岩石的强度理论与本构关系

岩石的强度理论与本构关系
岩石的强度理论与本构关系

岩石的强度理论与本构关系

朱浮声

(东北大学土木系,沈阳110006)

朱浮声,1948年6月生于黑龙江齐齐哈尔11976年毕业于东北大学,1983年

获中国矿业大学工学硕士学位,1991年获东北大学博士学位11988年曾在

美国南伊利诺大学作访问学者,1993年在瑞典皇家工学院任客座教授1现

任东北大学土木工程系教授,辽宁省力学学会理事1主要研究方向为计算岩

土力学和岩土加固技术1在国内外学术刊物上发表论文50余篇,出版5锚

喷加固设计方法6等学术专著2部,译著1部1

摘要本文简要介绍了岩石强度理论和本构关系的发展和现状,讨论了它们不同的特点与适用条件1

关键词岩石,岩体,强度理论,本构关系

1前言

随着电子计算机的飞速发展和计算技术的逐步完善,对岩石强度理论和本构关系提出了更高要求,以便更真实描述岩石和岩体力学特征,求解复杂的工程岩石力学问题1

由于岩石材料力学性质的某些相似性和其它历史原因,岩石强度理论和本构关系的早期研究曾大量引用了土力学成果,并提出了一些适用于岩土介质的强度理论和本构关系1随着岩石力学的发展,人们认识到,岩石和岩体的物理力学性质不仅有别于其它非摩擦工程材料,而且,与土或混凝土等摩擦材料也存在较明显差异1例如,岩石破坏包括脆性、延性及由脆性向延性转化等复杂类型;岩体的力学特性受控于岩块和不连续面的力学特性;岩石工程的稳定性通常受主要不连续面控制等1因此,近年来又提出了适用于岩石、不连续面和岩体的强度理论或本构方程式1本文旨在介绍这些理论研究的最新进展,并对已有岩土强度理论和本构关系的适用条件和局限性加以简要评价1

限于篇幅,本文仅涉及与时间无关的各向同性和等向强化模型1

2岩土共用的强度理论和本构关系

211弹性

均质、各向同性或横观各向同性模型曾被广泛用于描述岩土力学特征,特别是峰值强度前的应力-应变关系,并得到了大量解析解和实用近似解1考虑到应力-应变曲线的明显非线性特性,曾将非线性弹性理论与计算机技术相结合,提出了一批数值算法,并在60~70年代的岩土力学分析中不断被引用1例如,以曲线各点的割线模量取代弹性常数,构成了各种超弹性模型[1],或以增量形式描述非线性弹性应力-应变关系,形成了亚弹性模型[2]等1但是,由于这些模型只考虑到岩土材料的弹性特征,并且,随着模型阶次增高,待定常数的数目往往过多,因而,限制了它们的广泛应用1

212 理想塑性强度理论

在计算岩土力学中,广泛采用了莫尔-库伦强度准则(Mohr -Coulomb)和德鲁克-普拉格准则(Drucker -Prager)1

莫尔-库伦准则可以表述为

R 1-B R 3=C (1)

式中,B 和C 一般是常数1

在主应力空间,式(1)表示一个以静水应力轴为中心轴,具有不规则六角形截面的角锥体表面(图1)1这个准则由于较好地表征了岩土介质在压缩条件下的某些弹塑性力学特征,因而得到了较广泛的应用1但是,由于忽略了中间主应力对破坏的作用,存在明显的缺陷1另外,由于屈服面在三维应力空间中存在/角隅0,给数值计算带来了诸多困难1

为了解决上述问题,曾对莫尔-库伦准则进行修正,将米赛斯准则(M ises)加上一个静水应力因子,形成了著名的德鲁克-普拉格准则,不仅考虑到三个主应力对破坏的影响,并且消除了屈服面存在的角隅1这个准则可表述为

A J 1+J 2=C (2)

式中,J 1和J 2是主应力不变量,A 和

C 是正常数1

图1 莫尔-库伦准则和德鲁克-普拉格准则屈服面

在主应力空间,式(2)是一个以静水应力轴为中心轴的圆锥体(图1)1它虽然克服了莫尔-库伦准则的上述缺点,但在破坏状态下,该准则给出了较大的材料体积膨胀,这与岩土介质的试验结果明显不符1

我国学者俞茂由正交八面单元体的三个主应力出发,提出了双剪强度理论和适用于岩土体

的广义双剪强度理论(包括屈服准则)[3],并得到了双剪统一强度理论

[4]R 1-A 1+b (b R 2+R 3)=R t ,R 2F R 1+A R 31+A

11+b (R 1

+b R 2)-A R 3=R t ,R 2E R 1+A R 31+A (3)

式中,A 和b 是常数,R t 是材料单轴抗拉强度1在主应力空间,式(3)表示一个以静水应力轴为中心轴,具有不等边十二边形截面的锥体表面1可以证明,广义双剪理论和莫尔-库伦准则在P 平面上的屈服曲线分别是各种岩土屈服准则的上限和下限1

213应变硬化(软化)

一般地,岩土体应力状态满足屈服准则时,将出现屈服应力随变形增大而不断增高(硬化)或降低(软化)现象1对于前者,屈服面在主应力空间是连续扩大的;对于后者,则表现为屈服面的不断收缩1当满足破坏条件时,将形成屈服面与破坏面(残余破坏面)相互重合,而屈服面与破坏面始终相一致的情况仅发生在完全塑性材料中1因此,为了建立岩土介质完整的本构关系,必须同时考虑屈服准则、流动法则和软(硬)化定律等三方面1其中,对材料硬(软)化特

图2帽盖模型屈服面性的研究多借助于控制该材料硬化特性的屈服面,称之为硬化帽盖(图2)1

根据不同的岩土介质和试验,提出了不同形状的帽盖[5],其一般表达式为

f1(J1,J c2,k1)=0(4)式中,J c2为应力偏量第二不变量,k1为硬化参数1

除了屈服帽盖,岩土帽盖模型还包括一个固定屈服面,例如,通常以初始德鲁克-普拉格破坏面与米赛斯屈服面光滑相接表示1一般地,固定屈服面取为强度理论限定的破坏面

f2(J1,J c2)=0(5) 3岩石和岩体强度理论与本构关系

如前所述,在一定条件下,可以使用相同强度理论分析岩土力学问题1但在一般情况下,岩石的破坏面具有如下特征:

(1)在主应力空间,破坏曲面在原点附近的顶角是张开的;

(2)岩石破坏包络线,即破坏面在伦杜列克面(Rendulic)上的子午线不是直线,而是曲线;

(3)岩石有抗拉强度1

通常,前述岩土体的屈服和强度准则都可以满足条件(1)和(3),为了满足条件(2),需要进行必要修正1

311岩土强度理论的修正

为了使强度理论满足上述条件(2),从而应用于岩石力学问题分析中,早期的工作多采用对破坏曲线近似逼近方法,例如,以双曲线或抛物线取代莫尔-库伦准则中的直线等1更一般的方法是直接采用莫尔强度理论,并通过对P平面上多边形屈服曲线角点的光滑化得到各种角隅模型[6]1典型范例是关于岩石的吉姆-拉德破坏准则(Kim-Lade)1

拉德曾提出如下土体两参数破坏准则[7]

(J21/J3-27)(J1/P a)m=G1(6)

式中,P a是该应力状态下大气压力,m和G1是常数,其中,破坏面在原点附近的张角随G1变化,而子午线曲率随m值变化(图3)1在主应力空间,拉德准则是一个以静水应力轴为中心轴,具有带圆角三角形截面的子弹头形曲面,该曲面顶点位于原点1

图3拉德破坏准则破坏面[7]

为了得到适用于岩石的强度准则,吉姆和拉德对式(6)进行了修正,即考虑岩石凝聚力和抗拉强度的作用,在式(6)的法向主应力分量叠加一个常应力项aP a

R x=R x+aP a

R y=R y+aP a

(7)

R z=R z+aP a

研究

式中,a是一个无因次常数,aP a的值反映了岩石的抗拉强度1

不难看到,这个三参数强度准则较好地反映了岩石破坏面的上述3个特征,同时,原作者通过87组不同岩石的试验数据对模型进行了多次验证1

312岩石的脆性破坏准则

岩石三轴试验结果表明,在侧限压力较低时,岩石试件的破坏应力随变形增大而不断降低,在很小或完全未出现永久变形的情况下发生突然的脆性破坏1随着侧限压力增大,通常出现由脆性向延性破坏的转变,这种现象可以由塑性变形机制来解释(岩石破裂流动与颗粒滑移等)1岩石脆性破坏准则研究仍处于发展阶段1其中,格里菲斯理论(Griffith)是一个基于理想脆性假定的二维准则,由此理论预测的脆性材料单轴抗压与抗拉强度R c和R t的关系式R c=-8R t1由于岩石裂纹随围压增高将出现闭合,此时应考虑闭合裂纹表面间摩擦作用,因此,提出了关于岩石修正的格里菲斯理论[8]

S=2R t+R n tg<(8)式中,S和R n为裂纹面上切应力与法应力,<为内摩擦角1

显然,这种修正是将低应力条件下的格里菲斯理论转化为高应力条件下的莫尔理论1

M urrell考虑到中间主应力的作用,提出了一个三维脆性破坏准则,这个准则预测R c/P a=12 |R t/P a|1在主应力空间,这个准则表示为一个以静水压力轴为中心轴的椭球面与一个处于拉应力区的四棱锥面相切得到的曲面(图4)1需要指出,这个准则虽计及中间主应力影响,并具有弯

曲的子午线,但它的基本出发点却是基于单轴抗拉强度判据1

图4M urrell三维脆性破坏准则破坏面[9]

313岩石破坏的经验准则

由于岩石和岩体力学特征的复杂性,针对不同岩石和荷载条件提出了大量实用经验准则1其中,霍克-布朗准则是应用最广的1这个准则依据格里菲斯和修正格里菲斯理论的基本概念,采用/试凑法0得到了分别适用于岩石和岩体的经验准则[10]

R1=R3+m R c R3+S R c2(9)式中,m和S是表征岩石或岩体性质及其破坏范围的常数1

在主应力空间,这是一个以静水应力轴为中心轴、具有6条抛物线围成的6边形截面的锥体表面(图5)1这个准则给出R c=-(7~25)R t,这与大量试验结果接近,因而,得到较广泛应

用1

图5霍克-布朗经验破坏准则破坏面

4节理和节理岩体

天然岩体由节理和岩块组合而成1对于起控制作用的节理,通常采用/节理单元0来模拟1早期的节理单元是一个非线性弹性模型,给出了节理面两侧力-位移的增量表达式1为了考虑节理延性和切向-法向作用的相互影响,普遍采用了遵循莫尔-库伦准则的弹塑性节理模型1但是,如果采用关联流动法则,这个模型将产生一个无法消除的剪胀率1因此,罗伯茨等(Roberts)建议用非关联流动法则,相应塑性势函数Q为

Q=|R s|-R n tg W(10)

式中,R s和R n是节理切向和法向应力,W是节理剪胀角,可由试验确定1

由于试验水平和理论的限制,节理面的理论模型尚不成熟,在应用中最可靠、最广泛的是巴登(Barton)提出的经验准则[11]

F=|R s|-R n tg<(JRC lg(JCS/R n)+

对于受多组节理切割的岩体,由于很难同时模拟这几组节理,通常需找到节理岩体的本构关系1目前,此项研究仍处于开始阶段,应予充分重视1

对于等距排列的平行节理(未充填),若节理连续分布且尺寸远小于岩体或结构物尺寸,提出了/节理岩体层状模型0(Multilaminate model)[12]1这实质上是一种等效材料模型,在最终形成的弹塑性或粘弹塑性本构关系中,以不同力学模型分别描述各层岩石和节理面的力学特征,并同时考虑它们对岩体力学的影响,得到节理岩体总的粘塑性应变速率

?E VP=C i3F i45Q i

5R+

E n

J=1

C J3F J4

5Q J

5R J

5R J

5R(12)

式中,F i和F J分别是第i层岩石和第J层节理的屈服(破坏)函数,Q i和Q J为相应塑性势,R J 表示J组节理面上法向和切向应力,C i和C k是相应粘性参数1

式(12)中等号右端第一项与岩石特性有关,第二项则涉及n个节理面的力学特征1如果不考虑岩体的流变特性,采用关联流动法则,可以给出弹塑性节理岩体的类似表达式1

5结束语

(1)非线性弹性模型曾在岩土力学中应用1由于高次模型待定常数过多,且为区分加、卸载情况需给出复杂应力状态下加载条件,限制了它们的使用范围,在岩石力学中应用较少,并主要用于比例加载条件下1

(2)莫尔-库伦准则和德鲁克-普拉格准则在岩土力学分析中得到广泛应用1前者的缺点是忽略了中间主应力的作用,并且,在三维主应力空间存在屈服面角隅,给计算带来了困难1后者虽然克服了上述问题,但在破坏状态下给出较大体积膨胀,这与岩土试验结果严重不符1广义双剪强度理论及其角隅模型展示了广阔应用前景,但需大量试验与工程验证1各种帽盖模型考虑到岩土介质的应变硬(软)化,计及剪胀或剪缩,但公式推导中加入种种补充假定,模型的可靠性需进一步验证1

(3)岩石、岩体和土体的强度理论和本构关系相似又相区别1吉姆-拉德的三参数岩石破坏准则经过87组岩样检验1有较高可信度1各种岩石脆性破坏准则都源于单向抗拉强度判据,它们的可靠性有待检验1岩石和岩体经验破坏准则在应用中占重要地位,其中,霍克-布朗准则适用于R1>314R3条件下延性岩石(体),在无控制作用节理存在的岩体工程分析中得到普遍应用1

(4)在主要节理面的模拟中采用了莫尔-库伦准则和关联/非关联流动法则1已提出的8参数节理模型可用于研究节理加载-卸载-再加载过程[12],但最可靠、应用最广的仍是巴登经验准则1对无控制性不连续面的节理岩体提出了等效模型和相应本构关系1节理岩体的强度理论和本构关系研究仍处于初始阶段,是目前主要研究方向之一1

参考文献

1Fung Y C1Foundations of Solid M echanics1Prentice-Hall,1965

2T ruesdell C1Hypoelas ticity1J Ration M ech A nal,1955,4:83~133

3俞茂等1双剪应力强度理论及其推广1中国科学A辑,1985,28(11)

4俞茂1统一强度理论及其应用1强度理论研究新进展1西安:西安交通大学出版社,1993133~44

5S chofield A N,Worth C P1Critical S tate Soil M echanics1M cGraw-Hill Book Company,1968

6Zienkiew icz O C,Pande G N1Som e useful forms of isotropic yield surfaces for soil and rock mechanics1Finite Elements in Geome-chanics1Gudehus G(eds)1John Wiley&Sons,1977

7Kim M K,Lade P V1M odelling rock strength in three-dimensions1Int J Roc k M ec h M in S ci&Geomech,1984,21:21~33

8M cCli ntok F A,Walsh J B1Fri ction on Griffith cracks under pressure1Proc4th US Nat Congr Appl M ech,196211015~1021

9M urrel l S A F1A cri terion for bri ttle fracture of rocks and concrete under triaxial stress and the effect of pore pres sure on the creter-i on1Proc5th US S ym p Rock M ech,Pergamon Press,19631563~577

10Hoek E,Brown E T1岩石地下工程1连志升等译,北京:冶金工业出版社,1986

11Barton N R,Choubey V1The shear strength of rock joints in theory and practice1Rock M ech,1977,10:1~54

12Pande G N,Beer G,Williams J R1Numerical M ethods in Rock M echanics1W i ley,1990

13Pande G N1A constitutive model of rock joints1Proc Int Symp Fund Rock Joints1Center Pub11985

(1996年5月31日收到第1稿,

1996年8月12日收到修改稿)

(上接第7页)

29Levy D,Powell K,van Leer B1An i m plementati on of a grid-i ndependent upwind scheme for the Euler equati ons1AIAA89-1931-CP 30Rumsey C L,van Leer B,Roe P L1A grid-independent approximate Riemann solver w ith applications to the Euler and Navier-Stokes equations1J Comput Physics,1993,105(2):306~323

31Roe P L1Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics1J Comp ut Phys,1986,63: 458~476

32Roe P L1Discontinuous sol utions to hyperbolic system s under operator splitting1Nu merical M ethods f or Par tial Diff erential Equa-tions,1991,7:277~297

33Lacor C,Hirsch Ch1Genuinely upw ind algorithms for th e multidimensionalEuler equations1AIA A J,1992,30(1):56~63

34Parpia I H,M ichalek D J1Grid-independent upw ind sch eme for multidimensi onal flow1AIA A J,1993,31(4)1

35Hartwich P M1Comparison of coordinate-i n variant and coordinate-aligned u pw ind for the Euler equations1A IAA J,1994,32(9): 1791~1799

36van Leer B1Advancing the accuracy and efficiency of explicit Euler solvers1AIAA90-0012

37Zhang X D,Trepanier J-Y,Reggio M,et al1Grid i nfluence on upw ind schemes for Euler and Navier-Stokes equations1A IAA J, 1996,34(4):717~727

38Abarbanel S,Duth P,Gottlieb D1Splitting methods for low M ach number Euler and Navier-Stokes equations1Comp uters&Fluids, 1989,17(1):1~12

(1996年11月29日收到第1稿,

1997年3月30日收到修改稿)

岩石力学复习提纲(11)120105

岩体力学复习提纲 一.概念题 1.名词解释: 【(1)岩石;(2)岩体;(3)岩石结构; (4)岩石构造;(5)岩石的密度;(6)块体密度; 【(7)颗粒密度;【(8)容重;【(9)比重; 【(10)孔隙性;【(11)孔隙率;(12)渗透系数;【(13)软化系数;【(14)岩石的膨胀性;(15)岩石的吸水性;(16)扩容;(【17)弹性模量;(18)初始弹性模量;(19)割线弹性模量;(20)切线弹性模量;(21)变形模量; (22)泊松比;(23)脆性度;【(24)尺寸效应; (25)常规三轴试验;(26)真三轴试验;【(27)岩石三轴压缩强度;(28)流变性;【(29)蠕变;(30)松弛; 【(31)弹性后效;【(32)岩石长期强度;(33)强度准则。 【2.岩石颗粒间连接方式有哪几种? 【3.何谓岩石的水理性?水对岩石力学性质有何影响? 【4.岩石受载时会产生哪些类型的变形?岩石的塑性和流变性有什么不同?从岩石的破坏特征看,岩石材料可分为哪些类型? 5.岩石在单轴压缩下典型的应力—应变曲线有哪几种类型,并用图线加以说明。 6.简述循环荷载条件下岩石的变形特征。 7.简述岩石在三轴压缩条件下的变形特征与强度特征。 【8.岩石的弹性模量与变形模量有何区别? 【9.岩石各种强度指标及其表达式是什么? 10.岩石抗拉强度有哪几种测定方法?在劈裂法试验中,试件承受对径压缩,为什么在破坏面上出现拉应力破坏? 11.岩石抗剪强度有哪几种测定方法?如何获得岩石的抗剪强度曲线? 12.岩石的受力状态不同对其强度大小有什么影响?哪一种状态下的强度较大? 13.简述影响岩石单轴抗压强度的因素。 14.岩石典型蠕变可划分为几个阶段,图示并说明其变形特征? 15.岩石流变模型的基本元件有哪几种?各有何特征?

岩石力学

第一章岩石物理力学性质;1.构成岩石的主要造岩矿物有哪些?;答:岩石中主要造岩矿物有:正长石、斜长石、石英、;2.为什么说基性岩和超基性岩最容易风化?;答:基性和超基性岩石主要是由易风化的橄榄石、辉石;3.常见岩石的结构连接类型有哪几种?各有什么特点;答:岩石中结构连接的类型主要有两种,分别是结晶连;结晶连接指矿物颗粒通过结晶相互嵌合在一起;4.何谓岩石中的 第一章岩石物理力学性质 1.构成岩石的主要造岩矿物有哪些? 答:岩石中主要造岩矿物有:正长石、斜长石、石英、黑云母、白云母、角闪石、辉石、橄榄石、方解石、白云石、高岭石、磁铁矿等。 2.为什么说基性岩和超基性岩最容易风化? 答:基性和超基性岩石主要是由易风化的橄榄石、辉石及斜长石组成,所以非常容易风化。 3.常见岩石的结构连接类型有哪几种?各有什么特点? 答:岩石中结构连接的类型主要有两种,分别是结晶连接和胶结连接。 结晶连接指矿物颗粒通过结晶相互嵌合在一起。这类连接使晶体颗粒之间紧密接触,故岩石强度一般较大,抗风化能力强;胶结连接指岩石矿物颗粒与颗粒之间通过胶结物连接在一起,这种连接的岩石,其强度主要取决于胶结物及胶结类型。 4.何谓岩石中的微结构面,主要指哪些,各有什么特点? 答:岩石中的微结构面(或称缺陷)是指存在于矿物颗粒内部或矿物颗粒及矿物集合之间微小的若面及空隙。包括矿物的解理、晶格缺陷、晶粒边界、粒间空隙、微裂隙等。

矿物解理面指矿物晶体或晶粒受力后沿一定结晶防线分裂成光滑平面,解理面往往平行于矿物晶体面网间距较大的面网。 晶粒边界:由于矿物晶粒表面电价不平衡而引起矿物表面的结合力,该结合力源小于矿物晶粒内部分子、原子、离子键之间的作用力,因此相对较弱,从而造成矿物晶粒边界相对软弱。微裂隙:指发育于矿物颗粒内部及颗粒之间的多呈闭合状态的破裂痕迹线。具有方向性。粒间空隙:多在成岩过程中形成晶粒之间、胶结物之间微小的空隙。 5.自然界中的岩石按地质成因分类,可以分为几大类,各大类有何特点? 答:按地质成因分类,自然界中岩石可分为岩浆岩、沉积岩和变质岩三大类。 岩浆岩按照岩浆冷凝成岩的地质环境不同又可分为深成岩、浅成岩和喷出岩。其中深成岩常形成巨大的侵入体,有巨型岩体,大的如岩盘、岩基,其形成环境都处在高温高压之下,形成过程中由于岩浆有充分的分异作用,常常形成基性岩、超基性岩、中性岩及酸性、碱性岩等,其岩性较均一,变化较小,岩体结构呈典型的块状结构,结构多为六面体和八面体,岩体颗粒均匀,多为粗-中粒结构,致密坚硬,空隙少,力学强度高,透水性弱,抗水性强;浅成岩成分与相应的深成岩相似,其产状多为岩床、岩墙、岩脉等小侵入体,岩体均一性差,岩体结构常呈镶嵌式结构,岩石常呈斑状结构和均粒-中细粒结构,细粒岩石强度比深成岩高,抗风化能力强,斑状结构则差一些;喷出岩有喷发及溢流之别,其结构比较复杂,岩性不一,各向异性显著,岩体连续性差,透水性强,软弱结构面发育。 沉积岩是由风化剥蚀作用或火山作用形成的物质,在原地或被外力搬运,在适当条件下沉积下来,经胶结和成岩作用而形成的。其矿物成分主要是粘土矿物、碳酸盐和残余的石英长石等,具层理构造,岩性一般具有明显的各向异性,按形成条件和结构特点,沉积岩可分为:火山碎屑岩、胶结碎屑岩、粘土岩、化学岩和生物化学岩等。 变质岩是在已有岩石的基础上,经过变质混合作用形成的。因其形成的温度、压强等变质因素复杂,其力学性质差别很大,不能一概而论。 6.表示岩石物理性质的主要指标及其表示方式是什么?

n03 岩石的强度理论

3 岩石的强度理论 3.1概述 岩石的应力、应变增长到一定程度,岩石就要发生破坏。用来表示岩石破坏条件的函数(极限状态下的应力与应力函数关系(应力准则)或应变与应变函数关系(应变准则),以前者多见,即σ1=f(σ2,σ3)或τ=f(σ))称为破坏判据或强度准则。它是判断岩土工程是否安全的依据或条件。强度准则的建立,应反映岩石的破坏机理。所有研究岩石破坏的原因、过程及条件的理论,称为强度理论。 强度准则与坐标系的选取无关,因此通常用坐标不变量表示。常见的坐标不变量包括主应力σ1、σ2、σ3,应力不变量I1、I2、I3,应力偏量不变量J1、J2、J3。 岩石强度准则反映岩石固有的属性,因此一定要来源于试验,通过对试验资料的归纳分析,而得到强度准则。岩石由于本身性质的差异和受力条件的不同,其破坏形式复杂多变,破坏机理多种多样,因此,人们提出许多岩石的强度准则。 目前应用较广的强度理论有库仑准则、莫尔强度准则、格里菲斯准则、DRUCKER-PRAGER准则等。 3.2库仑准则 最早提出的强度准则或塑性条件(1773年)。最简单、最重要,工程中很常用。通过摩擦试验、压剪试验或三轴试验等确定岩石的库仑准则。 库仑认为,岩石的破坏主要是剪切破坏,岩石的强度是由岩石本身的抗剪切摩擦的黏结力和剪切面上法向应力产生的摩擦力构成的。剪切破坏面上的强度准则为: τtan σ φ =c ? + 库仑准则的破坏机理是:材料为有正应力情况下的剪切破坏形式,即压剪破坏。剪切破坏的一部分用来克服与正应力无关的黏结力c,使材料颗粒间脱离关系,另一部分用力克服与正应力成正比的摩擦力σtan?,使面间产生错动而破坏。 库仑准则(即上述的方程)在σ—τ坐标系中为一条倾斜的直线(图5-1),直线斜率为tgφ,直线与σ轴的夹角为φ,在τ轴上的截距为c。 图5-1 库仑准则 如果岩石试件上作用着σ1和σ3,使岩石处于极限平衡状态,则由σ1、σ3确定的莫尔圆与库仑强度曲线相切,切点的位置为破坏面的位置(见上图)。由图可知

第四节 岩石强度理论

第四节岩石的强度理论?研究岩石破坏原因、过程及条件的理论—岩石的强度理论。 ?将表征岩石强度条件的函数称为岩石的强度准则, ?而将表征岩石破坏条件的函数称为岩石的破坏判据。

一、一点的应力状态 ?1、正负号的规定 ①压为正,拉为负; ②剪应力是使物体产生逆时针转为正,反之为负; ③角度以X轴正向沿逆时针方向转动所形 成的夹角为正,反之为负。 ?2、一点的应力的表示方法 三个正应力:σ x 、σ y 、σ z ,正应力的 角标为正应力作用面的外法线方向;

剪应力的角标为: 第一个角标表示剪应力作用面的外法线方向;第二个角标表示剪应力作用的方向。三对剪应力:在平面问题中,独立的应力分量只有三个, 即: σx 、σy 、τxy τxy =τyx τyz =τzy τzx =τxz

3、平面问题的简化 ?①平面应力问题(垂直于平面方向应力为零),?如薄板问题; ?②平面应变问题(垂直于平面方向应变为零),?如大坝、路堤、隧道横断面等问题。 ?不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换: 平面应力计算公式中的E用E/(1-μ2)、μ用μ/ (1-μ)代入,即可将平面应力问题的 计算公式转换成平面应变问题的计算公式。

4、基本应力公式 如图所示: 以二维平面问题为例任意角度倾斜截面上的应力计算公式下: τ xy τ yx τ yx τ xy σ x σ y σ y σ x σ n τ n α

α τ-ασ-σ+ σ+σ= σ2sin 2cos 2 2 xy y x y x n α τ+ασ-σ= τ2cos 2sin 2 xy y x n 若上述公式对求导,即可求得最大、最小主应力的表达式如下: 2 2 3 122 xy y x y x τ+??? ? ? ?σ+σ±σ+σ= σσ

东北大学岩石力学讲义岩石破坏机制及强度理论

第二章岩石破坏机制及强度理论 第一节岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采而片帮。特点出现与最大应力 方向平行的裂隙。 " (b) (

3)试件)戏道

三.重剪破坏:即沿原有的结构而的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩右?破坏的现彖看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳 为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方而。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 b] =/(bg) 研究的方法有:理论分析:2、试验研究;3、理论研究结合试验研究。 第二节岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 叫(2-1) < 一拉应变的极限值,£ —拉应变。门 囹2-4住仲敲坏

岩石强度准则研究现状论文

岩石强度准则研究现状 景玉兰 1 (1.水利水电学院 水利水电工程,四川 成都,610065) 摘要:为使岩石强度准则更贴合实际地运用到工程中,本文通过阐述岩石强度准则的发展史,简要的介绍各种强度准则的适用条件、应用范围及优缺点,探究它们之间的联系与区别,并对岩石强度准则的未来发展提出了自己的见解。 关键词:岩石强度 破坏准则 适用条件 未来展望 1 引 言 岩石力学是研究岩石的力学状态的理论和应用的科学,是探讨岩石对其周围物理环境中力场反应的学科,它涉及土木、水电、地质等多个领域,因此有必要对各种环境下的岩石强度理论的应用进行讨论。岩石强度理论是研究岩石在各种应力状态下的破坏原因、过程和条件的理论,强度破坏准则是用以表征岩石破坏条件的函数(应力、应变函数)[1]。虽然到目前为止,已经提出了上百个模型和准则[2,3],但至今仍未发现任何一个理论能无条件的应用于岩石,因此,需要研究各种强度准则的应用范围、适用条件 [4] ,以便更加合理准确地将其运用到实际工 程中。 2 几种常见的强度准则 2.1 Mohr-Coulomb 准则[1] 1900年,莫尔在基于1773年库伦提出的“内摩擦”准则上,将该理论从双向应力状态推广到三向应力状态,其基本观点为岩石破坏属于剪切破坏,剪切面的剪应力超过其抗剪强度。假设材料内某一点的破坏主要有其大主应力1σ和小主应力3σ决定而与中主应力大小2σ无关,得到平面应力状态的剪切强度准则: ?στtan +=c f (1) 式中:c 为岩石凝聚力; ?为岩石内摩擦角。 图1 莫尔-库伦强度理论 优点:同时考虑了拉剪和压剪应力状态;可判断破坏面的方向,强度曲线向压区开放,说明t c σσ>,与岩石力学性质符合;通过莫尔圆及莫尔强度包络线的绘制,清楚方便的反映出材料是否被破坏。 缺点:忽略了中主应力2σ的影响;未考虑结构面的影响;不适用于拉断破坏、膨胀和蠕变破坏。 2.2 Tresca 准则[1] 1864年,Tresca 针对金属材料提出了屈服准则,他认为材料的破坏,取决于最大剪应力,表达式为: R ≥-31σσ (2) 式中:1σ和3σ为最大、最小主应力; R 泛指材料的强度 优点:该准则表达形式简单,适用于塑性岩石,在已知最大及最小主应力的情况下,可判别出材料是否遭到破坏[5,6]。 缺点:该准则只对内摩擦角00=?是的岩土材料适用,不适用于脆性岩石,未考虑中间主应力的影响,应用范围较窄。 2.3 Mises 准则[1] Mises 准则是从能量角度出发研究材料

岩石的强度理论与本构关系

岩石的强度理论与本构关系 朱浮声 (东北大学土木系,沈阳110006) 朱浮声,1948年6月生于黑龙江齐齐哈尔11976年毕业于东北大学,1983年 获中国矿业大学工学硕士学位,1991年获东北大学博士学位11988年曾在 美国南伊利诺大学作访问学者,1993年在瑞典皇家工学院任客座教授1现 任东北大学土木工程系教授,辽宁省力学学会理事1主要研究方向为计算岩 土力学和岩土加固技术1在国内外学术刊物上发表论文50余篇,出版5锚 喷加固设计方法6等学术专著2部,译著1部1 摘要本文简要介绍了岩石强度理论和本构关系的发展和现状,讨论了它们不同的特点与适用条件1 关键词岩石,岩体,强度理论,本构关系 1前言 随着电子计算机的飞速发展和计算技术的逐步完善,对岩石强度理论和本构关系提出了更高要求,以便更真实描述岩石和岩体力学特征,求解复杂的工程岩石力学问题1 由于岩石材料力学性质的某些相似性和其它历史原因,岩石强度理论和本构关系的早期研究曾大量引用了土力学成果,并提出了一些适用于岩土介质的强度理论和本构关系1随着岩石力学的发展,人们认识到,岩石和岩体的物理力学性质不仅有别于其它非摩擦工程材料,而且,与土或混凝土等摩擦材料也存在较明显差异1例如,岩石破坏包括脆性、延性及由脆性向延性转化等复杂类型;岩体的力学特性受控于岩块和不连续面的力学特性;岩石工程的稳定性通常受主要不连续面控制等1因此,近年来又提出了适用于岩石、不连续面和岩体的强度理论或本构方程式1本文旨在介绍这些理论研究的最新进展,并对已有岩土强度理论和本构关系的适用条件和局限性加以简要评价1 限于篇幅,本文仅涉及与时间无关的各向同性和等向强化模型1 2岩土共用的强度理论和本构关系 211弹性 均质、各向同性或横观各向同性模型曾被广泛用于描述岩土力学特征,特别是峰值强度前的应力-应变关系,并得到了大量解析解和实用近似解1考虑到应力-应变曲线的明显非线性特性,曾将非线性弹性理论与计算机技术相结合,提出了一批数值算法,并在60~70年代的岩土力学分析中不断被引用1例如,以曲线各点的割线模量取代弹性常数,构成了各种超弹性模型[1],或以增量形式描述非线性弹性应力-应变关系,形成了亚弹性模型[2]等1但是,由于这些模型只考虑到岩土材料的弹性特征,并且,随着模型阶次增高,待定常数的数目往往过多,因而,限制了它们的广泛应用1

破碎岩体强度理论综述

HOEK -BROWN强度准则及其在破碎岩体强 度中的应用 摘要:岩石是有大量岩块和结构面组成的不均匀的各向异性材料。但是因为岩体内部结构的不可预见性和建模、计算能力的限制,很多情况下,只能将岩体作为均匀的宏观复合材料进行研究。如何准确定义破碎岩体的强度成了一个关系计算准确性和工程安全的重要问题。本文阐述了岩石力学中破碎岩体的主要强度理论。并对HOEK -BROWN强度理论的提出、发展、参数的选取与确定及实际应用进行了详细的探讨。 关键词:HOEK -BROWN强度准则,破碎岩体,岩体强度理论 1.研究岩体强度理论的重要性 人类生活和经济活动越来越离不开以岩体为对象的工程建设,例如水利水电工程、铁道交通工程、工业与民用建筑、隧道工程、矿山建筑与开发工程、国防工程、冶金化工、地震与防护工程等。总的来说,它们都需要以研究岩体的力学特征为基础。随着岩体工程的规模、数量及复杂性的增加,所涉及的岩体力学的问题也越来越复杂,以至于经常有重大岩体工程事故发生。美国的圣弗朗斯西重力坝、法国马尔帕塞大坝、意大利瓦扬水电站、加拿大亚当贝克水电站压力管道及日本关门铁路隧道等工程的失败或失事的惨痛教训,使人们意识必须加强岩体力学理论研究和分析,正确把握岩体在外荷载作用下的强度、变形及破坏规律。 2.研究破碎岩体强度的难点 在实际工程中遇到的均质岩体情况很少见,所碰到的岩体绝大多数均被各种结构面切割与破碎。节理是岩体中发育最广泛的一种结构面,在很多情况下节理面的力学性质很软弱。节理的存在严重的破坏了岩体的连续性和完整性,大大改

变了岩体的力学性质。节理岩体工程性质的特殊性主要表现在一下三个方面不连续。节理岩体是由不同规模、不同形态、不同成因、不同方向和不同次序的节理面以及被节理面围限而成的结构体共同组成的综合体,节理岩体在几何上和工程性质上都具有不连续性。由于发育在岩体中的节理面具有明显方向性,受节理面影响,节理岩体的工程性质呈现显著的各向异性。另外,实际工程岩体被节理切割程度的大小也与岩体工程规模有关,工程岩体结构也会随着含节理数的多少而发生变化,如图所示,所考虑的岩体范围越小,岩体中所含有的节理数就愈少,因而岩体的结构类型也就会有所不同。由于节理岩体工程性质的不连续、各向异性以及岩体组成物质的非均质,加之节理面在岩体不同部位发育程度和分布规律的差异,不同工程部位的岩体表现出不同的工程性质。节理在地壳上部岩石中具有广泛的分布,并且在岩体介质中呈现出强度低、易变形的特征。节理的发育常常为大坝、边坡和地下硐室等工程带来隐患,并导致工程岩体的失稳与破坏。地质工程中的岩体强度预测、岩坡稳定性分析、岩基承载力确定、地下硐室围岩稳定性评价及相关的动力学现象围岩垮塌或岩爆均直接或间接与岩体变形及强度特征有关。鉴于此,普遍认为节理岩体变形及强度特征的研究是一个富有挑战性的基础性课题,开展此方面的研究不仅非常必要,而且有着重要的实用价值和工程意义。节理的存在不仅大大改变岩体的力学性质,降低岩体的变形模量及强度参数,并使岩体呈现明显的各向异性。节理岩体变形具有各向异性的特征己为人们所熟知,竖向分布节理岩体的变形模量明显大于水平分布节理岩体的变形模量,这种区别主要在于变形机制不同。垂直节理面的压缩变形量主要是由岩块和节理面压密综合而成,平行节理面方向的压缩变形量主要是岩块和水平节理面的错动构成,节理岩体各方向的变形性质的差异由此而产生。与变形特征相类似,节理岩体也具有明显的强度各向异性特征。通常为了实际的需要将岩石近似地简化为各向同性体,基本上未考虑各向异性的性质,对一种岩石只给出一个确定的强度指标。在实际的岩石试验过程中发现,即使是同一地点取出的岩石,不同方向上的强度试验结果,往往也具有很大的离散性。因为本身就已经是各向异性的岩体,在后期构造改造的作用下,其各向异性表现得更加突出。参照图所示,对不含节理的完整岩体,可认为其在宏观上为均质、各向同性的材料对含有一组、二组或三组节理的岩体,其力学性质通常表现为各向异性若岩体被四组或四组以上的等规模、等间距及强度基

岩体的变形与破坏的本构关系

第三章岩体的变形与破坏 变形:不发生宏观连续性的变化,只发生形、体变化。 破坏:既发生形、体变化、也发生宏观连续性的变化。 1.岩体变形破坏的一般过程和特点 (1)岩体变形破坏的基本过程及发展阶段 ①压密阶段(OA段): 非线性压缩变形—变形对应力的变化反应明显; 裂隙闭合、充填物压密。 应力-应变曲线呈减速型(下凹型)。 ②弹性变形阶段(AB段): 经压缩变形后,岩体由不连续介质转变为连续介质; 应力-应变呈线性关系; 弹性极限B点。 ③稳定破裂发展阶段(BC段): 超过弹性极限(屈服点)后,进入塑性变形阶段。 a.出现微破裂,随应力增长而发展,应力保持不变、破裂则停止发展; b.应变:侧向应变加速发展,轴向应变有所增高,体积压缩速率减缓(由于微破裂的出现);

④不稳定破裂发展阶段(CD段): 微破裂发展出现质的变化: a.破裂过程中的应力集中效应显著,即使是荷载应力保持不变,破裂仍会不断地累进性发展; b. 最薄弱部位首先破坏,应力重分布导致次薄弱部位破坏,直至整体破坏。“累进性破坏”。 c. 应变:体积应变转为膨胀,轴向及侧向应变速率加速增大; ※结构不均匀;起始点为“长期强度”; ⑤强度丧失、完全破坏阶段(DE段): 破裂面发展为宏观贯通性破坏面,强度迅速降低, 岩体被分割成相互分离的块体—完全破坏。 (2)岩体破坏的基本形式 ①张性破坏(图示); ②剪切破坏(图示):剪断,剪切。 ③塑性破坏(图示)。 破坏形式取决于:荷载条件、岩体的岩性及结构特征; 二者的相互关系。 ①破坏形式与受力状态的关系: a.与围压σ3有关: 低围压或负围压—拉张破坏(图示); 中等围压—剪切破坏(图示); 高围压(150MN/m2=1500kg/cm2)—塑性破坏。 的关系: b.与σ 2 σ2/σ 3 <4(包括σ 2 =σ3),岩体剪断破坏,破坏角约θ=25°; σ2/σ 3 >8(包括σ 2 =σ1):拉断破坏,破坏面∥σ1,破坏角0°; 4≤σ2/σ3≤8:张、剪性破坏,破坏角θ=15°。 ②破坏形式与岩体结构的关系: 完整块体状—张性破坏; 碎裂结构、碎块结构—塑性破坏; 裂隙岩体—取决于结构面与各主应力之间的方位关系。

东北大学岩石力学讲义第二章岩石破坏机制及强度理论.

第二章 岩石破坏机制及强度理论 第一节 岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力方向平行的裂隙。 二、剪切破坏:岩石试件单向抗压的X 形破坏。从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。 (a ) (b )

三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 123(,)f σσσ= 研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。 第二节 岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 c εε≤ (2-1) c ε—拉应变的极限值,ε—拉应变。

若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。按弹性力学有3 3E E σμ εσσ= -12(+),即33E εσμσσ=-12(+)。若3ε<0则产生拉应变。由于E >0,因此产生拉应变的条件是 3σμσσ-12(+)<0,3μσσσ12(+)> 若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t E σε=?0t E σε=。 按最大线应变理论30εε≥破坏,即 312()t σμσσσ-+≥ (2-2) 式中0ε是允许的拉应变。 二、格里菲斯理论 格里菲斯理论的主要观点是:材料内微小裂隙失稳扩展导致材料的宏观破坏。 格里菲斯理论的主要依据是:1)、任何材料中总有各种微小微纹;2)、裂纹尖端的有严重的应力集中,即应力最大,并且有拉应力集中的现象;3)、当这种拉应力集中达到拉伸强度时微裂纹失稳扩展,导致材料的破坏。 格里菲斯理论的来源:由玻璃破坏得到的启示。 格里菲斯理论的基本假设为: 1、岩石的裂隙可视为极扁的扁椭圆裂隙; 2、裂隙失稳扩展可按平面应力问题处理; 3、裂隙之间互不影响。 按格里菲斯理论,裂纹失稳扩展条件为 1)、当1330σσ+>时,满足 21313()8()0t σσσσσ-++= (2-2)

岩石力学 期末考试精华版

论述:1试说明普氏、太沙基地压计算理论,并给予评价。 答:普氏认为:顶板岩石受力作用可形成平衡拱(免压拱),使上覆岩层压力通过拱轴转移到两侧围岩上,当两侧围岩稳定时,巷道支架仅承受平衡拱内岩石的重力作用。两帮岩体受拱传递压力作用,产生较大变形,当达到其强度时,两帮岩体将滑移,失去支撑作用,致使拱宽、拱高加大,顶压与侧压增大。 太沙基认为:跨度为2a 范围内的上部岩石将由于自重而下沉,两侧摩擦力阻止其下沉,支架所承受的压力为下滑力与摩擦力之差。 评价:两种计算方法均为估算法。普氏地压公式与深度无关,不能解释应力随深度增大的现象; 适用于松散岩体,对整体性、强度高的岩体,计算结果与实际有出入;应用简便(估算)、存在局限性。 太沙基公式从另一角度提出地压计算公式,也反映了免压拱效应,经变换后与普式公式同形。适用于埋深不大、围岩松散破碎条件。 2分析库仑、莫尔、格里菲斯强度理论的基本观点并给予评价。 答:库仑认为:岩石破坏为剪切破坏;岩石抵抗剪切破坏的能力由两部分组成:内聚力、内摩擦力。 莫尔认为:无论岩石处于何种应力状态,破坏均为剪切破坏;破坏时,剪切面上所需的剪应力不仅与岩石性质有关,而且与作用在剪切面上的正应力有关。 格里菲斯认为:不论岩石受力状态如何,最终在本质上都是拉伸应力引起岩石破坏。 评价:库仑强度理论是莫尔强度理论的直线形式。 莫尔理论较好解释了岩石抗拉强度远远低于抗压强度特征,解释了三向等拉时破坏,三向等压时不破坏现象,但忽视了中间应力的作用。 格式理论推导岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况,较好证明了岩石在任何应力状态下都是由于拉伸引起破坏,但对裂隙被压闭合抗剪强度增高解释不够。 莫尔理论适用于塑性岩石,及脆性岩石的剪切破坏;不适用于拉断破坏。 格式理论适用于脆性岩石及材料破坏。 3 从岩石力学的角度分析岩质边坡病害的发生机理和研究方法。 答:机理:○1崩塌:块状岩体与岩坡分离,向前翻滚而下。其成因是由于风化等原因减弱了节理面的内聚力或也可能是由于气温变化、冻融松动岩石的结果,或是由于植物根系生长造成膨胀压力,以及地震、雷击等原因而引起;○2滑坡:岩体在重力作用下,沿坡内软弱结构面产生的整体滑动。其成因是由于岩体中存在有软弱结构面(层面、断层、裂隙),岩体在重力的作用下,克服了滑面底部与两侧的阻力而引起沿软弱面的滑动。滑面的倾角必须大于滑面的内摩擦角,否则无论坡角和坡高大小如何,边坡都不会滑动。研究方法:极限平衡法、数值分析法、有限单元法等。 4、从基本特征、物理性质、力学性质、赋存环境等角度讨论岩体、岩石的区别。 答:基本特征:岩体:不连续性、非均匀性、各向异性、有条件转化性;岩石:是一种地质材料,是组成岩体的固相基质,是连续、均匀、各向同性或正交各向同性的力学介质。 物理性质:岩体:结构面产状、结构面组数、结构面间距、延展性、粗糙程度、风化程度、张开度、充填特性、渗流、块体尺寸;岩石:重力特征、空隙性、吸水性、透水性、可溶性、膨胀性、崩解性、软化性、抗冻性、碎胀性、压实性、热(力)学性质等。 力学性质:岩体:法向压缩变形、岩体抗拉强度、岩体的抗剪强度、岩体的剪切变形;岩石:为抵抗外力而维持自身稳定和平衡所表现出来的性质,包括变形性质和破坏性质。 赋存环境:岩体:地应力场、温度场、渗流场、其它物理场;岩石:没有赋存环境 简答:1 简述结构面定量统计的内容?

岩石力学重点总结复习过程

岩石岩体区别:岩石可以看作是一种材料,岩体是岩石与各种不连续面的组合体;岩石可以看作是均质的,岩体是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常是指一定工程范围内的地质体,岩石则无此概念。 岩石力学是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。 研究对象:对象:岩石—对象—岩石材料—地壳中坚硬的部分; 复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等) 研究的基本内容: 基本理论岩体地应力 材料实验——三大部分→岩体的强度 工程应用岩体的变形 仅供学习与参考

裂隙水力学 研究方法:物理模拟→岩石物理力学性质常规实验,地质力学模型试验; 数学模型→如有限元等数值模拟; 理论分析→用新的力学分支,理论研究岩石力学问题; 由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)→致使岩石的物理力学性质→不连续、不均匀、各向异性→因此,有必要引入刻划不均一程度的参数。 各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。 岩石的基本物理力学性质 岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手, 1.岩石的容重:指单位体积岩石的重量。 2.比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4?c水的容重的比值。 3.孔隙率(n%)指岩石内孔隙体积与总体积之比。 4.天然含水量:指天然状态下,岩石的含水量与岩石干重比值的百分比。 5.吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。 6.饱和含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。 7.饱水 仅供学习与参考

《岩石力学》习题库及答案

练习题 三、简答题: 1、什么是全应力应变曲线?为什么普通材料试验机得不出全应力应变曲线? 答:在单轴压缩下,记录岩石试件被压破坏前后变形过程的应力应变曲线。 普通材料实验机整体刚度相对较小,对试件施加载荷产生的反作用力将使实验机构件产生较大变形(弹性能储存),当岩石试件被压坏时,试件抗压能力急剧下降,致使实验机弹性变形迅速恢复(弹性能释放)摧毁岩石试件,而得不到岩石破坏后的应力应变曲线。刚性实验机在施加载荷时,自身变形极小,储存的弹性能不足以摧毁岩石试件,因此可以得到岩石破坏后的应力应变曲线。 2、简述岩石在三轴压缩下的变形特征。 答:E、μ与单轴压缩基本相同; 随围压增加——三向抗压强度增加;峰值变形增加;弹性极限增加;岩石由弹脆性向弹塑性、应变硬化转变。3、按结构面成因,结构面通常分为几种类型? 答:按成因分类有三种类型:①原生结构面——成岩阶段形成的结构面;②构造结构面——在构造运动作用下形成的结构面;③次生结构面——由于风化、人为因素影响形成的结构面。 4、在巷道围岩控制中,可采取哪些措施以改善围岩应力条件? 答:选择合理的巷道断面参数(形状、尺寸),避免拉应力区产生(无拉力轴比); 巷道轴线方向与最大主应力方向一致; 将巷道布置在减压区(沿空、跨采、卸压)。 5、地应力测量方法分哪两类?两类的主要区别在哪里?每类包括哪些主要测量技术? 答:分为直接测量法和间接测量法。 直接测量法是用测量仪器直接测量和记录各种应力量。 间接测量法,不直接测量应力量,而是借助某些传感元件或某些介质,测量和记录岩体中某些与应力有关的物理量的变化,通过其与应力之间存在的对应关系求解应力。 直接测量法包括:扁千斤顶法、水压致裂法、刚性包体应力计法和声发射法等。 间接测量法包括:套孔应力解除法、局部应力解除法、松弛应变测量法、孔壁崩落测量法、地球物理探测法。 1.岩石的塑性和流变性有什么不同? 答:塑性指岩石在高应力(超过屈服极限)作用时,产生不可恢复变形的性质。流变性指岩石在任何应力作用下,随时间增长而产生的不可恢复的变形。相同点:均为不可恢复变形;不同点:变形产生的原因、机理不同。 2.试叙述构造应力对原岩应力场的影响及其特点。 答:影响:加大了水平应力和应力不均衡分布。构造应力特点: 1)分布不均,在构造区域附近最大;2)水平应力为主,浅部尤为明显;3)具有明显的方向性;4)坚硬岩层中明显,软岩中不明显;5) 3.简述围压对岩石力学性质的影响。 围压可改变岩石的力学性状。围压增大致使塑性增大、峰值强度增高、破坏前变形加大。实验时加载速率大,导致弹性摸量大、强度指标高。 4.影响巷道围岩稳定的主要因素有哪些? 围岩强度、应力集中程度、原始应力大小、巷道支架的支撑力 5.采用锚杆支护时如何选择锚杆的杆径? 锚杆杆径确定:一般先确定锚固力,然后由拉断力≥锚固力确定拉断力,再确定杆径。 1.岩石受载时会产生哪些类型的变形? 岩石受载可发生弹性变形、塑性变形和粘性变形。一般岩石呈现粘弹性性质(滞弹性),即应变的产生和恢复滞后于应力变化。 2.程岩体比尼奥斯基分类法依据哪些指标对岩体进行分类? 依据岩块强度、RQD、节理间距、节理条件、地下水条件五个指标进行分类。 3.岩体与岩石相比,其变形性质有何特点? 岩体变形与岩石相比E低,峰值强度低,残余强度低,μ高;达到峰值后,岩体呈柔性破坏,并保留一定残余强度;各向异性显著,不同结构面分布呈现不同变形性质。 4.试分析支承压力的有利因素与不利因素。 有利:压酥煤体,便于落煤,节省能耗。不利:破坏煤体引起片帮,不利顶板管理;破坏顶板,生成采动裂隙,造成

岩石本构模型.

岩石材料本构模型建立方法 一、岩石本构模型的定义 岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。 岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。脆性材料不同于韧性材料,对缺陷十分敏感。 由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。研究岩石本构关系的方法,概括起来主要有以下两种: (1)唯象学方法 ①用实验或断裂理论研究岩石的破坏准则。其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述; ②塑性力学,流变力学及损伤力学方法。塑性力学有经典和广义塑性力学两部分。经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。 (2)物理力学机理方面 岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。 建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观

察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。 二、岩石的本构关系分类 本构关系分类以下三类: ①弹性本构关系:线性弹性、非线性弹性本构关系。 ②弹塑性本构关系:各向同性、各向异性本构关系。 ③流变本构关系:岩石产生流变时的本构关系。流变性是指如果外界条件不变,应变或应力随时间而变化的性质。 2.1 岩石弹性本构关系 1. 平面弹性本构关系 2. 空间问题弹性本构关系

岩石力学复习题

《岩石力学》测试题一 西南科技大学考试试题单 考试科目:岩石力学 (不必抄题,但必须写明题号,试题共计三大题) 一、解释下列术语(每小题4分,共28分) 1.岩石的三向抗压强度岩石在三向同时受压时每个单向分别的强度极限 2.结构面具有一定形态而且普遍存在的地质构造迹象的平面或曲面。不同的结构面,其 力学性质不同、规模大小不一。 3.原岩应力岩石在地下未受人类扰动时的原始应力状态 4.流变在外力作用下,岩石的变形和流动 5.岩石的碎胀性岩石破碎后的体积VP比原体积V增大的性能称为岩石的碎胀性,用碎胀系数ξ来表示。 6.蠕变岩石在保持应力不变的条件下,应变随时间延长而增加的现象 7.矿山压力地下矿体被开采后,其周围岩体发生了变形和位移,同时围岩内的应力也 增大和减小,甚至改变了原有的性质。这种引起围岩位移的力和岩体变化后的应力就叫矿山压力。 二、简答题(每小题7分,共42分) 1.岩石的膨胀、扩容和蠕变等性质间有何异同点? 都是岩石形状改变的一种类型,膨胀和扩容时岩石的体积会增大,扩容和蠕变时需要受力2.岩体按结构类型分成哪几类?各有何特征? 整体块状 层状 碎裂

散体 3.用应力解除法测岩体原始应力的基本原理是什么? 4.格里菲斯强度理论的基本要点是什么? 5.在不同应力状态下,岩石可以有几种破坏形式? 压缩破坏拉伸破坏剪切破坏 6.喷射混凝土的支护作用主要体现在哪些方面? 喷射混凝土的厚度是否越大越好?为什么? 三、计算题(30分) 1.将一岩石试件进行三向抗压试验,当侧压σ2= σ3=300kg/cm2时,垂直加压到2700kg/cm2试件破坏,其破坏面与最大主平面夹角成60°,假定抗剪强度随正应力呈线性变化。试计算:(1)内磨擦角υ;(2)破坏面上的正应力和剪应力;(3)在正应力为零的那个面上的抗剪强度;(4)假如该试件受到压缩的最大主应力和拉伸最小主应力各为800kg/cm2,试用莫尔园表示该试件内任一点的应力状态?(本题20分) 2.岩体处于100m深,上部岩体的平均容重γ=2.5T/M3,泊松比μ=0.2,自重应力为多少?当侧压力系数为1.0时,自重应力为多少?(本题10分 《岩石力学》测试题二 双击自动滚屏

岩石力学基础练习练习题复习.doc

精品文档 岩石力学练习题 (填空,选择,判断) 一、填空题 1.表征岩石抗剪性能的基本指数是()和()。 2.如果将岩石作为弹性体看待,表征其变形性质的基本指标是()和()。3.岩石在单轴压力作用下,随加荷、卸荷次数的增加,变形总量逐次(),变形增量逐次()。 4.所谓洞室围岩一般是指洞室周围()倍半径范围内的岩体。 5.边坡岩体中,滑移体的边界条件包括()、()和()三种类型。6.垂直于岩石层面加压时,其抗压强度(),弹性模量();顺层面加压时的抗压强度(),弹性模量()。 7.莫尔强度理论认为:岩石的破坏仅与()应力和()应力有关,而与()应力无关。 8.岩石在复杂应力状态下发生剪切破坏时,破坏面的法线与最大主应力之间的夹角总是等于()的;而破坏面又总是与中间主应力()。 9.不论何种天然应力条件下,边坡形成后,在边坡表面岩体中的最大主应力的作用方向与边坡面(),最小主应力作用方向与边坡面()。 10.主要的岩体工程分类有()、()、()、()等。11.水对边坡岩体的影响表现在()、()和()。 12.天然应力场的主要成分有()、()和()。 13.地质结构面对岩体力学性质的影响表现在()和()。 14.结构面在法向应力作用下,产生()变形,其变形性质用指标()表征。15.岩石抗拉强度的试验室方法有()和()。 16.地质结构面按力学条件可分为()和()。 17.岩体结构类型可分为()、()、( )、()和()。18.岩体的强度处在()强度与()强度之间。 19.结构面的线连续性系数是在()至()变化的。 20.水对岩石力学性质的影响表现在()、()和()。 21.格里菲斯强度理论认为材料破坏的原因是()。 22.八面体强度理论认为材料破坏的原因是()。 23.有一对共轭剪性结构面,其中一组走向为N30E,而另一组为N30W,则岩体中最大主应力方向为()。如果服从库仑-纳维尔判据,则岩体的内摩擦角为()。24.软弱夹层的基本特点有()、()、( )、()和()。25.岩体中逆断层形成时,最大主应力方向为(),最小主应力方向为()。26.原生结构面据其成因中划分为()、()、()。 27.表征岩块变形特性的指标有()和()。 28.根据库仑强度理论,最大主应力与破裂面的夹角为()。 29.据岩体力学的观点看,岩体的破坏类型有()和()。 30.岩体中的结构面据其地质成因分为()、()和()。 31.岩体中一点的水平天然应力与铅直天然应力之比称为()。 32.岩体中正断层形成时的应力状态是:最在主应力方向为(),最小主应力方向为

岩石力学强度理论的研究现状分析_吕霁

第22卷第1期2010年3月北方工业大学学报 J.NOR T H C HINA UN IV.O F TEC H.Vol.22No.1Mar.2010 收稿日期:2009-03-31 3北京市教委课题(KM200710009007)、北方工业大学重点科研项目、北京市学科与研究生教育项目(PXM200920142122076740)、北京市科技平台建设项目(PXM200820142122053940)联合资助第一作者简介:吕霁,硕士研究生.主要研究方向:岩土工程. 岩石力学强度理论的研究现状分析 3 吕 霁 崔颖辉 刘 佳 鲁 海 (北方工业大学建筑工程学院,100144,北京) 摘 要 岩石力学强度理论是岩土工程领域最重要、最基本的问题,它用于岩土工程的安全评价、设计等相关研究中,用此判别其破坏模式及对其的安全性评价.本文从岩土材料的破坏机理角度出发,对几种常用的岩石力学强度理论进行分类,并从多个角度比较、分析各个强度理论的优缺点,同时对岩石力学强度理论的未来发展进行了分析和展望. 关键词 岩石强度理论;破坏机理;优缺点分类号 TU452 在岩土工程的相关研究中,经常会遇到不 同岩石强度理论的选择问题.如何正确区分不同强度准则之间的区别、适用范围以及在相关研究当中的便利性及可操作性等,已成为一个摆在技术人员面前的非常现实的问题. 岩石力学强度理论(也可称为强度准则、破坏判据)是岩石力学研究中最基本的问题之一,其主要关注岩石类材料破坏时的应力状态问题.目前岩石力学强度理论研究大都是建立在大量试验基础上,并对试验结果加以归纳、分析描述.岩石类材料破坏是在一种或几种应力作用下产生的,不同应力状态及物理性质将直接影响岩石类材料的强度特征.在岩石力学发展的不同时期,众多学者通过各自角度,建立了多种岩石力学强度准则. 1 几种常见岩石力学强度理论的  介绍及分析 1.1 Mohr 2Coulomb 强度理论1.1.1 基本思想 Mohr 2Coulomb 强度理论是采用直线型表 达式的Mohr 强度准则的特殊表现形式,因为其表达式最为简洁,因此得到了广泛应用.其具体表达式是: τ=c +σtan < (1)式中: τ—在正应力σ作用下的极限应力(Mpa );c —该类岩石的内聚力;<—该类岩石的内摩擦角. 1.1.2 特点分析 Mohr 2Coulomb 强度理论作为最经典的岩 体力学强度理论,其特点如下: (1)是建立在试验基础上的破坏判据,因此能够较好地反映实际工程条件下岩体材料的破坏情况,同时其使用较为方便,便于实际应用. (2)以剪切破坏作为其物理破坏机理,但 是相关试验表明:岩体破坏存在着大量的微破 裂,这些微破裂是张拉破坏而不是剪切破坏,因此Mohr 2Coulo mb 强度理论更适用于土质材料而不是岩质材料[3]. (3)对岩体的破坏特征做了一系列假设, 如岩体材料的强度与中间主应力大小无关.但在实际情况中,中间主应力对材料强度具有一

相关文档
最新文档