电压变化,就可以达到直接调频的目的。此种方法电路简单、性能良好,是目前广泛采用的调频电路之一。但这种方法的缺点是频率稳定度差,在许多场合须对载频采取稳频措施或者对晶体振荡器进行直接调频。

方案二:间接调频。这种方法是将调制信号积分,然后对载波进行调相,间接调频时,调制器与振荡器是分开的,因此对振荡器影响小,其频率稳定度高。在设计中若载频不稳,则有可能使调频信号的频谱落到接收机通带外,因此对于调频电路不仅要满足一定频偏要求,而且振荡频率必须保持足够高的频率稳定度。

方案选择

本设计采用的是间接调频,这样易于保持中心频率的稳定度,虽然间接调频不易获得最大频偏但是在设计中采用的是三级单回路变容管调相电路,这样既可以保持中心频率又可以获得最大频偏。

由于本设计要求的发射功率P A不大,工作中心频率f0也不高,因此,晶体管的参量影响及电路的分布参数的影响不会很大,整机电路设计的框图如图2-1所示。

各组成部分的功能如下:

1.LC调频振荡器:产生频率f0=5MHz的高频振荡信号,变容二极管线性调频,最大频偏Δf m=10kHz,整个发射机的频率稳定度由该级决定。

2.缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级,缓冲隔离级电路采用射极跟随器电路。

3.功率激励级:为末级功放提供激励功率,如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。

4.末级功放:将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。如果要求整机效率较高应采用丙类功率放大器,若整机效率要求不高如ηA<50%波形失真要求较小时可以采用甲类功率放大器,但是本题要求故ηA>50%选用丙类功率放大器较好。

第3章 单元电路设计

功率激励与末级功放电路设计

发射机的输出应具有一定的功率才能将信号发射出去,但是功率增益又不可能集中在末级功放,否则电路性能不稳,容易产生自激,因此要根据发射机的各组成部分的作用,适当合理的分配功率增益。本设计中,功率增益的具体分配如图2-1所示。

如果调频振荡器的输出比较稳定,又具有一定的功率,则功率激励级和末级功放的功率增益可适当小些。功率激励级一般采用高频宽带放大器,末级功放可采用丙类谐振功率放大器,缓冲级可以不分配功率。功率激励与末级功放电路如图3-1所示。

L5

v

末级功放电路设计

1.基本关系式

末级功放采用丙类功率放大器,其电路原理如图3-1所示。丙类功率放大器的基极偏置电压-V BE 是利用发射机电流的分量I eo 在射极电阻R 21上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号Vi 为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC 的选频作用可输出基波谐振电压u C 、电流i C1。

(1)集电极基波电压的振幅

P cm cm R I U 1=

式中,I cm 1为集电极基波电流的振幅;R P 为集电极负载阻抗。

(2)输出功率P O

()P cm cm cm R U I U Po 2/2

1== (3-1)

(3)直流功率P V

co cc V I V P =

(4)集电极耗散功率P T

Po P P V T -=

(5)集电极的效率η

V P Po /=η

(6)集电极电流分解系数()θα

()max /cm cmn n i I =θα

(7)导通角θ

bm

BB on U V U -=

θcos (θ一般取o

o 8060-)

2.确定丙类放大器的工作状态

为了获得较高的效率η和最大的输出功率P o ,选丙类放大器的工作状态为临界状态,οθ70=,功放管为3DA1。3DA1的参数如表3-1所示。

表3-1 3DA1参数表

(1)最佳匹配负载R P =Ω

()Ω=?-=-=25.1105

.025.1122)(2

2Po V V R CES cc P

由P o ==U cm 2/(2R P )可得: 集电极最大输出电压U cm =。 (2)集电极基波电流振幅:I cm1=

集电极电流最大值I cm =I cm1/α1(700)==。

(3)集电极电流直流分量I co =I cm ×α0(700)=×=,电源供给的直流功率Pv =V cc ×I co =。 (4)集电极的耗散功率P T =Pv -P o ==(小于P CM =1W) (5)总效率η=Po /Pv =500/=%

输入功率P i =25mW ,若设本级功率增益Ap =13dB(20倍),则输入功率Pi =P o /Ap =25mW

(6)基极余弦脉冲电流的最大值I bm (设晶体管3DA1的β=10) I bm =I cm /β=

基极基波电流的振幅I bm 1=I bm α1(700)=×= 基极电流直流分量I b0=I bm α0(700)=×= 基极输入电压的振幅U bm =2Pi /I bm1= 丙类功放的输入阻抗

()()()

Ω=?-=-=

8644

.070cos 125

cos 1o

bb r Z

θαθ 3.计算谐振回路及耦合回路的参数

(1)输出变压器线圈匝数比N 5/N 3(解决最佳匹配负载问题)

68.0110

51

23

5

===

=P L cm

L O R R U R P N N 取N 5=2,N 3=3。

(2)谐振回路电容C 20=100PF 谐振回路电感L

())(

H C L μπ101010010514.321

f 21

12

6

20

20≈?????=

=

-

(3)输出变压器初级线圈总匝数比N =N 3+N 4

高频变压器及高频电感的磁芯应采用镍锌(NXO)铁氧体,而不能采用硅钢铁芯,因其在高频工作时铁损耗过大。NXO-100环形铁氧体作高频变压器磁芯时,工作频率可达十几兆赫兹。

若采用外径×内径×高度=Φ10m m ×Φ6mm ×Φ5mm 的NXO-100环来绕制输出耦合变压器,由公式(3-2)所示:

{}{}{}H N cm

l cm A L M

H μμπ

322/1042

-?= (3-2)

式中,μ=100H/m 为磁导率;N 为变压器初级线圈匝数;A=25mm 2为磁芯截面积;l =25mm 为平均磁路长度。

计算得N =8,则N 4=5或Oe R L

W N N L

?=

05

,则 9

2251

10528.650≈????=??=

N Oe R L

W N L

O e 取值2~10,上述公式(3-2)取2。

需要指出的是,变压器的匝数N 3、N 4、N 5的计算值只能作为参考值,由于分布参数的影响,与设计值可能相差较大。为调整方便,通常采用磁芯位置可调节的高频变压器。

4.基极偏置电路

发射极电阻R 21,由公式R 21=20Ω,bm

on U V U BB

-=

θcos 可得:

οθ70cos 3.57.0cos ?-=?-=bm on BB U U V

V R I V co BB 1.121-=?-= (3-3)

R 21=Ω,由公式(3-3)取标称值高频旁路电容C 18=,电容C 20=μF 5.元件清单

R 21=20Ω C 18= C 20=100pF L ≈10μH N 3=5,N 4=3,N 5=2 三极管为3DA1。

激励级宽带功放电路设计

利用宽带变压器作耦合回路的功率放大器称为宽带功率放大器,常见宽带变压器有用高频磁心绕制的高频变压器和传输线变压器。宽带功率一般不需要调谐回路,可在很宽的频率范围内获得线性放大,但功率η较低,一般只有20%左右。它通常作为发射机的中间级,以提供较大的功率激励。

功率激励级功放管为3DG130。3DG130的参数如表3-2所示。

表3-2 3DG130参数表

(1)有效输出功率P H 与输出电阻R H

宽带功率放大器的输出功率P H 应等于下级丙类功放的输入功率Pi =25mW 其输出负载R H 等于丙类功放的输入的输入阻抗|Zi |=86Ω即P H =25mW ,R H =86Ω。 (2)实际输出功率P o ,设高频变压器的效率η=80%,则P o=P H /η=

(3)集电极电压振幅U cm 与等效负载电阻R H 。若取功放的静态电流I CQ =I cm =7mA ,则U cm =2P o /I CQ =2P o /I cm =

Ω≈Ω=='k P Ucm R H

3.15.127520

2

约为Ω

(4)高频变压器匝数比N 1/N 2

32

1

='=H

H

R R N N η

取变压器次级线圈匝数N 2=2,则初级线圈匝数N 1=6。 (5)发射极直流负反馈电阻R 20

Ω=--=--=

86.35276.093.81220mA

V

I V Ucm Vcc R CQ CES 取标称值360Ω

(6)功放输入功率P i

本级功放采用3DG130晶体管,若取功率增益A P =13dB(20倍),则输入功率

mW A p P P O i 56.1/==

(7)功放输入阻抗R i

交负交负R R r R bb i ?+=+≈3025β(取r bb =25Ω β=30)

若取交流负反馈电阻为10Ω,则R i =325Ω (8)本级输入电压振幅U im

V P R U i i im 0.11056.1325223≈???=

=

-

2.计算电路静态工作点 (1)V BQ 、I BQ

V R I V CQ EQ 47.286.352310713=?-?==

V V V EQ BQ 17.37.0=+= mA I I CQ BQ 23.030/7===

(2)R 17、R 18 (I 1=5~10倍I BQ )

若取基极偏置电路的电流I 1=5I BQ =5×=,则

Ω≈=

=

k mA

V

I V R BQ

BQ 75.215.117.3518

取标称值R 18=3kΩ。

Ω≈-=

-=

k mA

V

I V Vcc R BQ

56.715.117.3121

17

为了调节电路的静态工作点,R 17可由标称值为Ω的电阻与10kΩ的电位器组成。 (3)高频旁路电容C 17=,输入耦合电容C 12=。

此外,还可以在直流电源V CC 支路上加高频电源去耦合滤波网络,通常采用LC 的Π型低通滤波器。电容可取μF ,电感可取47μH 的色码电感或环形磁芯绕制。还可在输出变压器次级与负载之间插入LC 滤波器,以改善负载输出波形。

3.元件清单

C 17=μF C 12=μF R 18=3K Ω R 交负=10Ω N 1=6,N 2=2 R 20=360Ω 三极管为3DG130

缓冲隔离级电路设计

从振荡器的什么地方取输出电压也是十分重要的。一般尽可能从低阻抗点取出信号,并加入隔离缓冲级如射极输出器,以减弱外接负载对振荡器幅度、波形以及频率稳定度的影响。

射极输出器的特点是输入阻抗高,输出阻抗低,电压放大倍数接近于1。 由于待传输信号是高频调频波,主要考虑的是输入抗高,传输系数大且工作稳定。选择电路的固定分压偏置与自给偏压相结合,具有稳定工作点特点的偏置电路。如图3-2所示。射极加R 16可改变输入阻抗。

图3-2 射级输出电路

射级输出器具有输入阻抗高,输出阻抗低,电压放大倍数近似等于1的特点。晶

体管的静态工作点,一般取V CEQ =1/2V CC ,I CQ =(3~10)mA 。

对于图3-2所示电路:

1.已知Vcc =+12V ,负载电阻R L =325Ω(宽带放大器输入电阻),输出电压振幅等于高频宽带放大器输入电压振幅,即U om =,晶体管为3DG100(3DG6)。3DG100的参数如表3-3所示。

表3-3 DG100参数表

P CM I CM V CES h fe f T A P 100mW

30mA

30~200

≥150MHz

β0CEQ =,I CQ =(3~10)mA 。

(1)根据已知条件选取I CQ =4mA ,V CEQ =×Vcc =6V ,则

Ω=-=

-=

=

+k mA

V

I V Vcc I V R R CQ

CEQ

CQ

EQ 5.146121615

(2)R 15、R 16:取R 15=1kΩ,R 16为1kΩ的电位器。 (3)R 13、R 14 V EQ = V BQ =V EQ += I BQ =I CQ /β0=

Ω≈=

k I V R BQ

BQ 101014

取标称值R 14=10kΩ

Ω=-=

k I V V R BQ

BQ cc 95.71013

取标称值R 13=8kΩ (4)输入电阻R i

若忽略晶体管基取体电阻的影响,有

)()]([Ω≈+=k R R R R R R 63.318161514

13β(R 18=325) (3-4)

(5)输入电压U im

V

P R U i i im 37.31056.136302213≈???=

=

-

(3-5) (6)耦合电容C 12、C 16

为了减小射极跟随器对前一级电路的影响,C 12的值不能过大,一般为数十pF ,

这里取C12=20PF、C16=μF

2.元件清单

C12=20PF C16=μF R13=8kΩ R14=10kΩR15=1kΩ R16为1kΩ的电位器三级管为3DG100

LC调频振荡器设计

调频振荡电路的作用是产生频率f0=5MHz的高频振荡信号。变容二极管为线性调频,最大频偏Δf m=10kHz。发射机的频率稳定度由该级决定,调频振荡器电路如图3-3所示。

图3-3调频振荡电路

间接调频电路设计

1.间接调频方框图

图3-4 间接调频方框图

间接调频是对调制信号u Ω进行积分,再加到调相器对载波信号调相,从而完成调频。间接调频电路方框图如图3-4所示。

2.变容管调相电路

设调制信号t u u m Ω=ΩΩcos 经积分后得

()t u k

dt t u k

u 'm

ΩΩ

==ΩΩΩ?

sin (3-6) 式(3-6)中,k 为积分增益。用积分后的调制信号对载波()t u t u c cm c ωcos =进行调相,则得

()()()t m t U t u k

k t u t u f c cm m

p c cm Ω+=ΩΩ

+=Ωsin cos sin cos ωω (3-7)

Ω

=

Ωm

f f U k m ,k k k p =

上式(3-7)中与调频波表示式完全相同。由此可见,实现间接调频的关键电路是调相。

本次设计采用的是变容二极管调相电路,电路如图3-5所示。

u u

图3-5 变容二极管调相电路

图中,L 与变容二极管结电容Cj 构成并联谐振回路;载波电压u c (t)经R 1后作为电流源输入;调制信号u Ω经耦合电容C 3加到R 3、C 4组成的积分电路,因此加到变容二极管的调制信号为u'Ω,使变容二极管的电容Cj 随调制信号积分电压的变化而变化,从而使谐振回路的谐振频率随调制信号积分电压的变化而变化。它使固定频率的高频载波电流在流过谐振频率变化的振荡回路时,由于失谐而产生相移,从而产生高频调相信号电压输出,从而实现调相。合理的选择变容二极管和调整电路参数,可将相位变化与调制信号成线性关系。如果将调制信号先经过积分电路后再输入,即加到变容二极管上的电压为∫u Ω(t)dt ,则输出的调相电压的相移与∫u Ω(t)dt 成线性关系,

而频率与调制信号成线性关系,这就实现了间接调频。

3.三级单回路变容管调相电路

图3-6实际间接调频电路图(三级单回路变容管调相电路)由于回路产生的相移按输入调制信号的规律变化,若调制信号在积分后输入,则输出调相波的相位偏移与被积分的调制信号呈线性关系,其频率与积分前的信号亦成线性关系。由于回路相移特性线性范围不大,因此图3-5单回路变容管调相电路得到的频偏是不大的,必须采取扩大频偏措施除了用倍频方法增大频偏外,还应改进调相电路本身。在此设计中由于要求要有足够大的频偏,为了得以实现在调频中采用的是如图3-6所用的为三级单振荡回路组成的调相电路。

LC振荡器的设计

主要技术指标:工作中心频率:f0=5MHz;

最大频偏:Δf m=10kHz;

频率稳定度:Δf m/f0≤5×10-4/小时

1.电路形式,设置静态工作点

本设计对频率稳定度Δf/f0要求不是很高,故选用图3-3所示的改进型电容三点式振荡器与三级单回路变容二极管调频电路。

2.三点式振荡器设计:基极偏置电路元件R1、R2、R3、R4、C1的计算

图中,晶体管T1与C2、C3、C4、C5、C j、L1组成改进型电容三点式振荡器,T1为共基组态,C1为基级耦合电容。其静态工作点由R1、R2、R3、R4共同决定。晶体管T1选择3DG100,其参数见表3-3所示。

小功率振荡器的集电极静态工作电流I CQ 一般为(1~4)mA 。I CQ 偏大,振荡幅度增加,但波形失真严重,频率稳定性降低。I CQ 偏小对应放大倍数减小,起振困难。为了使电路工作稳定,振荡器的静态工作点取I CQ =2mA ,测得三极管的β=60。

mA R R R R V V I CEQ cc CQ 26

124

34

3=+-=

+-=

由R 3+R 4=3kΩ,为了提高电路的稳定性,R 4的值可适当增大,取R 4=1kΩ,则R 3=2kΩ。

V k mA R I V V V CQ BE BQ EQ 2124=Ω?=≈-=

V V R R R Vcc R R R V EQ BQ 7.27.0122

12

212=+=+=+=

A mA I I CQ BQ μβ3.3360/2/===

为了提高电路的稳定性,取流过电阻R 2上的电流

mA I I BQ 33.0102==

Ω==

k mA

V

I V R BQ 18.833.07.22

2

取标称值R 2=Ω 根据公式(3-8)所示:

Vcc R R R V BB ?+=

212则 ()Ω=?-=k R V V R BQ

cc

2.28211 (3-8)

得R 1=Ω实际运用时R 1取20kΩ电阻与47kΩ电位器串联,以便调整静态工作点。 C 1为基极旁路电容,可取C 1=μF 。C 8=μF ,输出耦合电容。

总结

通过将近两个月的毕业设计,这是我三年大学以来最重要的环节,是我们对所学专业知识的一次实践运用。在这次的毕业设计中我由最初的选题到由各自到网上或者图书馆查找一些有关于课题设计方面的一些资料,这些都让我学到很多。

在此次的设计中,我设计的是小功率调频发射机,之所以会选择这个课题我觉得它在我们的日常生活中比较实用,较贴近生活中,这样对我理解这个课题的设计是比较有用的。在老师的耐心指导下,我通过对各单元电路的分析及设计,每一个过程都是对自己能力的一次检验和充实。通过这次的设计我了解并掌握了无线调频话筒的工作原理,熟悉它设计的每一个步骤,这样不仅对我所学知识的一次应用同时也是我自己的一次锻炼机会。

通过这次的毕业设计我知道在平时的知识积累是多么的重要,因为在这次的设计中差不多的内容都是我们以前所接触过的。毕业设计不仅仅是对知识的一次实践应用也是对我们知识的一次复习,在由最初的设计到最后的排版都是对我们的一次锻炼,因为这些细小的情节我们在平时是很少接触到的,只有通过自己的实际应用才能掌握的更好,我很高兴能有这次做毕业设计的机会这是对我能力的一次证明。

致谢

在这次的设计中我非常感谢我的指导老师和我的同学,在设计中我遇到不少问题,都是在他们的耐心讲解和交流下我才能得以顺利完成!通过这次毕业设计我收获到很多,比如学会了如何查找相关资料的标准,分析数据,同时也提高了自己的绘图能力,懂得了许多经验公式的获得是前人不懈努力的结果。我很高兴能有这次毕业设计的机会,它是对我们设计能力的一次证明!同时也对以后工作打下一定的基础。

在这次设计中我学会了基本的排版要求,并更加熟悉Protel程序的绘图,这些都让我学到不少。我很高兴能有这次机会让我锻炼自己的能力,让我在这次设计中学到不少知识,这些都不仅仅是课本上原理知识的巩固,同时提高了我的知识面。这对我以后的工作奠定了一定的基础。

小功率调幅发射机

课程设计任务书 学生:专业班级:电子0903 指导教师:工作单位:理工大学 题目: 小功率调幅发射机设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路完成一个小功率调幅发射机的设计。 2. 电源电压+V cc=+10V,-V EE=-10V; 3. 工作频率f=16MHz,调幅度=50%; 4. 负载电阻R L=75Ω时,发射功率P0≥100mW,整机效率η>40% 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年1月4日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年1月5日至2013年1月10日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。

3. 2013年1月11日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日

目录 摘要................................................................................................................................. I Abstract......................................................................................................................... I I 1 调幅发射机的相关知识 .. (1) 1.1基本知识及性能指标 (1) 1.2调幅发射机的工作原理 (1) 2 小功率调幅发射机的设计 (3) 2.1 设计要求 (3) 2.2确定电路设计方案 (3) 2.2.1拟定调幅发射机的工作原理框图 (3) 2.2.2 单元电路设计方案选择 (4) 2.3单元电路设计 (5) 2.3.1本机振荡电路和话音放大电路 (5) 2.3.2调制电路 (6) 2.3.4功率放大级电路 (8) 2.3.5整体电路设计 (8) 3 调试与仿真 (9) 3.1晶体振荡器的调试 (9) 3.2调制器的测试 (10) 3.3整机联调及其常见故障分析 (11) 4心得与体会 (12) 参考文献 (13)

大功率LED的驱动电路设计(PT4115应用)

大功率LED 的驱动电路设计(PT4115应用) 摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。 本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标: 1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定电流为350mA,3W LED 的750mA 。 3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V 。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm)。如1W 大功率LED 的光通量一般为60~80LM 。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度.,单位为勒克斯(lx)。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压,电流等条件)的一种电路,也是LED 能工作必不可少的条件,好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式: (1) 镇流电阻驱动:就是简单的的在LED 变LED 的驱动电流.。 LED 的工作电流为: R U U I L -= 所以I 与镇流电阻R 成反比;当电源电压U 时,R 能限制I 的过量增长,使I 不超出LED

调频发射机设计

惠州学院 HUIZHOU UNIVERSITY 高频电子线路课程设计 设计题目调频发射机 系别 专业 班级 姓名 学号

一、设计题目:调频发射机的设计 二、设计的技术指标与要求: 1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=?; 6总效率:%50≥A η; 7频率稳定度:小时/10/4 00 -≤?f f ; 8调制灵敏度S F ≥30KH Z /V ; 三、设计目的: 设计一个采用直接调频方式实现的工作电压为12V 、输出功率在500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信号的无线传输、对讲机中的发射电路等。 四、设计框图与分析: (一)总设计方框图 与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。 (二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW) 变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图

拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=?,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。 (4)末级功放 将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。若整机效率要求不高如%50≥A η而对波形失真要求较小时,可以采用甲类功率放大器。但是本题要求 %50≥A η,故选用丙类功率放大器较好。 五、设计原理图: 1 考虑到频率稳定度的因素,调频电路采用克拉泼振荡器和变容二极管直接调频电路。电路的工作原理是:利用调制信号控制变容二极

小功率调频发射机的设计课程设计报告正文

东北石油大学课程设计 课程高频电子线路 题目小功率调频发射机的设计 院系电子科学学院 专业班级电信XXXXXXX班 学生姓名XX 学生学号XXXXXXXXXXXX 指导教师 2013年3月1日

东北石油大学课程设计任务书 课程高频电子线路 题目小功率调频发射机的设计 专业电子信息工程姓名XX 学号XXXXXXXXX 主要内容、基本要求、主要参考资料等 1、主要内容 利用所学的高频电路知识,设计一个小功率调频发射机。通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 2、基本要求 设计一个小功率调频发射机,主要技术指标为: (1) 载波中心频率 06.5MHz f=; (2) 发射功率100mW A P>; (3) 负载电阻75 L R=Ω; (4) 调制灵敏度25kHz/V f S≥; 3、主要参考资料 [1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006. [2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993. [3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000. [4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月25日-3月1 日 指导教师 专业负责人 2013 年 2 月22 日

一、电路基本原理 1. 总设计方框图 与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。如图1所示: 图1 变容二极管直接调频电路组成方框图 2.电路基本框图 图2 电路的基本框图 实际功率激励输入功率为1.56mW 拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率Po 不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f0=6MHz 的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的 LC 调频振荡器缓冲隔离器 功率激励 末级功放 调制信号变容二极管直接调频电路调频信号 载波信号

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

最新小功率调幅发射机设计

小功率调幅发射机设 计

一、设计题目 小功率调幅发射机 二、设计目的、内容及要求 2.1 设计目的 (1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。 (2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。 2.2 设计原理 小功率调幅发射机的设计 (1)掌握小功率调幅发射机原理; (2)设计出实现调幅功能的电路图; (3)应用multisim软件对所设计电路进行仿真验证。 技术指标:载波频率f =1MHz~ 10MHz;低频调制信号1KHz正弦信号;调 制系数 =50Ω。 Ma=50%±5%;负载电阻R A 2.3 设计要求 根据原理,要求设计一个小功率调幅发射机, (1)主要参数:

已知+Vcc=+10V、-VEE=-10V;话音放大级输出电压为5mV;负载电阻R A=50Ω (2)主要元器件:主要元件有MC1496、3DG100、3DG130、4MHz晶振、NXO-10磁环; =8MHz;低频调制信号1KHz正弦信号;调制系数 (3)技术指标:载波频率f Ma=50%;发射功率P0=300mW 三、调幅发射机的原理与分析 3.1调幅发射机的原理框图 所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。 高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。 低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。 调制部分即振幅调制电路,它将要传送的信息装载到某一高频振荡(载频)信号上去的过程。

LED驱动电路的设计与制作

自动化学院 电子基础课程设计任务书 系班学生: 课题名称:LED驱动电路的设计与制作 课题要求:一、1、工作电源:交流220伏 2、LED功率为3W 二、完成原理图、PCB图设计 三、完成安装及调试。 四、写出设计报告。 课题内容: 第一周:查找相关资料;方案设计。 第一周:设计原理图、PCB图。 第二周:完成安装及调试。撰写报告 主要参考资料: [1].王庆主编. Protel99SE & DXP 电路设计教程. 电子工业出版, 2006.6 [2].康华光等. 电子技术基础(模拟部分第五版).高等教育出版社, 1999.6 [3].康华光等. 电子技术基础(数字部分第五版).高等教育出版社, 1999.6 时间:2009年1月5日

自动化学院 电子基础课程设计评分标准 平时表现评分:(20%) 优秀:(90-100) 遵守纪律,尊敬老师,爱护设备,工作量饱满,动手能力强,无缺勤,很好按课题进度进行。 良好:(80-89) 遵守纪律,爱护设备,工作量饱满,动手能力较强,考勤情况良好,较好按课题进度进行。 中等:(70-79) 遵守纪律,爱护设备一般,工作量一般,动手能力一般,偶尔缺勤,基本按课题进度进行。 及格:(60-69) 遵守纪律一般,人为因素损坏设备,工作量一般,动手能力差,偶尔缺勤,能按课题进度进行。 不及格:(59以下) 不遵守纪律,人为因素损坏设备,有技术安全事故,工作量不饱满,动手能力很差,经常迟到,早退,缺勤。 课题完成情况评分:(50%) 优秀:(90-100) 全部完成任务书要求,完成质量优良、结果正确,所完成的设计有一定的独立见解。 良好:(80-89) 全部完成任务书要求,完成情况良好,所完成的设计正确,解决了一些实际问题,结果正确。 中等:(70-79) 基本完成任务书要求,完成质量尚好,所完成的设计基本正确,但存在一些不足。 及格:(60-69) 基本完成任务书要求,完成质量尚好,所完成的设计基本正确,但有小错误。 不及格:(59以下) 未完成任务书要求,所作的设计有严重错误,基本概念不清。 电子基础课程设计报告质量评分(30%) 1、文献资料收集、整理、分析;对课题研究意义的阐述;文字精练、流畅、绘图整洁、符合标准规范、字体工整; 2、基本概念、基本理论及专业知识掌握扎实,运用灵活;设计思路、设计内容、计算方法及结果、计算机运用正确无误; 3、试验数据的获取(软件调试方法及过程)试验过程(调试过程)的正确性; 4、电子基础课程设计的结论,存在的问题,研究结果的创新性;

高频课程设计---调频(FM)发射机的设计

高频课程设计论文题目:高频(FM)发射机的设计 系别:电子信息与电气工程系 专业:通信工程

摘要:作为通信系统的重要组成部分,无线电技术越来越重要。本文研制一种调频发射机,介绍了调频发射机的制作方法及其工作原理,同时给出了系统的组成框图及系统各部分功能,设计了PCB电路板,并且对所设计的发射机的功能进行了安装与调试。本文中的发射机发射的频率可在66-109MHz频段内进行调制,并可用普通的调频收音机接收。 关键词:小功率调频发射机音频信号调制波载波

目录 1设计课题 2实践目的 3设计要求 4基本原理 4.1 系统方案选择 4.2 整体系统描述 4.3 单元电路设计 4.3.1 音频放大电路 4.3.2 高频振荡电路 4.3.3 高频功率放大电路 5系统调试 5.1 PCB板的设计 5.2 系统调式 6结论 7参考文献 8附录

1设计课题 调频发射机设计 2实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等必不可少的设备。本次设计要求达到以下目的: 1.进一步认识射频发射与接收系统; 2.掌握调频无线电发射机的设计; 3.学习无线电通信系统的设计与调试。 3设计要求 1.发射机采用FM的调制方式; 2.发射频率覆盖范围为88-108MHz,传输距离大于10m; 3.为了加深对调制系统的认识,发射机采用分立元件设计; 4.已调信号采用通用的AM/FM多波段收音机进行接收测试。 4 基本原理 4.1 系统方案选择 方案一:以晶体振荡器做成高精度高稳定度的调频发射机 以晶体振荡器做成高精度高稳定度的调频电路,这完全可以达到我们的要求,但是这种方案比较复杂,能过搜索我们有另外一种方案,见方案二。 方案二:以调频方式做成三级发射机 这种方案的性能是比较好的,这种发射机主要由三个模块组成,第一级是音频放大电路;第二级是高频振荡电路;第三级是高频功率放大电路。 4.2 整体系统描述 本调频发射机的总体电路如下:声--电转换、音频放大、高频振荡调制和高频功率放大等。声--电转换由驻极体话筒担任,它拾取周围环境声波信号后即输出相就应电信号,经电容C2输入到晶体管Q1,Q1担任音频放大功能,对音频信号进行

小功率调频发射机的设计

********************校 高频电子线路 课程设计报告 设计题目:小功率调频发射机的设计 系部: 专业: 班级: 学生姓名: 学号: 成绩: 2011年月

“高频电子线路”课程设计任务书 1.时间:2011年06月6日~2011年06月10日 2. 课程设计单位:**************** 3. 课程设计目的:掌握“高频电子线路”课程的基本概念、基本原理,加深对高频电子系统的工作原理和电路调试方法的理解。 4. 课程设计任务: ①了解电路图绘制软件的相关常识及其特点; ②熟悉电路图绘制软件的使用方法; ③理解高频电子系统的布局布线规则; ④作好实习笔记,对自己所发现的疑难问题及时请教解决; ⑤联系自己专业知识,熟练设计高频电子线路的,总结自己的心得体会; ⑥参考相关的的书籍、资料,认真完成实训报告。 ⑦作好笔记,对自己所发现的疑难问题及时请教解决; ⑧联系自己所学知识,总结本次设计经验; ⑨认真完成课程设计报告。 高频课程设计报告

前言: 结合这次课设的要求:运用模电知识,利用晶体管设计电路,我的选题是 小型功率发射机,在小型发射机的设计中,根据晶体管结构和工作原理,进行放大电路,射极跟随器设计,小型功率放大电路,还有在设计中占主要地位的振荡电路的设计。其中振荡电路的设计结合了模电以及高频电子线路中晶体管综合应用。设计跟随其实必不可少的,因为起到前后级电路的隔离作用。产生的信号很小,需要通过放大电路的放大才能达到要求,发大电路的的设计最为复杂,考虑到前后及电路的匹配,以及波形的失真与否。 本次课设论文分为以下几个部分:通过技术指标从后级电路依次往前级电路设计,包括元件参数,器件的选择,电路仿真,PCB印刷版的制作,和最终实物的制作和调试。课设中。设计仿真和实物调试很有差别,因为振荡频率为6到7兆赫兹,已经属于高频范围,很容易受到杂波信号的影响,所以在调试中为保证电路的稳定性会改变电路的某些参数。小功率发射机主要包括以下几个部分:高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。下面就这几个 部分进行介绍说明。 课程设计报告: 1.设计内容及要求 .设计目的 晶体管器件课程设计是电子科学与技术专业学科实践性课程,其任务是使学生运用模拟电路等电路课程中所学的知识,利用晶体管等器件,设计出一些完成一定功能的电路,并对电路进行分析和调试。掌握设计和调试电路的一些方法和技巧。 .设计任务及主要技术指标 (1)工作电压:Vcc=+12V;

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

电子线路课程设计小功率调幅发射机

电子线路课程设计总结报告 学生姓名: 学号: 专业:电子信息工程 班级:电子111 报告成绩: 评阅时间: 教师签字:

河北工业大学信息学院 2014年2月24日~2014年3月7日 课题名称:小功率调幅发射机的设计 内容摘要:本次课程设计实现小功率发射机的理论设计,本文介绍了设计的理论和步骤。根据设计指标、要求和可行性,选择适合设计方案,并对设计方案进行必要的论证。设计具体包括以下几个步骤:一般性理论设计、具体电路的选择、根据指标选定合适器件并计算详细的器件参数、用multisim 进行设计的仿真、根据仿真结果检验设计指标并进行调整。小功率调幅发射级主要包括四个单元电路:载波发生电路、低频调制信号发生器、调制电路、高频放大电路。先完成各单元电路设计及仿真,然后将各单元连接进行调试仿真完成设计指标的要求。最后对整个设计出现的问题,和心得体会进行总结。 关键字:调幅发射机、理论设计、multisim 仿真 一、设计内容及要求 1.确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计分析,并给出各单元电路的理论设计方法和实用电路设计细节,其中包括元器件的具体选择、参数调整。 2.利用multisim 仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求。 3.小功率调幅发射机设计的技术指标:载波频率010f MHz =,输出功率0200P mW ≥,负载阻抗 50A R =Ω,输出信号带宽9WB KHz =,单音调幅系数0.8a m =,平均调幅系数0.3a m ≥,发射效 率50%η≥。 二、方案选择及系统框图 1.设计方案概述和系统框图: 发射机的主要作用是完成有用的低频信号对高频信号的调制,并通过天线向外辐射携带有有用信号、具有一定带宽和满足功率要求的已调信号。 调幅发射机主要包括三个部分:载波发生器(主振级)、音频部分和调制电路。此外本系统依然用到了射随器(缓冲级)以满足隔离条件,用放大器以满足载波电压和末级发射功率的要求。对于实现相同功能的单元电路,实现方法不唯一:载波发生器可以利用克拉泼电路、西勒电路、晶体振荡电路等;音频部分可以使用集成运放电路、三极管低频放大电路;AM 调制部分可以使用高电平调制(三极管集电极调幅电路等)、低电平调制(乘法器)两种不同方法。 无论各单元电路使用何种方法,小功率调幅发射机的系统框图大同小异,如下图所示:

调频发射机课程设计

摘要 频率调制又称调频,它是使高频载波信号的频率按调制信号振幅的规律变化,即使瞬时频率变化的大小与调制信号成线性关系,而振幅保持基本恒定的一种调制方式。调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了振荡器、调制器、混频电路、倍频电路和功率放大器几部分,分别讨论它们的原理及其特性。 关键字:调频振荡器混频倍频功放

一、前言 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。 调频发射机作为一种简单的通信工具,它首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行混频,倍频,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了载波振荡器、调制器、混频电路、倍频电路和功率放大器等部分组成,分别讨论它们的原理及其特性。 通过调频发射机电路的设计,使得建立无线电发射收机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,从而能正确设计、计算发射的各个单元电路:包括晶体振荡电路、变容二极管调频电路、二极管单平衡混频电路、三极管倍频电路、丙类谐振功率放大电路设计、元器件选择。发射机是日常生活中常见的也是应用非常广泛的电子器件,研究本课题既可以了解调频发射机电路,又可以提高对于Multisim的应用能力和运用书本知识的能力。

小功率调频发射机设计

湖南工程学院课程设计 课程名称通信电子线路课程设计课题名称小功率调频发射机设计 专业电子信息工程 班级 学号 姓名李科峰 指导教师浣喜明 2011年09 月08 日

湖南工程学院 课程设计任务书 课程名称通信电子线路课程设计 题目小功率调频发射机设计 专业班级电子信息工程班0881 学生姓名李科峰学号10 指导老师浣喜明 审批 任务书下达日期:2011 年08 月29 日设计完成日期:2011 年09 月08 日

目录 一.设计目的 (6) 二.基本原理与方案比较 (6) 2.1FM调制原理 (6) 2.2调频方式选择 (9) 三.单元电路的设计 (10) 四.总电路图 (17) 五.心得体会 (18)

一.设计目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。本次设计要达到以下目的: 1. 进一步认识射频发射系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。 二.基本原理与方案比较 2.1FM 调制原理 载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。即已调信号的瞬时角频率 ()()t u k w t w f c Ω?+= 已调信号的瞬时相位为 ()()t d t u k t w t d t w t t f c t ''+=''=??Ω )(0 ? 实现调频的方法分为直接调频和间接调频两大类。 2.1.1 直接调频 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信

高频电子线路课程设计报告-小功率调幅发射机

提供全套毕业设计,欢迎咨询 吉林建筑大学 电气与电子信息工程学院 高频电子线路课程设计报告 设计题目:小功率调幅发射机 专业班级:电子信息工程 学生姓名: 学号: 指导教师: 设计时间:2014.12.08-2014.12.19

一、设计题目: 小功率调幅发射机的设计 二、设计目的、内容及要求: 2.1 设计目的 (1)加深对《高频电子线路》理论知识的进一步理解,进一步巩固理论知识,能够建立起无线发射机的整机概念,学会分析电路、设计电路的步骤和方法,深入地贯穿到实践中。 (2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。 2.2 设计内容及要求 小功率调幅发射机的设计 (1)掌握小功率调幅发射机原理; (2)设计出实现调幅功能的电路图; (3)应用multisim软件对所设计电路进行仿真验证。 技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻RA=50Ω。 三、工作原理: 由振荡器产生一个固定频率的载波信号,载波信号经缓冲级送至振幅调制电路,缓冲级将振荡级与调制级隔离,减小调制级对晶体振荡级的影响,放大级将低频信号放大至足够的电压后送到振幅调制电路,振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率。 调幅发射机常用于通信系统与其他无线电系统中,在中短波领域应用极为广泛,由于调幅简便,占用频带窄,设备简单等优点,因此在发射机系统中应用非常广泛。 在实际的广播发射系统中,中波调幅的频率范围为535 ~ 1605 千赫,音频信号中的高音频率应该被限制在 4.5 千赫以下,发射功率需要达到300W以上才能使空间覆盖面达到比较好的状态,此次设计需要在实验室环境中研究发射机的工作原理与原件选择,因此,根据实验室条件适当降低技术指标,载波频率采用实验室较为常用的6MHz,单音频调制信号选择1KHz,发射机功率初步定为1W。 四、总体方案: 1、调幅发射机的设计方案 发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。根据设计要求,载波频率

小型LCD背光的LED驱动电路设计

小型LCD背光的LED驱动电路设计 过去几年来,小型彩色LCD 显示屏已经被集成到范围越来越宽广的 产品之中。彩色显示屏曾被视为手机的豪华配置,但如今,即便在入门级手机 中,彩屏已成为一项标配。幸好,手机产业的经济规模性(全球手机年出货量接 近10 亿部)降低了LCD 彩色显示屏的成本,并使它们集成在无论是便携医疗设备、通用娱乐遥控器、数字相框/彩色LCD 显示屏需要白色背光,以便用户在 任何光照环境下都能正常地观看。这个背光子系统包括1 个高亮度白光发光二 极管(LED)阵列、1 个扩散器(diffuser)以扩散光线和1 个背光驱动器将可用电能 稳压为恒定电流以驱动LED.一块1 到1.5 英寸的显示屏可能包含2 到4 个LED,而一块3.5 英寸显示屏则可能轻易地就包含6 到10 个LED.对于LED 而言,其光 输出与电流成正比,而且由于LED 具有非常陡峭的电流-电压(I-V)曲线,流过LED 的电流紧密匹配是非常重要,这样才能确保均衡背光,因为LED 通常分 布在LCD 显示屏的一边。此外,也需要软件控制让用户调节亮度,以及针对 周围光照环境作出补偿。根据流经LED 电流的不同,LED 的色点(color point) 可能会漂移。因此,将LED 电流设定为固定值并对LED 进行脉宽调制以降低 平均光输出就很普遍。要在手持产品设计中集成小型彩色LCD 显示屏并进而 实现成本、性能和电池寿命的恰当平衡,存在着一系列需要考虑的因素。 电池供电产品需要优化的LED 驱动电路架构,这些架构要处理并存的 多项挑战,如空间受限、需要高能效,以及电池电压变化-既可能比LED 的正 向电压高,也可能低。常用的拓扑结构有两种,分别是LED 采用并联配置的 电荷泵架构/恒流源架构和LED 采用串联配置的电感升压型架构。这两种方案 都有需要考虑的折衷因素,如升压架构能够确保所有LED 所流经的电流大小 相同但需要采用电感进行能量转换,而电荷泵架构使用小型电容进行能量转换,

《调频发射机设计》word文档

实习报告 课程: 课题:调频发射机设计 专业: 班级: 座号: 姓名: 指导老师: 2011年1月18日

目录 前言 一、设计内容 (3) 1.1进程安排 (3) 1.2设计目的 (3) 1.3设计要求 (4) 二、发射机原理 (4) 2.1 设计整体思路 (4) 2.2 基本原理 (4) 2.3 调频发射机的原理图 (8) 2.4、各个元器件说明 (8) 三、模块说明 (9) 3.1 输入信号模块 (9) 3.2 振荡模块 (9) 3.3 放大和发射模块 (9) 3.4 调频发射机的主要技术指标 (10) 四、PCB板的制作 (10) 五、电路的调试及调试结果结果 (11) 5.1 电路的调试 (11) 5.2 调试结果 (11) 六、实验总结及心得体会 (12) 元器件清单 附页

前言 调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。本课题重点在于设计能给发射机电路提供稳定频率的振荡调制电路。课题首先用两级电压并联负反馈放大电路,适当放大语音信号,以配合调制级工作;然后用石英晶体构成振荡电路为发射机提供稳定的基准频率载波,接着通过变容二极管完成语音信号对载波信号的频率调制,并通过LC并联谐振网络选出三倍频信号;最终利用两级功率放大,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。通过后续的电路仿真和部分电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。通常,发射机包括三个部分:高频部分,低频部分,和电源部分。高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。所以末级高频功率放大级则成为受调 放大器。

小功率调频发射机

《通信电子线路》课程设计说明书小功率调频发射机 学院:电气与信息工程学院 学生姓名:贺帅 指导教师:伍麟珺职称讲师 专业:通信工程 班级:通信1301班 学号:1330440128 完成时间:2016年1 月

摘要 调频发射机的用处很大,在很多领域都有了很广泛的应用。这个实验是关于小功率调频发射机工作原理分析及其模拟调试,通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。学会基本的实验技能,提高运用理论知识解决实际问题的能力。本次设计我是结合Multisim软件来对小功率调频发射机电路的设计与调试方法进行研究。Multisim 是一款仿真软件,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。首先设计出总的电路图,在分别计算各电路的静态工作点,但是通过实际仿真,还是与理论计算值有出入。 关键词:LC振荡器;调频;功率放大器

目录 第1章绪论......................................... 错误!未指定书签。 1.1小功率调频发射机研究意义.................... 错误!未指定书签。 1.2调频发射机研究现状.......................... 错误!未指定书签。 1.3发射机的主要技术指标........................ 错误!未指定书签。第2章总体方案设计.. (4) 2.1设计方案比较 (4) 2.2总设计框图 (4) 第3章电路组成方案 (6) 3.1振荡电路的选择 (6) 3.2振荡电路参数计算 (6) 3.3调频电路的设计.............................. 错误!未指定书签。 3.4调频参数的计算 (9) 3.5缓冲隔离级电路的设计........................ 错误!未指定书签。 3.6缓冲隔离级电路参数计算...................... 错误!未指定书签。 3.7末级功放电路选择............................ 错误!未指定书签。 3.8末级功放电路参数计算........................ 错误!未指定书签。第4章Multisim仿真结果 ........................... 错误!未指定书签。 4.1 LC振荡电路仿真波形......................... 错误!未指定书签。第5章实验数据与误差分析........................... 错误!未指定书签。 5.1实验数据与设计要求比较.................... 1错误!未指定书签。 5.2误差分析.................................. 1错误!未指定书签。结束语............................................. 错误!未指定书签。参考文献.. (20) 致谢 (21) 附录 (22)

小功率调幅发射机毕业设计

小功率调幅发射机毕业 设计 目次 1 绪论 (1) 1.1 小功率调幅发射机初步认识 (1) 1.2 小功率调幅发射机国外研究现状 (2) 1.3 小功率相关技术及热点问题分析 (2) 1.4 课题的研究任务和容 (5) 2 方案设计与单元电路形式选择 (6) 2.1 发射机的总体认识 (6) 2.2 单元电路的认识 (6) 3 单元电路的设计与仿真 (8) 3.1 主振级与小信号放大级的设计 (8) 3.2缓冲隔离级的设计 (11) 3.3语音放大级的设计 (12) 3.4幅度调制电路的设计 (13) 3.5高频谐振功率放大器的设计..................................................................1 6 3,6谐振功率放大器的调整 (26) 3.7天线的相关知识及设计 (27) 4 单元电路调试与整机统调 (29) 4.1主振级调试 (29) 4.2信号调制级调

试 (29) 4.3功率放大级调试 (29) 4.4 整机统调……………………………………………………………………………… 30 4.5 主要技术指标测试方法……………………………………………………………… 3 1 5 硬件电路调试过程及示波器影像图 (33) 5.1 主振级硬件电路以及示波器图像…………………………………………………… 3 3 5.2 音频信号输入级硬件电路以及示波器图像………………………………………… 3 3 5.3 振幅调制级硬件电路以及示波器图像……………………………………………… 3 4 5.4 功率放大级硬件电路以及示波器图像……………………………………………… 3 5 6 另外一种调幅发射机设计方案 (38) 6.1 主振级的选择与仿真波形…………………………………………………………… 38 6.2 语音放大级选择与仿真波形………………………………………………………… 39 6.3 AM调至电路与仿真波形 (39) 6.4 整机电路的连接与仿真……………………………………………………………… 40 结论 (42) 参考文献 (43) 致谢 (45) 附录 A 调幅技术与调频技术主要特点及区别 (46) 附录 B 集成调幅与调频发射机设计 (47) 附图 C 高频电路设计基本步骤 (54) 附图 D 选择高频元器件的基本设想 (55) 附图 1 整机所用元件列表 (56) 附图 2 整机电路图 (57) 附图3 整机电路PCB图 (58) 附图 4 整机电路实体图 (59)

相关文档
最新文档