流量计的校正

实验二流量计的校核

一、实验目的

二、孔板和文丘里流量计工作原理

三、实验原理

四、实验步骤

五、实验报告要求

六、思考题

实验目的

1、了解孔板流量计的结构原理;

2、会校正流量计公式的系数。

孔板流量计的工作原理

文丘里流量计的工作原理

实验原理

在管路上装有一块孔板,孔板两侧接测压管,分别与U 型压差计相连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体密度为ρ。在界面I ,Ⅱ处即孔板前测压导管处和缩脉处的速度,压强分别为u 1,u 2与p 1,p 2,根据柏努利方程式,不考虑能量损失可得:

gh p p u u =-=-ρ2121

222

或由于缩脉的位置随流速的变化而变化,截面积S 2又难以知道,而孔口的面积却是知道的,测压口的位置在设备一旦制成后也不改变,因此,用孔板孔径处的u 0来代替u 2,又考虑到流体因局部阻力而造成的能量损失,并用校正系数C 来校正。则有:实验原理

gh

u u 22120=-gh

C u u 221

20=-

对于不可压缩流体,根据连续性方程式又有:

则经过整理后可得:

令1

001A A u u =21

00)(12A A gh

C u -=200)(1A A C C -=

则又可以简化为:

根据u 0和S 2即可算出流体的体积流量:

公式中:R —U 型压差计的读数,[m];

ρ0—压差计中指示液的密度,[kg/m 3];

C 0—孔流系数,gh

C u 200=ρ

ρρ)(200

000-==gR A C A u V gh

A C A u V 20000==

实验步骤

1、因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵。因为本实验的重点在流量计,而不是离心泵,所以对灌泵进行了简化,如图所示,只要调节灌泵阀开度大于0,等待10秒以上,然后关闭灌泵阀,系统就会认为已经完成了灌泵操作。

2、灌泵工作完成后,点击电源开关的绿色按钮接通电源,就可以启动离心泵,并开始工作。

3、启动离心泵后,调解主调节阀的开度为100,即可建立流动,如图所示。

4、先记录下液面的初始高度。然后用鼠标左键

点击活动接头,即可把水流引向计量槽,可以看到液面开始上升,同时计时器会自动开始计时。当液面上升到一定高度时,鼠标左键点击活动接头,将其转到泄液部分,同时计时器也会自动停止。此时记录下液面高度和计时器读数。读取压差。

5、点击原始数据页,按标准数据库操作方法填入所读取的数据。也可在用点击“打印数据记录表”键所打印的数据记录表记录数据.

6、调节主调节阀的开度以改变流量,然后重复上述第4~5步,为了实验精度和回归曲线的需要,至少要测10组数据。记录完毕后进入数据处理。

实验报告要求

1. 将所有实验数据和计算结果列成表格,并取其中任一组实验数据写出具体的计算过程。

2. 在半对数坐标纸上作出孔流系数C0~Re关系曲线。

3. 在双对数坐标纸上作出永久压力损失与流速的关系曲线。

4. 讨论实验结果。

思考题

1. 为什么节流式流量计安装时,要求前后有一定的直管稳定段?

2. 用孔板及文丘里流量计,若流量相同,孔板流量计所测压差与文丘里流量计所测压差哪一个大?为什么?

3. 孔板流量计与文丘里流量计安装应注意哪些问题?

4. 孔流系数分别与哪些因素有关?

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

菲舍波特电磁流量计零点校正方法

电磁流量计零点校正方法 一 、 各键的功能所述如下: C/CE C/CE 键用于在操作模式与菜单之间切换。 STEP STEP 键是两个箭头键中的一个。STEP 用于向前滚动 菜单。所有需要的参数都可访问。 DATA DATA 键是两个箭头键中的一个。DATA 用于向后滚动 菜单。所有需要的参数都可访问。 ENTER 功能可通过长按向上箭头键激活。 ENTER 用于开呈关闭程序保护。此外,ENTER 还可 用于访问更改参数的数值,接受新值或者新的选 项,ENTER 功能有效时间为10秒。如果在10秒内 未输入,旧的数值将重新显示在转换器上。 注意:电磁流量计在进行“零点校正”时,必须保证流量计所处管道中是充满所测介质,且管道中的介质处于静止状态。 二、操作步骤 长 按 ENTER

在显示状态下按“C”键→进入菜单→连续按“STEP”键翻页至→“prog protection on”→长按“DATA”键(当屏幕闪烁时松手)进入此项→并变为“prog protection off”→连续按“STEP”键翻页至“Low flow cut-off 1%(小流量切除)”→长按“DATA”键(当屏幕闪烁时松手)进入此项“Low flow cut-off 1%”改变为“Low flow cut-off 0%”→长按“DATA”键保存→连续按“STEP”键翻页至“System zero adj ****mV”并记录原始数值→长按“DATA”键进入→按“STEP”翻页至“Automatic”(自动校准)→长按“DATA”确认,自动校准开始(时间约为1分钟,校准完后仪表会自动记录下校准值)校准完成后→连续按“STEP”翻页至→“Low flow cut-off 0%”→长按“DATA”进入此项→把“Low flow cut-off 0%”改变为“Low flow cut-off 1%以上”(数值输入方法:“DATA”键为增加数值、“STEP”为移动位置)更改完成后→长按“DATA”确认→连续按“STEP”翻页至→“prog protection off”→更改为“prog protection on”即可→按“C”键直至返回到主测量界面。 三、电磁流量计密码输入 在显示状态下按“C”→进入菜单→连续按“STEP”翻页至→ “CODE NUMBER”→长按“DATA”(当屏幕闪烁时松手)进入此 项→输入密码“4000”(数值输入方法如下:连续按4次“DATA” 键,增加数值。然后按3次“STEP“移动光标即输入了4000) →长按“DATA”确认,输入密码成功,输入密码后,可更改电

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

(仅供参考)转子流量计如何读数

转子流量计如何读数 关于玻璃转子流量计在读数时是依据中间转子上端面的切线相对应的流量计刻度来进行读数吗? 应该是读中间最大横截面?

不论转子流量计是什么型,数值应与转子的最大面积相对即可。流量计主要由一根自下而上扩大的锥形玻管和一只随流体流量大小上下移动的浮子组成(图3)。流体自下而上流经锥管时,流体动能在浮子上产生的升力S和流体的浮力A使浮子上升,当升力S与浮力A之和等于浮子自身重力G时,浮子处于平衡,稳定在某一高度位置上,锥管上的刻度指示流体的流量值。 转子流量计,都有刻度。 GPM= 加仑每分钟

LPM= 升每分钟 眼睛齐平 转子的上端平面读刻度,从0刻度方向开始。在转子流量计上读出的数据为瞬时流量,要么是体积流量,要么为质量流量。如为质量流量,你先换算为体积流量(单位m3/s),然后再根据转子流量计的口径用体积流量除以截面积就可以估算出来(注意:这里是估算,因为截面积不是线性的) 1.玻璃转子流量计的刻度修正 玻璃转子流量计的刻度,是生产厂在本厂条件下用近于理想流体的水和干燥空气作介质标定得到的。但在流量计的使用现场,有两种情形不能直接使用它的刻度值:一是测量介质不是水和空气,二是测且介质虽为水和空气,但其状态(温度.压力)与刻度状态有别。这样,在使用流量计时,为获得正确测量结果,就出现了需要把刻度值进行修正的问题。因而,解决好玻璃转子流量计刻度修正,是用好这种仪表的关键。 考虑到环保仪器使用转子流量计大量的用采测气体介质流量,因此下文仅就气体介质测量时的密度修正进行讨论。由于气体介质的粘度很小,故而讨论时略去粘度影响。实践证明,这不影响修正后的精度。

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

【免费下载】流量计流量的校正实验

流量计流量的校正实验一.实验目的 1.熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2.掌握流量计的标定方法之一——容量法。 3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。二.基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 1、孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有: 图1 孔板流量计 2221122u u p p p ρρ --?==或 =由于缩脉处位置随流速而变化,截面积又难以指导,而孔板孔径的面积是已知的,因此, 2A 0A 用孔板孔径处流速来替代上式中的,又考虑这种替代带来的误差以及实际流体局部阻力造成的0u 2 u

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

湿式气体流量计校正实验

实验一 湿式气体流量计校正实验 一、目的及要求 准确测量燃气流量具有十分重要的意义。为保证测量的准确性,任何流量计在使用一段时间后,都需要进行调整或校正。本实验利用标准量瓶检查湿式气体流量计读数是否正确,并求出湿式气体流量计的体积修正系数,以备测量燃气流量时使用。 要求掌握测试方法,并能熟练进行操作。 二、测试方法 通常利用一个标准的量瓶来进行湿式气体流量计的校正。标准量瓶的容积,在其刻度Ⅰ~Ⅱ之间正好为1升。将该容积内的气体通入湿式气体流量计,若流量计的指针亦转1升,则流量计读数正确,否则应对流量计进行调整或校正。 测试步骤如下: 1、按要求调整好湿式气体流量计(将湿式气体流量计灌入适量水,并进行调平)。 2、参照湿式流量计校正系统图,将标准量瓶、水杯与湿式气体流量计连接 起来,并在水杯中加入一定量的水。 3、打开旋塞5,旋转旋塞6,使标准量瓶内空气通入流量计内,当流量计指针正好指到整数值时,旋转旋塞6使标准量瓶内空气与大气相通。 4、放低水杯位置,使水面下降,当 水面下降到刻度Ⅱ时,关闭旋塞5,使 水面停止在刻度Ⅱ上。将水杯放回支架4的上面。 5、旋转旋塞6,使标准量瓶内的空气与流量计相通,打开旋塞5后,瓶内空气再次流入流量计中。当水面上升至刻度Ⅰ时,关闭旋塞5。读取流量计读数,填入记录表内。 6、重复上述3、4、5,读取流量计读数,填入记录表内。直至流量计指针转过1整圈。 如果发现流量计的读数总是低于(或高于)标准量瓶的体积,则说明湿式气体流量计内水位较低(或较高),可通过加水(或减水)进行调节。如果发现流量计的读数有时低于标准量瓶的体积,有时又高于标准量瓶的体积,则说明叶轮不均匀,此时应求出校正系数,并画出校正曲线,以备测量时使用。

流量计流量的校正实验

流量计流量的校正实验 一. 实验目的 1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2. 掌握流量计的标定方法之一——容量法。 3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。 二. 基本原理 对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。 孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 1、孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。 若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏 努利方程,在界面1、2处有: 图1 孔板流量计 2 2 21 12 2 u u p p p ρ ρ --?= = 或 = 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能

实验二气体流量测定与流量计标定(精)

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB 系列转子流量计,实验室用有LZW 系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3h 1和0.5m3h 1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

几种流量计的安装调试方法

智能旋进旋涡流量计主要用途:可广泛应用于石油、化工、电力、冶金、城市供气等行业测量各种气体流量,是目前油田和城市天然气输配计量和贸易计量的首选产品。 智能旋进旋涡流量计工作原理:在入口侧安放一组螺旋型导流叶片,当流体进入流量传感器时,导流叶片迫使流体产生剧烈的漩涡流。当流体进入扩散段时,旋涡流受到回流的作用,开始做二次旋转,形成陀螺式的涡流进动现象。该进动频率与流量大小成正比,不受流体物理性质和密度的影响,检测元件测的流体二次旋转进动频率就能在较宽的流量范围内获得良好的线性度。信号经前置放大器放大、滤波、整形转换为与流速成正比的脉冲信号,然后再与温度、压力等检测信号一起被送往微处理器进行积算处理,最后在液晶显示屏上显示测量结果(瞬时流量、累积流量及温度、压力数据)。 智能旋进旋涡气体流量计主要特点: 1.内置式压力、温度、流量传感器,安全性能高,结构紧凑,外形美观。 2.就地显示温度、压力、瞬时流量和累积流量。 3.采用新型信号处理放大器和独特的滤波技术,有效地剔除了压力波动和管道振动所产生的干扰信号,大大提高了流量计的抗干扰能力,使小流量具有出色的稳定性。 4.特有时间显示及实时数据存储之功能,无论什么情况,都能保证内部数据不会丢失,可永久性保存。 5.整机功耗极低,能凭内电池长期供电运行,是理想的无需外电源就地显示仪表。 6.防盗功能可靠,具有密码保护,防止参数改动。 7.表头可180度随意旋转,安装方便 智能旋进旋涡气体流量计在天然气流量中的应用已经十分广泛,是目前天然气流量计测量的最佳选择。 金属管浮子流量计工作原理: LZ系列金属管浮子流量计由二部分组成: 传感器———测量管及浮子; 信号变送器———指示器; 传感器的触液材质有四种:不锈钢、哈氏合金、钛材、不锈钢衬PTFE;用户可根据不同的触液材质,来满足工艺的耐压及介质防腐的需要。根据不同的测量要求,用户在选型时,可以选择不同的指示器组合,来实现不同的测量要求。流量的测量是由指示器内的变送器通过耦合磁钢感受浮子位置的变化来完成流量的指示和信号的远传输出的。当被测介质自下而上流经测量管时,浮子受重力、浮力及流体流速对浮子垂直向上的推动力三者平衡时,浮子即相对而言静止在某个位置,这个位置随浮子与锥管的环面积、流体流速而变化,浮子

化工实验报告-流量计的流量校正

实 验 报 告 Experimentation Report of Taiyuan teachers College 系部: 化学系 年级: 大四 课程:化工实验 姓名: 学号: 日期:2012/09/19 项目:流量计的流量校正 一、实验目的: 1.学会流量计的校正方法。 2.通过孔板流量计孔流系数的测定,了解孔流系数的变化规律。 二、实验原理: 孔板流量计是最常用的一种利用测定流体的压差来确定流体流量的流量测量仪表。 根据伯努利方程式,管路中流体的流量与压差计读数的关系为: 流量计的孔流系数确定以后,就可根据上式,由压差计读数来确定流量。流量计的校正 就是要确定孔板流量计的孔流系数。 影响孔板流量计孔流系数的因素很多,如流动过程的雷诺数、孔口面积与管道面积比、测压方式、孔口形状及加工光洁度、孔板厚度和管壁粗糙度等。对于测压方式、结构尺寸、加工状况等均已规定的标准孔板, 当实验装置确定,m 确定, 测定过程中,用基准流量计测定管路中的流量,用压差计测定孔板前后的压差,即可通 ρ ρρρgR A C p p A C V A b a s )(2) (20 00 0-=-=),(0m R f C e =管道面积孔口面积= m ) (0e R f C =

过①式求出值。 三、实验装置: 1.设备参数:管道直径0.027m,孔板直径0.018m 2.实验装置:水泵,U型管压计,孔板流量计,涡轮流量计,调节阀门,水箱 四、实验步骤: 1.水箱充水至80%。 2.实验开始前,关闭流体出口控制阀门,打开水银压差计上平衡阀。 3.启动循环水泵。 4.分别进行管路系统、引压管、压差计的排气工作,排出可能积存在系统内的空气,以 保证数据测定稳定、可靠。 ①管路系统排气:打开出口调节阀,让水流动片刻,将管路中的大部分空气排出,然后 将出口阀关闭,打开管路出口端上方的排气阀,使管路中的残余空气排出。 ②引压管和压差计排气:依次打开并迅速关闭压差计上方的排气阀,反复操作几次,将 引压管和压差计内的空气排出。排气时要注意严防U型压差计中的水银冲出。 5.排气结束后,关闭平衡阀。 6.将出口控制阀开到最大,观察最大流量范围或最大压差变化范围,据此确定合理的实 验布点。 7.根据实验布点调节流量,读出每一流量下的△P值。注:流量调节后,须稳定一段时 间,方可测取有关数据。 8.实验结束时,先打开平衡阀,关闭出口阀门,再关泵和电源。 五、实验注意事项: 1.检查应开、应关的阀门。 2.排气中,严防U型压差计中的水银冲出。 3.待流动稳定后才能测试数据,每经过一次流量调节需3~5min稳定。 4.在最大流量范围内,合理进行实验布点。 六、实验数据记录: 1、实验数据记录 (1)流量计校正

流量计校核实验报告

流量计校核实验报告 一、实验目的 1、熟悉孔板流量计和文氏流量计的构造及工作原理; 2、掌握流量计标定方法之一——称量法; 3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律; 4、测定孔板流量计和文氏流量计的流量与压差的关系。 二、实验原理 常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。 孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。 (一)孔板流量计 孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。 孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。 若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。 在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得: 222112 2u u p p ρ --= (1) 或 = (2) 由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。因此,用孔板孔径处流速0u 来代替式(2)中的 2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。式(2)就 可改写为: 图1-1 孔板流量计构造原理图

转子流量计一般会出现的三种常见故障

转子流量计一般会出现的三种常见故障 转子流量计(浮子流量计)是根据是一种变面积式流量计,液体在流量计管道中流动,使管道中浮子向上移动,当流速与流量一定的时候浮子与管道之间的面积达到一定值。此面积与浮子的高度成正比,也与流量成正比。指针式的转子流量计是的指针根据浮子的高度经过内部零件的转动显示在表盘上。电子表头显示的则是电路板智能计算显示。一、转子流量计测量误差大: 1.气体介质由于受到温度压力影响较大,建议采用温压补偿的方式来获得真实的流量。 2.由于长期使用及管道震动等多因素引起浮子流量计传感磁钢、指针、配重、旋转磁钢等活动部件松动,造成误差较大。解决方法:可先用手推指针的方式来验证。首先将指针按在RP位置,看输出是否为4mA,流量显示是否为0%,再依次按照刻度进行验证。若发现不符,可对部件进行位置调整。一般要求专业人员调整,否则会造成位置丢失,需返回厂家进行校正。 3.安装不符合要求:对于垂直安装转子流量计要保持垂直,倾角不大于20度;对于水平安装转子流量计要保持水平,倾角不大于20度;转子流量计周围100mm空间不得有铁磁性物体。安装位置要远离阀门变径口、泵出口、工艺管线转弯口等。要保持前5D后250mm直管段的要求。 4.液体介质的密度变化较大也是引起误差较大的一个原因。由于仪表在标定前,都将介质按用户给出的密度进行换算,换算成标校状态下水的流量进行标定,因此如果介质密度变化较大,会对测量造成很大误差。解决方法可将变化以后的介质密度带入公式,换算成误差修正系数,然后再将流量计测出的流量乘以系数换成真实的流量。二、转子流量计指针抖动: 1.剧烈指针抖动:主要由于介质脉动,气压不稳或用户给出的气体操作状态的压力、温度、流量与转子流量计实际的状态不符,有较大差异造成转子流量计过量程。2.轻微指针抖动:一般由于介质波动引起。可采用增加

转子流量计的校正

实验十五转子流量计的校正 转子流量计是使用较广泛的一种流量测量仪器,其上标有流量刻度值,但 在使用前,一般需进行校正。 一.实验目的 (1)了解转子流量计流量测定的工作原理。 (2)获得转子流量计的校正实验刻度值。 (3)明确流量计校正的重要性和掌握校正方法。 二.实验原理 转子流量计的流体通道为一垂直的锥角约为4。的微锥形玻璃管内置一转子(也称浮子)。当被测流体以一定流量自下而上流过锥形管时,在转子的上、下端面形成一个压差,该压差产生了升力,当升力达到一定值时,便能将转子向上浮起。但随着转子的上浮,转子与锥形管之间的环隙通道面积增大,环隙中流速减小,转子两端的压差也随之减小。 因此,当转子浮升至某一高度,转子所受的升力恰好等于其重力时,转子便平衡悬浮在此高度上。转子的这一平衡悬浮高度,随转子的两端面的压差,也即流量的大小而变化,它可由转子的受力平衡导出,参见图15-1,转子上,下端的压差按伯努利定律由两部分组成。一部分由位差引起的,该部分压差造成的升力即为通常所说的浮力F i,其值等于同体积流体的重量。另一部分由动能差引起,其值为F2 2 2 F2 —(U o U i )A f (1) 2 根据物料衡算关系U i A^U o(2) A i 式中:A f――转子最大截面积。 A o――转子平衡时相应于0—0处的环隙面积。 A’一一玻璃管截面积。 V f ――转子体积 P f――转子密度 F2 —u:[1 2 A o 2 (A1)]Af (3) 这样转子的受力平衡条件为 V f f g =V f g u: [1(中站(4) 2A1

于是得到 考虑到表面摩擦和转子形状的影响,引入流量系数 C R (其值可从有关资 料查得)而使公式简化。 转子流量计出厂前,是直接用 20r 水或20C, 1atm 的空气进行标定,将 式中V A , p A 分别为标定流体(水或空气)的流量和密度; V B ,p B 分别为其它液体或气体的流量或密度。 由于环隙面积A o 与转子的悬浮高度直接相关,即可在转子流量计的不同 玻璃锥形管高度处标出流量读数。 校正转子流量计的方法很简单,只须将稳定的气源引入转子流量计,使转 子平衡悬浮在某一高度,从转子流量计流出的气体用另一标准流量计(例如皂 沫流量计或湿式气体流量计)便可得到一定高度下的单位时间的流量。 改变流 量测出一系列数据,便得到转子流量计校正的刻度值。 三?实验流程 实验流程见图15—2 图15—2转子流量计校正实验流程图 U o 1 ( A 0 )2 2V f g( f ) A f (5) U o V U o A o SR 「" A V A )g (6) (7) 质量流量W “彳汇― (8) 质量流量 (9) (10)

转子流量计的原理及计算

转子流量计的原理及计算 1 概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1) 1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。

当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为W f(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为S f (m2),转子体积V f(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密度为ρ(Kg/m3),重力加速度为g(m/s2),则 因为m=ρV f=ρS f L代入(1)式中,整理后得 考虑到实际情况的因素,加一校正系数k变为:

转子流量计的校正

实验十五 转子流量计的校正 转子流量计是使用较广泛的一种流量测量仪器,其上标有流量刻度值,但在使用前,一般需进行校正。 一.实验目的 (1) 了解转子流量计流量测定的工作原理。 (2) 获得转子流量计的校正实验刻度值。 (3) 明确流量计校正的重要性和掌握校正方法。 二.实验原理 转子流量计的流体通道为一垂直的锥角约为4。的微锥形玻璃管内置一转子(也称浮子)。当被测流体以一定流量自下而上流过锥形管时,在转子的上、下端面形成一个压差,该压差产生了升力,当升力达到一定值时,便能将转子向上浮起。但随着转子的上浮,转子与锥形管之间的环隙通道面积增大,环隙中流速减小,转子两端的压差也随之减小。 因此,当转子浮升至某一高度,转子所受的升力恰好等于其重力时,转子便平衡悬浮在此高度上。转子的这一平衡悬浮高度,随转子的两端面的压差,也即流量的大小而变化,它可由转子的受力平衡导出,参见图15-1,转子上,下端的压差按伯努利定律由两部分组成。一部分由位差引起的,该部分压差造成的升力即为通常所说的浮力F 1,其值等于同体积流体的重量。另一部分由动能差引起,其值为F 2 f A u u F )(221202-=ρ (1) 根据物料衡算关系 01 01u A A u = (2) 式中:A f ——转子最大截面积。 A 0——转子平衡时相应于0—0处的环隙面积。 A i——玻璃管截面积。 V f ——转子体积 ρf ——转子密度 f A A A u F ])(1[221 0202-=ρ (3) 这样转子的受力平衡条件为 g V f f ρ=+g V f ρf A A A u ])(1[221 020-ρ (4)

流量计校验

2 电磁流量计 我们公司在线使用的电磁流量计主要是上海光华—爱而美特(SGAIC)公司MF900型电磁流量计,其转换器主要为SC100AS和T900两种型号,精度为0.5级,主要用在糖化水量控制及麦汁流量计量。为了保证流量计的计量精度以及ISO9001质量管理体系的要求,我们每年对其进行一次周期校验。如果每台每年都送到厂家去校验,不仅拆卸运输麻烦、运输及检测费用高、检验周期长,而且必定影响生产。于是公司购进厂家生产的传感器模拟信号发生器GS8(图1),进行自行校验。 下面我把用GS8对电磁流量计的校验方法介绍一下: a、切断转换器电源; b、打开其接线盒的盖子; c、拆下接线端子1、2、3、7、8; d、把GS8的信号线(有线号)按相同线号对应接入转换器的端子(如图2); e、接通GS8和转换器的电源(预热≥15分钟); f、把开关D(GS8面板)设定在“0”位置; g、旋电位器P(GS8面板)调零,使流量计转换器瞬时流量为零; h、按下面公式确定X值: X=Q满×K×F/(GK×DN2); 其中:Q满=流量计满量程的值(T900铭牌上给出;SC100AC菜单中有,并可以改变); GK为传感器常数(见传感器铭牌); F=(GK值不含L)或=2(GK值含L); DN为传感器直径(单位为mm); t为单位时间(单位为小时); V为单位体积(单位为L); K为常数7.074 **请注意参数单位的统一; i、用GS8面板的表格来确定Y值(此值与X最接近,且Y≤X); j、计算“Y”点处流量值:O=Y×Q满/X; k、记录设定点的瞬时流量(SC100AC可显示瞬时流量)测量值和计算值的误差:(误差值≤0.5%为正常;≥0.5%,请检修流量计后再重新检定); l、记录设定点累计流量(T900不能显示瞬时流量)和计算的累计流量值(秒表记时):(误差值≤0.5%为正常;≥0.5%,请检修流量计后再重新检定); m、线性检定:将Y值调小,Q读数将会和Y值成比例减小; n、校验结束,重新接好流量计的信号线; o、仪表检验合格,填写仪表检定记录,出具检定合格证;修理后检定仍然超差,将对此仪表进行降级使用或报废,并出具相关证明。 3 涡街流量计 我们公司蒸汽计量的流量计多数为涡街流量传感器配智能流量积算仪,智能积算仪通过接收涡街流量传感器的频率信号,转换成为瞬时流量和累计流量,下面简单介绍一下我们通过频率信号发生器对其校验的方法: a、首先计算出流量积算仪显示的瞬时流量值: Q=3.6×fin×ρ/c。 其中:Q:仪表显示的瞬时流量,单位为m3/h; fin:为输入频率值,单位为Hz; c:传感器的仪表常数,单位为频率个数/升; ρ:对应于工作温度时的密度值,单位为kg/m3;

流量计校正实验 实验报告

一、实验目的 1. 分别用三角堰、涡轮流量计、水银比压计校正孔板流量计,实验测定流量计的流量 系数。 2. 制作流量系数 与雷诺数 关系曲线,并确定 = 的范围和数值。 二、 实验原理 孔板是常用的流量计,都是利用改变流道截面的方法使截面前后测压管水头差发生变化,通过测量测压管水头差计算流量。如果将流体视为理想流体,则根据连续方程和伯努利方程有 = 1? Ω 2 实际流体都是有粘性的,考虑粘性影响后引入修正系数,即流量系数 μ ,于是实际流量为 实= 1? Ω 2 由于流量系数的引入考虑了粘性的影响,因此根据相似原理,流量系数为雷诺数的函数。 三、 设备与仪器 实验设备包括三角量水堰、涡轮流量计、水银比压计、孔板流量计、水泵数显高度尺、水箱等。 流量采用三角量水堰进行测量。通过测量堰上水头高度,可由 Q-H 关系式求得流量 Q。 采用水银比压计测量孔板上的测压管水头差。 读出温度计上显示的温度,通过查表确定 υ。 四、 实验步骤 1. 在启动水泵前将泵前阀和调节阀关死。 2. 启动水泵后将泵前阀和调节阀完全打开,泵运行的同时排出试验管路内的空气。 3. 将排气阀打开,排空水银比压计及连接管内的空气,并检查空气是否完全排空。 4. 通过调节控制阀的开关确定实验工况点,记录与水银比压计高度差相对应的实验数 据。 5. 将泵前阀关死,然后关闭水泵。 五、实验数据记录及处理

0.580 0.6000.6200.6400.6600.6800.7004.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 三角堰μ-lg(Re)关系曲线 0.580 0.600 0.620 0.640 0.660 0.680 0.700 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 涡轮流量计μ-lg(Re)关系曲线

转子流量计基本知识指南

金属转子流量计的应用 金属转子流量计的应用说明如下: 1、新装管道在仪表安装前应将新管道冲洗干净,如果被测介质含有颗粒杂质或气泡,则应在仪表上游安装过滤装置或设置排气口,安装时流体必须从下向上流动,若流体从上向下流动,则仪表不能工作。如被测介质是脉动流,则应在下游设置适当尺寸缓冲装置,如稳压罐等以消除脉动。 2、仪表开箱检查无误后取出填充物,仪表应垂直安装在无震动的管道上;如需水平安装,订货时应另加说明。仪表中心线与铅垂线的夹角不应超过5°。安装时仪表的直管段长度应大于5倍仪表口径,以消除涡流影响。 3、一次仪表按规定安装好后,应先关闭仪表上、下游截止阀;再检查一次仪表同二次仪表接线,无误后,开启二次仪表电源则瞬时流量应显示为零。如要正常使用,则应先开启上游阀呈全开后,用流量计下游调节阀由小到大缓慢调节流量,则瞬时流量应有变化。停止工作时,则应先关闭上游阀门、然后关闭下游调节阀。为了便于检查仪表零点和拆装维修与调试,应在仪表上、下游安装截止阀和旁通阀。 金属管浮子流量计的运用方法 金属管浮子流量计是工业自动化过程控制中常用的一种变面积流量测量仪表。它具有体积小,检测范围大,使用方便等特点。它可用来测量液体、气体以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 1、用户运用时,若被測流体的密度与水不同时,或被測气体的参数和工作状态与制造厂家规定不同时应对金属管浮子流量计示值读数进行换算;指示器的两盖必须密封,防止灰尘进入,影响正常工作。 2、安装PTFE衬里的仪表时,法兰螺母不要随意不对称拧得过紧,以免引起PTEF衬里变形; 3、带有液晶显示的仪表,要尽量避免阳光直射显示器,以免降低液晶使用寿命;带有锂电池供电的仪表,要尽量避免阳光直射、高温环境(≥65℃)以免降低锂电池的容量和寿命;必须保证仪表的清洁,特别是仪表中孔板、椎管的表面和浮子必须保持清洁,因而仪表使用一段时间后应取下清洗。 4、用于小口径和低流速介质流量测量;工作可靠,维护量小,寿命长;对于直管段要求不高;较宽的流量比10:1;双行大液晶显示,可选现场瞬时/累计流量显示,可带背光单轴灵敏指示;非接触磁耦合传动;若仪表运转不稳,指针跳动的主要原因除流量本身脉冲外,还要考虑介质有两相流的可能性(即液相和气相同时存在),只要采取措施消除两相流的存在,即可保证仪表稳定运转。 转子流量计最容易忽视的问题 流量计是用于测量液体或气体的线性、非线性、质量或体积流量的仪器。良好的流量计选择的基础是对特定应用要求的清晰理解。因此,要花时间全面评估工艺流体及整体安装的性质。选择流量计时,应考虑特定厂区人员的熟悉程度、他们校准和维修的经验、备件的供货能力和平均失效间隔时间等无形因素。因此,应多加注意转子流量计容易出现的问题: 1、气体介质由于受到温度压力影响较大,建议采用温压补偿的方式来获得真实的流量。 2、由于长期使用及管道震动等多因素引起浮子流量计传感磁钢、指针、配重、旋转磁钢等活动部件松动,造成误差较大。解决方法:可先用手推指针的方式来验证。首先将指针按在RP位置,看输出是否为4mA,流量显示是否为0%,再依次按照刻度进行验证。若发

流量计校正实验

沿程阻力实验报告 班级:核工程12 姓名:李汉臻 学号:2110302044 实验日期:2013-5-2 一、实验任务及要求: 1.用三角堰、涡轮流量计校正孔板流量计,实验测定流量计的 流量系数 2.作出流量μ系数与雷诺数Re之间的关系曲线,从而确定μ= 常数的范围和数值 二、设备简图: 表2-1 试验段参数 三、实验方法简述: 若按理想流体考虑,孔板流量计理论流量:A2

Q理论=2 √1?(1 A2)2 √2g?h 实验中认为更为精确的仪器(三角堰、涡轮流量计)测得的数据更加接近真实值。从而借此校正孔板流量计,引入修正系数μ。 μ=Q 实际Q 理论 考虑粘性影响,则流量系数与雷诺数的关系为μ=f(Re)其中: 三角堰流量测量: Q=(1.334+0.0205 √?H 2.5 ?H=12.6??H′ 实验数据处理及计算: 表4-1 实验测量数据

表4-2 数据处理结果 四、附图:

五、数据结果分析: 1、用三角堰校正孔板流量计时,由图线看出在Re大于73000 的范围内μ-Re曲线走势接近平稳,μ趋于常数0.596。从

而可依据此曲线在一定雷诺数范围内对孔板流量计进行校正。

2、用涡轮流量计校正孔板流量计时,由图线看出在Re大于 48000的范围内μ-Re曲线走势接近平稳,μ趋于常数0.603。 从而可依据此曲线在一定雷诺数范围内对孔板流量计进行 校正。 六、讨论及思考问题: 1.测压管孔的设置位置对流量系数有什么影响? 由于测压管孔的设置的位置不同,在考虑关内沿程阻力损失 的情况下,导致不同截面流量测得数据有差别,从而造成流 量系数不同。 2.流量计内摩擦损失对流量系数有什么影响? 造成流量计读数偏小,进而影响流量系数的测得值偏小。 (注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与 关注!)

相关文档
最新文档