开利19XR离心式冷水机组制冷量及制冷剂用量表

开利19XR离心式冷水机组制冷量及制冷剂用量表
开利19XR离心式冷水机组制冷量及制冷剂用量表

19XR离心式冷水机组制冷量及制冷剂用量表

离心式冷水机组的结构及原理

离心式冷水机组系统介绍 目前用于中央空调的离心式冷水机组主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液 蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系 1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置 等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除 了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一 级。由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压 缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中 的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度 马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。 ②冷水机组在实际使用中,由于气候和热负荷的变化,需要的制冷量变化很 大,并且要求在冷负荷变化时,机组的效率也尽可能高。作为制造厂来说,对于 不同规格的系列产品,希望零部件的通用化程度越高越好。对于离心制冷压缩机,其叶轮的出口角小,则压缩机的性能曲线比较平坦,绝热效率较高,还能减少因采用同一蜗室而造成的匹配失当和效率降低,有利于变工况运行。 ③离心式压缩机是通过旋转的叶轮叶片肘制冷剂蒸气做功而提高其压力的。

详解离心式冷水机组

详解离心式冷水机组 制冷原理: 热力学第一定律:自然界一切物质都具有能量,它能够从一种形式转换为另一种形式,从一个物体传递给另一个物体,在转换和传递过程中能量的数量不变。热力学第二定律:热量能自发地从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。要使热量从低温物体向高温物体传递,必须借助外功,即消耗一定的热能或机械能。 制冷:消耗一定的能量(机械能或热能)作为补偿,将热量从低温物体(被冷却介质)传向高温物体(环境介质)的过程。 工质:在热力装置及制冷装置中,不断循环流动以实现能量转换的物质。 潜热:用来使状态发生变化的热量增加或移走,温度不发生变化。 显热:用来使温度发生变化的热量增加或移走状态不发生变化。 饱和温度:在一个给定的压力下的制冷剂的温度,此

时液体和气体共存。对于一种制冷剂,压力和温度存在一个固定的对应关系。当制冷剂蒸发或冷凝时的温度。 过热度:在一个给定压力下,气体的实际温度与在该压力下的饱和温度的温差。 过冷度:在一个给定压力下,液体的实际温度与在该压力下的饱和温度的温差。 排气过热度:在一个给定压力下,实际的排气温度与饱和冷凝温度的温差。排气过热度是吸气过热度与从压缩机的能量增加的显热的和。 单级蒸气压缩式制冷循环工作原理: 基本组成部件:压缩机、冷凝器、节流阀、蒸发器。 基本空调循环:(HFC134a)

提升力:压缩机提升制冷剂气体从蒸发压力到冷凝压力的能力,提升力(或参照相应的压头)能用温度来测定。 单级蒸气压缩式制冷循环工作原理:

传热温差——在一个给定的换热器中,壳体中 液体的温度与管中出口液体温度之间的差值 A.蒸发器传热温差 蒸发器壳体中的制冷剂与管中流体 出口温度的差值 正常 3o-5o 故障 8o-10o 1.制冷剂充注量过少 2.蒸发管有脏物 3.制冷剂中混有油 4.隔板密封垫安装不当或断裂引 起流体旁通 5.隔板断裂或腐蚀引起流体旁通 B.冷凝器传热温差 冷凝器制冷剂与冷凝器出水温度 的差值 正常 3o-5o 故障 8o-10o 1.蒸发管有脏物 2.冷凝器水流量不足 3.隔板密封垫安装不当或断裂引 起冷却水旁通 4.隔板断裂或腐蚀引冷却水起流 体旁通 压缩机型式:

离心式冷水机组的结构及原理

离心式冷水机组的结构及原理 目前,用于中央空调的离心式冷水机组,主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系统组成如图4.13及图4.14所示。

1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一级。图4.15示出了离心式制冷压缩机的典型结构。 图4.15 离心式制冷压缩机的典型结构 (a)单级离心式制冷压缩机;(b)多级离心制冷压缩机的中间级 1一齿轮箱体;2一机壳门;3一轮盖密封座;1一叶轮;2一扩压器; 4一叶轮;5一叶片调节机构;6—进口壳体;3一弯道;4一回流器; 7一轮盖密封;8一轮盘密封;9一右轴承;5一级内密封;6一中间加气孔 10一左轴承;11一推力盘;12—后壳体 由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度

进行计算。 1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果

开利19xl离心式冷水机组的容量调节

开利19XL离心式冷水机组的容量调节 在实际应用中,空调的外界负荷往往是频繁变化的,为此,机组的能量必须进行调节。通常,人们是通过改变气体进入叶轮的方向来改变压缩机的运动特性,以达到压缩机转速不改变的情况下,调节离心机的容量目的。气体进入叶轮的方向改变,就是靠可调导叶来完成的。 导叶为可变角度的叶片组件,导叶的变化能调节进入压缩机的制冷剂的流量,控制制冷剂蒸发,改变压缩机的制冷能力。导叶开启度增大,冷量也增大;开启度减少,冷量也减少。当导叶处于满卸载位置,压缩机的制冷能力大概是其满载的10%。导叶处于满载位置,当然压缩机的制冷能力是100%。当冷水温度开始下隆,控制装置将压缩机导叶慢慢地关闭,这就减少了压缩机吸入制冷剂的量。压缩机卸载的速率,取决于运行点偏离设置点的偏差大小和冷水温度下降的快慢。导叶的变化改变了压缩机的制冷能力。控制装置将不断地驱动导叶执行电机,调整导叶开度,直到压缩机的制冷量使冷水温度等于设定值。监视器监视数字和模拟输入信号,根据需要执行冷量优先控制或安全停机。 如果导叶处于卸载或关闭状态,而冷水温度仍低于设定点2.80C,机组将进入再循环模式。在再循环过程中,控制系统将通过自动停机和起动这样的循环来维持冷水温度。当然,如果装有热气旁通装置。当负荷降低到低于最小的可识状态时,热气旁通将开通。 静止带是指冷水或盐水出水温度和温度设定点间的公差。若出水温度升高或降低到静止带以外,则控制系统会命令导叶打开和关闭,直到水温回复至公差范围以内。控制系统可设定较小的静止带,出水温度会被控制在较精确的温度范围内,导叶开关的动作较为频繁;若控制系统设定为较大的静止带,则出水温度会被控制在较粗的温度范围内,导叶开停的动作较为不频繁。一般负载变化较频繁的情况建议采用后者。 比例带是按照出水温度和设定点间差距的比例修正导叶位置的速率,离开设定点愈远,导叶移动的速率愈快;差距愈小,移动愈慢。 控制加负载的速率,是使主压缩机在起动的最初一段时间内限制导叶打开的速率,以避免急速地增加主压缩机的负载,因此,冷水出水温度平均每分钟降低的度数即可获得控制。控制加负载的速率可由控制系统设定。控制加负载过程所持续的时间(分钟)可根据下面的经验公式计算: 压缩机起动时出水温度——设定出水温度 控制加负载过程所持续的时间= 控制加负载的速率 冷量加载控制可以阻止一些由以下一些因素引起的安全停机:

开利封闭型离心式冷水机组

开利封闭型离心式冷水机组

开利封闭型离心式冷水机组 开机/关机/再循环程序 A—启动开始;预启动检查,开启冷水泵。B—开启冷却水泵(A之后5秒钟)。 C—水流验证时间(B之后30秒至5分钟)。对照控制点检查冷水温度,检查导叶是否闭合,启动油泵,并控制冷却塔风扇。 D—油压差验证时间(C之后15秒至300秒)。E—压缩机开启,压缩机运行时间和维修时间计时开始,15分钟限制开机计时器开始计时(D 之后10秒),压缩机总启动次数加1。12小时内的启动次数加1。 F—激发关机:压缩机电机停机,压缩机运行和

维修时间计时停止,1分钟限制开机计时器开始时。 G—油泵及冷水泵失电(F之后60秒),冷却水泵和冷却塔风扇可能继续运行(如果冷凝器压力高),如果在“再循环”模式,冷水泵继续运行。O/A—允许重新启动(二个开机限制时间定时器均计时到,即E后至少15分钟,F后至少1分钟)。 1、本机开机 本机开机亦称手动开机,就是按下CVC/ICVC起始页的LOCAL本机菜单软 键。当机组日程表表明当前时间和日期已被 设为运行时间和日期,并且15分钟启动到 启动,一分钟停机到启动限制计时过后,可 以进行本机开机。这些限制计时可在起始页 的MAINSTAT页上查看,计时必须结束, 机组方可启动。如果计时未完成,在 MAINSTAT页上的运行状态参数显示“暂 停”。 如果出现“占用?”时,MAINSTAT页上的参数被设为“NO”,机组可按下述方法强制

启动;由CVC/ICVC页,按下MENU及STATUS,滚动屏幕选中CHILLER START/STOP(机组开/停),按下START越过日程表启动机组。 注:机组将持续运行至强制启动解除,而不管设定的日程如何。要中止强制启动,由MAINSTAT页选中机组开/停(CHILLER START/STOP)并按下RELEASE,机组重新回到日程表设定的开机/停机时间。 机组也可优先控制日程进行启动。由起始页,按下MENU及SCHEDULE,向下滚动屏幕选择当前日程选中OVERRIDE,设定所需优先控制时段。 设备服务页上遥控触点功能生效的机组开机时,必须满足另一种工况。对于这些机组,在MAINSTAT页上的“遥控触点参数”必须为闭合。由CVC/ICVC起始页,按下MENU 及STATUS,滚动屏幕至MAINSTAT按下SELECT,向下至STATUS01页选中“遥控触点输入(REMOTECONTSINPUT)”并按下SELECT。然后,按下CLOSE,中止优先控制,选择遥控触点输入,并按下RELEASE。

磁悬浮离心式冷水机组节能原理

磁悬浮离心式冷水机组节能原理 1.采用磁悬浮无油压缩机 磁悬浮离心式冷水机组的核 心部件磁悬浮无油压缩机。磁悬 浮压缩机大致可分为压缩部分、 电机部分、磁悬浮轴承及控制器、 变频控制部分如图1所示。其中 压缩部分由两级离心叶轮和进口 导叶组成,两级叶轮中间预留补气口,可实现中间补气的两级压缩。压缩机采用永磁电机,结合集成在压缩机上的变频器设计,可实现0~48000r/min的宽广转速变化。叶轮直径小,磁悬浮轴承悬浮运转,启动转矩相应减小,结合变频和软启动模块,压缩机启动电流只需2A。磁悬浮轴承及其控制是该型压缩机的核心。 图2 磁悬浮轴承结构示意图 如图2所示,该压缩机设有2组径向和1组轴向磁悬浮轴承,在控制器的控制下,运行过程中可始终保证主轴与轴承座之间有约7μm的间隙由于无机械摩擦,相对于传统机组,减少了电机损耗,变频损耗,轴承损耗,轴承损耗。使输出能量损耗只有%,相比传统机组%,磁悬浮离心机组具有明显的节能优势,如图3所示 图1 磁悬浮压缩机图3 磁悬浮机组与其他机组能量损失对比

2.部分负荷优化节能 机组绝大部分时间是在部分负荷下运行的,当机组在部分负荷情况下,压缩机的部分节能优势来自于2个方面;第一是压缩机流量的减少而降低转速;第二是由于蒸发温度的提高和冷凝温度的降低带来的压力比下降从而降低转速。 当环境温度发生变化时,建筑冷负荷也相应变化。若冷水出水温度设定值不变,冷负荷降低。使得相应的冷水回水温度降低,对应的冷机蒸发温度上升。同时负荷小,冷却水进回水温度也会降低,冷凝温度相应降低。综合蒸发温度和冷凝温度变化,不难发现,部分负荷时冷机的工作压力比减小。传统离心机采用进口导叶调节,也只能在一定范围内适应这种压力比变化。只有采用变频技术的离心机才可以通过调节转速以适应压力比的变化。通过降低转速,降低压缩机功耗。而在实际工作中,普通变频离心机由于回油等技术限制,只能在一定范围内进行变频,因此获得的节能效果有限。只有采用磁悬浮变频冷水机组才能根据实际负荷和压力比调节转速,比传统技术的冷水机在部分负荷下表现出了极高的性能,如图4所示。从而获得最大的节能效果。 图4 磁悬浮机组与其他机组性能曲线对比

冷水机组工作原理

1.冷水机组的分类及优、缺点 冷水机组的分类: 分类方式种类分类方式种类 按压缩机形式分活塞式螺杆式离心式 按燃料种类燃油型(柴油、重油)燃气型(煤油、天然气) 按冷凝器冷却方 式 水冷式风冷式 按能量利用形式 单冷型热泵型热回收型单 冷、冰蓄冷双功能型按冷水出水 温度 空调型(7度、10 度、13度、15度) 低温型(-5度~-30 度) 按密封方式开式半封闭式全封闭式按载冷剂分水盐水乙二醇 按能量补偿不同分电力补偿(压缩式)热能补偿 (吸收式) 按制冷剂分R22 R123 R134a 按热源不同(吸收 式) 热水型蒸汽型直燃型 各种冷水机组的优缺点 名称优点缺点 活塞式冷水机组1.用材简单,可用一般金属材料,加 工容易,造价低 2.系统装置简单,润滑容易,不需要 排气装置 3.采用多机头,高速多缸,性能可得 到改善 1.零部件多,易损件多,维修复杂, 频繁,维护费用高 2.压缩比低,单机制冷量小 3.单机头部分负荷下调节性能差,卸 缸调节,不能无级调节 4.属上下往复运动,振动较大 5.单位制冷量重量指标较大 螺杆式冷水机组 1.结构简单,运动部件少,易损件少,1.价格比活塞式高

仅是活塞式的1/10,故障率低,寿命长 2.圆周运动平稳,低负荷运转时无“喘振”现象,噪音低,振动小 3.压缩比可高达20,EER值高 4.调节方便,可在10%~100%范围内无级调节,部分负荷时效率高,节电显著 5.体积小,重量轻,可做成立式全封闭大容量机组 6.对湿冲程不敏感 7.属正压运行,不存在外气侵入腐蚀问题2.单机容量比离心式小,转速比离心式低 3.润滑油系统较复杂,耗油量大 4.大容量机组噪声比离心式高 5.要求加工精度和装配精度高 离心式冷水机组1.叶轮转速高,输气量大,单机容量 大 2.易损件少,工作可靠,结构紧凑, 运转平稳,振动小,噪声低 3.单位制冷量重量指标小 4.制冷剂中不混有润滑油,蒸发器和 冷凝器的传热性能好 5.EER值高,理论值可达 6.99 6.调节方便,在10%~100%内可无级 调节 1.单级压缩机在低负荷时会出现“喘 振”现象,在满负荷运转平稳 2.对材料强度,加工精度和制造质量 要求严格 3.当运行工况偏离设计工况时效率下 降较快,制冷量随蒸发温度降低而减 少幅度比活塞式快 4.离心负压系统,外气易侵入,有产 生化学变化腐蚀管路的危险 模块化冷水机组1. 系活塞式和螺杆式的改良型,它 是由多个冷水单元组合而成 2. 机组体积小,重量轻,高度低, 占地小 3. 安装简单,无需预留安装孔洞, 1.价格较贵 2.模块片数一般不宜超过8片

开利30HXC螺杆冷水机组操作规程

警告一: 30HXC机组只能使用HFC-134a工质,请不要在本机组中使用任何其它类型的工质,以免造成不必要的损害。 警告二: 30HXC机组只能使用本公司特定的润滑油,千万不要在本机组中使用任何其它类型的润滑油,以免造成不必要的损害。 警告三: 电源不正常或不平衡电压会导致机组报警。如果机组电压的3相不平衡超过2%,或电流的不平衡超过10%,请立即和你当地的电力部门联系,并且保证机组处于停机状态,直到这种情况得到改善。(电源必须符合机组的铭牌上的标定值。电压必须在给定的电气数据范围内。具体的接线见图示) 1.启/停控制 1-1 冷水机组的启动/停止按钮可通过下列方式中的一种进行控制(控制状态)·当前机组(本地控制模式) ·通过用户提供的触点信号进行远程遥控(遥控模式) ·通过CCN进行远程遥控(CCN模式) 1-2 主面板有一个启动/停止按钮,它可以用来在本地运行方式时停止或启动机组或者用来选择遥控或CCN的运行方式。 这些运行方式如下表所描述。 此启动/停止按钮可用来选择以下运行方式: 运行方式 4位数字显示描述 LOFF 本地关。机组在本地模式下关机 L-On 本地开。机组在本地模式下准许启动

L-Sc* 本地开-定时器控制。机组处于本地运行模式。如果该时期是占用状态,机组就允许启动。如果机组的运行定时器程序是空闭的,机组会保持关闭状态直到下一个占用时期。 CCN* 开利舒适网络工作在CCN命令下 rEM* 遥控机组由外部遥控触点进行控制。 MAST* 主机启动:用于主/从机组控制功能激活 注:*号表示仅在设置要求后显示 1-3 在本地模式下启动机组 启动机组前必须先启动冷水泵、冷却水泵和冷却水塔。 在适当的情况下,机组控制系统可对冷水泵、冷却水泵实现自动启/停,而无须再添加任何副电路板。 下列例子中,机组处于停止状态,用户将以本地模式启动机组。 按键操作第一区显示第二区显示 按住启动/停止按钮至少4秒 C LOFF 按住启动/停止选择按钮,有效的运行模式将逐个显示直至放开按钮 C rEM L-On L-Sc CCn 当需要的运行模式显示后(此处为L-On)放开启动/停止按钮,第1区中闪烁的“C”表示控制器正等待确认 C L-On 按下确认键确认运行模式已选择(此处为L-On)第1区中显示“t”表示已选择了运行模式。如确认键按得不够快,控制器将退出更改环境仍使用原来运行模式 t L-On 当机组启动时,控制系统首先激活油泵,以便压缩机启动时能有足够的润滑。如果油泵能建立起足够的油压,压缩机就能顺利启动。一旦压缩机开始运行,油泵将停止运行。如果油泵始终不能建立起足够的油压,控制系统将产生一个报警信息。 1-4 在本地模式下停车 机组可以在任何时候通过按启动/停止按钮,在本地模式下停车。

冷水机组的工作原理

冷水机组的工作原理1.冷水机组的分类及优、缺点冷水机组的分类: 分类方式 种类 分类方式 种类 按压缩机形式分 活塞式螺杆式离心式 按燃料种类 燃油型(柴油、重油)燃气型(煤油、天然气) 按冷凝器冷却方式 水冷式风冷式 按能量利用形式 单冷型热泵型热回收型单冷、冰蓄冷双功能型 按冷水出水温度 空调型(7度、10度、13度、15度)低温型(-5度~-30度)按密封方式 开式半封闭式全封闭式 按载冷剂分 水盐水乙二醇 按能量补偿不同分 电力补偿(压缩式)热能补偿(吸收式)

按制冷剂分 R22 R123 R134a 按热源不同(吸收式) 热水型蒸汽型直燃型 各种冷水机组的优缺点 名称 优点 缺点 活塞式冷水机组 1.用材简单,可用一般金属材料,加工容易,造价低 2.系统装置简单,润滑容易,不需要排气装置 3.采用多机头,高速多缸,性能可得到改善 1.零部件多,易损件多,维修复杂,频繁,维护费用高 2.压缩比低,单机制冷量小 3.单机头部分负荷下调节性能差,卸缸调节,不能无级调节 4.属上下往复运动,振动较大 5.单位制冷量重量指标较大 螺杆式冷水机组 1.结构简单,运动部件少,易损件少,仅是活塞式的1/10,故障率低,寿命长 2.圆周运动平稳,低负荷运转时无“喘振”现象,噪音低,振动小 3.压缩比可高达20,EER值高 4.调节方便,可在10%~100%范围内无级调节,部分负荷时效率高,节电显著

5.体积小,重量轻,可做成立式全封闭大容量机组 6.对湿冲程不敏感 7.属正压运行,不存在外气侵入腐蚀问题 1.价格比活塞式高 2.单机容量比离心式小,转速比离心式低 3.润滑油系统较复杂,耗油量大 4.大容量机组噪声比离心式高 5.要求加工精度和装配精度高 离心式冷水机组 1.叶轮转速高,输气量大,单机容量大 2.易损件少,工作可靠,结构紧凑,运转平稳,振动小,噪声低 3.单位制冷量重量指标小 4.制冷剂中不混有润滑油,蒸发器和冷凝器的传热性能好 5.EER值高,理论值可达 6.99 6.调节方便,在10%~100%内可无级调节 1.单级压缩机在低负荷时会出现“喘振”现象,在满负荷运转平稳 2.对材料强度,加工精度和制造质量要求严格 3.当运行工况偏离设计工况时效率下降较快,制冷量随蒸发温度降低而减少幅度比活塞式快 4.离心负压系统,外气易侵入,有产生化学变化腐蚀管路的危险 模块化冷水机组 1. 系活塞式和螺杆式的改良型,它是由多个冷水单元组合而成 2. 机组体积小,重量轻,高度低,占地小

开利19XL离心式冷水机组常见故障

开利19XL离心式冷水机组常见故障处理 19X系列机组控制系统较为先进,具备全方位的多重保护功能于一身,能保证机组在安全的前提下可靠运行。但当机组运行工况发生明显变化或当部分检测、控制元器件发生故障时便会产生一些控制系统方面的故障,常见故障的处理方法如下: (一)压缩机高扬程、涌浪保护 离心式制冷压缩机其压缩比较低,当运行工况发生严重变化时易发生压缩机喘振现象。开利19X系列机组控制中心通过对运行数据的监测,可以有效防止喘振现象的发生,该系列机组除了对冷凝压力进行监测外还会测量冷冻水的进出水温差(当冷冻水流量一定时其温差代表着机组的负荷量,即制冷量),及冷凝压力与蒸发压力差(机组的扬程),机组运行在不同的负荷时应有相应的扬程(冷凝压力与蒸发压力差),实际扬程过高则会发生喘振。 当控制中心显示压缩机高扬程或涌浪保护时应检查以下内容:1.机组冷冻水流量过小或缺少制冷剂,使蒸发压力过低。 2.机组冷却水流量过小、制冷剂过多、冷却水进水温度过高或机组内有不凝性气体存在使冷凝压力过高。 3.冷冻水流量过大使冷冻水进出口温差过小,控制中心允许的扬程过小而使保护程序误动作。 4.控制中心的SERVICE1菜单中△T1、△T2、△P1、△P2设定数据不合理使机组保护程序误动作。

当机组出现喘振现象(电流剧裂波动并伴有强裂气流声)时表明控制中心的保护功能未启作用,应检查以下方面: 1.控制中心SERVICE1菜单中△T1、△T2、△P1、△P2设定数据是否合理,该数据在机组出厂调试时均已设定,但在运行、维护及更换PSIO板的过程中大多做过调整。 2.冷冻水流量过小,使冷冻水温差过大控制中心允许的扬程过高。(二)水温传感器故障 19X系列机组的温度传感器为负温度系数的热敏电阻,由于其设计的缺陷使得其接线端易因腐蚀而接触不良(接插处直接受冷冻水温过低而出现冷凝水凝结,其插针选材不合理较易锈断),一般均出现接触电阻过大、温度显示值偏低,用除锈剂清洗接头并紧固改善接触状况后可恢复正常,若插针断裂则必须更换。开利公司新出厂的19XR机组其水温传感器结构已改进,中间无接插头、直接引线至CCM模块。(三)导叶驱动器故障 导叶也称扇门,是控制离心式机组运行负荷高低的调节机构。当导叶实际工作位置与控制中心显示位置存在较大偏差、电流出现周期性波动、或导叶无法打开时应检查以下方面: 1.传动链条是否太松,齿轮锁紧螺钉是否牢固。 2.驱动电机主绕组工作电压(AC24V),电压异常应检查供电电压或电机。 3.驱动电机副绕组空载电压(AC16V)及运行电压(小于AC1V或大于AC15V),空载电压异常表明电机损坏,运行电压异常表明驱

离心式冷水机组的结构及原理图文稿

离心式冷水机组的结构 及原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

离心式冷水机组系统介绍目前用于中央空调的离心式冷水机组主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成

构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一级。由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。 ②冷水机组在实际使用中,由于气候和热负荷的变化,需要的制冷量变化很大,并且要求在冷负荷变化时,机组的效率也尽可能高。作为制造厂来说,对于不同规格的系列产品,希望零部件的通用化程度越高越好。对于离心制冷压缩机,其叶轮的出口角小,则压缩机的性能曲线比较平坦,绝热效率较高,还能减少因采用同一蜗室而造成的匹配失当和效率降低,有利于变工况运行。

冷水机组的工作原理

冷水机组的工作原理 1.冷水机组的分类及优、缺点冷水机组的分类: 分类方式 分类方式 按压缩机形式分活塞式螺杆式离心式按燃料种类 燃油型(柴油、重油)燃气型(煤油、天然气)按冷凝器冷却方式水冷式风冷式按能量利用形式单冷型热泵型热回收型单冷、冰蓄冷双功能型按冷水出水温度空调型(7度、10度、13度、15度)低温型(-5度?-30度)按密封方式开式半封闭式全封闭式按载冷剂分水盐水乙二醇按能量补偿不同分 电力补偿(压缩式)热能补偿(吸收式)

按制冷剂分 R22 R123 R134a 按热源不同(吸收式)热水型蒸汽型直燃型各种冷水机组的优缺点 活塞式冷水机组 1.用材简单,可用一般金属材料,加工容易,造价低 2.系统装置简单,润滑容易,不需要排气装置 3.采用多机头,高速多缸,性能可得到改善 1.零部件多,易损件多,维修复杂,频繁,维护费用高 2.压缩比低,单机制冷量小 3.单机头部分负荷下调节性能差,卸缸调节,不能无级调节 4.属上下往复运动,振动较大 5.单位制冷量重量指标较大 螺杆式冷水机组 1.结构简单,运动部件少,易损件少,仅是活塞式的1/10,故障率低,寿命长 2.圆周运动平稳,低负荷运转时无“喘振”现象,噪音低,振动小 3.压缩比可高达20,EER值高 4.调节方便,可在10%~100范围内无级调节,部分负荷时效率高,节电显著

5.体积小,重量轻,可做成立式全圭寸闭大容量机组 6.对湿冲程不敏感 7.属正压运行,不存在外气侵入腐蚀问题 1.价格比活塞式高 2.单机容量比离心式小,转速比离心式低 3.润滑油系统较复杂,耗油量大 4.大容量机组噪声比离心式高 5.要求加工精度和装配精度高离心式冷水机组 1.叶轮转速高,输气量大,单机容量大 2.易损件少,工作可靠,结构紧凑,运转平稳,振动小,噪声低 3.单位制冷量重量指标小 4.制冷剂中不混有润滑油,蒸发器和冷凝器的传热性能好 5.EER值高,理论值可达 6.99 6.调节方便,在10%~100%3可无级调节 1.单级压缩机在低负荷时会出现“喘振”现象,在满负荷运转平稳 2.对材料强度,加工精度和制造质量要求严格 3.当运行工况偏离设计工况时效率下降较快,制冷量随蒸发温度降低而减少幅度比活塞式快 4.离心负压系统,外气易侵入,有产生化学变化腐蚀管路的危险模块化冷水机组 1.系活塞式和螺杆式的改良型,它是由多个冷水单元组合而成 2.机组体积小,重量轻,高度低,占地小 3.安装简单,无需预留安装孔洞,现场组合方便,特别适用于改造工程 1.价格较贵 2.模块片数一般不宜超过8片水源热泵机组

制冷系统制冷剂充注量的控制和分析

文从实践出发,总结了制冷系统维修过程中制冷剂充注量的控制方法及与充注量有关的故障分析思路,为一线维修人员提供了实用可行的维修经验和故障分析技巧。 关键词:制冷剂充注量控制分析 一、前言 制冷设备在出厂时都做了性能测试,给出了制冷剂充注量的参考值。家用电冰箱、空调器在工厂用定量加氟仪加入制冷剂,部分商用制冷机组在出厂时也定量加氟了。大型氨制冷系统用高压储液罐储液,上面有液位指示器,根据指示液位高度控制加氨就行了。这些设备在制冷剂充注量的控制方面不需要维修人员动很多脑筋。但是,许多大型中央空调机组和工业冷水机组要现场充注制冷剂,家用冰箱空调器在维修过程中也要现场充注制冷剂。有些设备铭牌上有充注量参考值,有些设备因为使用蒸发器的种类不同,制冷剂充注量不同,就没有给出充注量参考值。无论有否充注量参考值,在维修安装现场,由于条件限制,技术人员往往不用定量加氟仪,也不习惯按定量称重充注制冷剂,因为多数情况下,是系统制冷剂部分泄漏了要补充,泄漏量多少是无法精确计算的。所以大多是凭经验充入制冷剂。 在维修实践中经常出现制冷剂充注量不当而使设备运转不正常。那么怎样控制制冷剂加注量,加入量不当又会引起哪些故障呢?本文将从这两个方面对不同制冷系统进行分析探讨。 二、制冷剂充注量的控制 1、水冷冷水机组制冷剂充注量的控制 在中央空调和工业生产工艺降温中,水冷冷水机组使用比较普遍。这种机组由压缩机、卧式壳管式冷凝器、热力膨胀阀、卧式壳管式蒸发器及必要辅件组成一体。结构紧凑,操作控制方便,安装调试简单,在市场上受到欢迎。 对于没有设置高压储液器和低压汽液分离器的制冷系统,制冷剂充注量的控制尤为重要。因为这种制冷系统是冷凝器兼作高压储液器,制冷剂加多了会储存在冷凝器中,淹没冷凝器散热簇管,使散热面积减小,冷凝压力升高,导致制冷量下降。 对于这类制冷机组制冷剂充注量的控制,在充注过程中,一摸冷凝器外壳温度,冷凝器出液口上口以上发热,出液口上口以下发凉就可以了(发热说明有压缩机高温排气在里面冷凝,发凉说明里面是液体空间);二看吸气压力,要与蒸发器内冷媒水温度相对应(也就是与蒸发温度相对应);三看压缩机回气管温度,高温机组回气管应发凉结露,但结露到压缩机回气阀就可以了;低温机组回气管应结霜,但霜结到压缩机回气阀就可以了。如果结露或者结霜到压缩机外壳,液态制冷剂就会进曲轴箱,会引起压缩机跑油和液击。对于封闭式压缩机来说还会使电机接线端子短路。虽然大部分封闭式机组接线端子用密封胶密封了,但由于密封效果的不确定性,短路的可能性还是存在的。 2、风冷冷水机组制冷剂充注量的控制 风冷冷水机组因不需要循环水系统,在户式中央空调和小型商用制冷系统中使用普遍,由于使用风冷冷凝器,其制冷剂充注量控制与水冷冷凝器有区别,就是在充注过程中要摸散热器翅片温度,在夏天,工作过程中散热翅片全部面积应发热,如果上部发热,下部发凉,说明制冷剂充多了,发凉部分储存了液体制冷剂。冬天由于环境温度低,即使充注量正常,散热器下部也可能发凉,那么用这种方法就无法判断了。其他特征与水冷式机组相同。

制冷器具中制冷剂充注量的计算

制冷器具中制冷剂充注量的计算 作者:时阳发布人:mxlly 发布时间:2006-12-18 10:15:15 浏览次数:217 【关键词】制冷器,制冷剂 【摘要】讨论了制冷器具中制冷剂充注量与制冷量的关系以及系统中各部分制冷剂的状态和数量.提出以计算的方法来确定制冷剂充注量以及单相区、两相区工质数量,并给出了计算公式.采用这一方法可减少充注量优化实验时间,已成功运用于新产品开发. 浏览字体设置:10pt 绝大部分制冷器具中的制冷系统采用毛细管进行节流,此类制冷系统具有结构简单、运转可靠 等优点.但因毛细管属不可调节的节流元件,因此,此类制冷系统中制冷剂充注量对系统性能特别 是制冷量有很大影响. 制冷剂充注量的确定一般以实验方法为主.有些文献介绍了利用经验公式来计算[1],但经验公 式通用性不强,准确程度差.随着制冷系统中各设备数学模型的完善和计算机的广泛应用,制冷器具 中绝大部分设备的设计和优化可在计算机上进行.在新产品开发过程中,制冷剂充注量的确定成了 实验工作量最大的环节,约占全部实验工作量的40%.因此,如能以计算的方法确定充注量,以实验 加以验证,在生产中将有相当大的应用价值. 1 对于以毛细管节流的制冷系统,制冷量与能效比呈正相关关系,因此仅需讨论充注量与制冷量 的关系.这类系统的制冷循环在lg p—h图上的表示如图1.如系统中的制冷剂充注量过少,则不能在 毛细管进口处保持液封,冷凝压力上升后,循环成为1—2—3—5′—6′—7—1.此时毛细管流阻急 剧上升,流量下降,制冷剂又开始在冷凝器聚集,使循环恢复至1—2—3—4—5—6—7—1.但恢复后 流阻下降,液封又被破坏.如此反复振荡,系统不能稳定工作,平均制冷量很小.

制冷剂充注量的简化计算方法

制冷剂充注量的简化计算方法——工况参数法 1.计算原理 将制冷系统看作一个压力容器,而制冷剂在制冷系统中仅以四种状态出现,即冷凝压力下饱和气体、饱和液体,蒸发压力下饱和气体、饱和液体。而计算时只需要给出制冷系统所需计算部分的内容积,再给出该部分的饱和气体及饱和液体的相对比例及比容,就可以计算出制冷系统在某一工况下运行时需要的制冷剂充注量。 2.计算方法 制冷系统运行压- 焓简图如下: 在计算过程中,我们将做如下简化:将压缩机排气到冷凝器进口之间管路中的制冷剂看作冷凝压力下饱和蒸气;将冷凝器进口到冷凝器出口之间换热管中的制冷剂看作是在冷凝压力下饱和气体及饱和液体按一定比例的混合物(例如饱和液体比例占15%,饱和气体比例占85%,可根据具体情况调整);将冷凝器出口至节流装置进口之间管路中的制冷剂看 作冷凝压力下饱和液体;(假设节流装置到蒸发器进口距离很短,可忽略这一段管路内容积)将蒸发器进口至蒸发器出口之间的换热管中的制冷剂看作是在蒸发压力下的饱和气体及饱和液体按一定比例的混合物(例如蒸发器进口干度为X,出口干度一般可设为1则蒸发器 内平均干度为(x+1)/2 ,即蒸发压力下的饱和气体比例为(x+1)/2 ,蒸发压力下的饱和液体比例为(X+1)/2 );蒸发器出口至压缩机吸气口之间管路(包括气液分离器)中的制冷剂看作是在蒸发压力下的饱和气体。通过以上假设,再计算出制冷系统各部分管路的内容积, 查压- 焓图获得3、4、7、9 四点的比容,就可以计算出该制冷系统在冷凝压力tk 、蒸发压 力t0 运行时所需的制冷剂充注量了。

3.该简化计算方法的优缺点 该简化计算方法的主要优点就是简单明了,手工均可很快计算出结果,而且计算的依据是制冷系统的运行参数,与制冷剂种类无关,所以其计算原理对各种制冷剂均是通用的。其缺点主要是计算精度较差,因为制冷系统运行时制冷剂时时刻刻存在着状态的变化,将其简单地看作只有四种状态显然不能精确地计算出制冷剂充注量,而且如果精确计算各部分管路内容积将会十分繁琐,所以一般情况下均是采取简化的方法,略去一些管路的内容积或是采取一些修正系数;其次,这种简化计算方法无法确定二次节流的中间过程的制冷剂状态,例如制冷时节流状置放在室外机,那么从节流装置到室内机蒸发器这一段管路中(包括连接管)的制冷剂状态如何确定现在还没有好的方法;由于还没有对贮液罐有比较深刻的认识(根据部门检查表:高压贮液罐的出口被制冷剂液体封住制冷系统即可正常工作,但已经有几位同事向我提出,实际上加装贮液罐后制冷系统的充注量明显增加,已经远高于高压贮液罐的出口时制冷系统才能正常工作),所以如何计算带有贮液罐的系统请大家在实践中摸索。 4.计算程序(已修订,计算更加简单): 蒸发器及冷凝器结构参数只计算了翅片管部分的内容积,由于小弯头部分及另一端马鞍座部分的长度并不统一,所以在这里暂不将其计入,而是通过输入一个修正容积的方法加以调 整,或是在最终的计算结果乘以一个修正系数的方法加以调整。计算程序还忽略了吸气管、排 气管、分气管、集汽管等小段管路的内容积,所以最终的计算结果可能会偏小,相对来说,由 于被忽略的内空积相对能力较小的机型占较大比例,所以小能力机型可能误差会偏大,而大能力机型可能会相对较为准确。另,在程序中将冷凝器中液体所占的比例设为30%,如果需要请在计算中自行调整。本程序不适用于带贮液罐系统,也不适用于制冷节流装置放在室外机的情况,这两种情况需要我们在实践中不断摸索总结。

开利活塞式冷水机组的操作

开利活塞式冷水机组的操作 一、操作: 1、开车前检查: (1)冷冻水、冷却水的进出口压力表、温度计是否安装。 (2)冷冻水的流量开关是否安装好(在出水口为妥),开关的电线是否装好。 (3) 380V和220V的电源,控制线是否接到机组上。 (4)冷冻水、冷却水水泵的起动开关是否与机组控制联动上。 (5)检查压缩机避震弹簧的压紧螺栓是否已全部松开(弹簧要呈自由状态)。 (6)冷冻、冷却水泵须试运转、排除管道内空气,水压须稳定,管道内水质须干净。 (7)冷冻水流量开关,水泵联锁是否能起制动,须经模似试验(切断380V电源,起动机组进行试验)。(8)检查每台压缩机的油加热: (a)第一次开车(间隔较长时间的断电后),必须严格预先加热24小时规定。 (b)每天开车前的油温在40-50℃,手摸加热器须发烫。 (9)检查每台压缩机的油面:1 8 – 3 8。 (10)检查电源的安全保护:保护接地或保护接另。 2、开车顺序: (1)开车冷却、冷冻水泵: (a)要有进出压力差(0.5Kg/cm2左右),水压要稳定。 (b)观察进出口的温差,冷却水进口40℃。 (c)视冷却水进口温度开启冷却塔风机。 (2)打开压缩机的吸气、排气阀门: (a)先松开夹兰稍许,全开到底,然后倒关1 2圈左右,使三通阀全开(接通压力表)。 (b)旋紧夹兰,上紧阀盖,以防阀门泄漏。 (3)打开供液阀:(运转中供液由电磁阀与热力膨胀阀自动控制)。 (4)接通380V主电源。 (5)确定起动程序:A或B,1或2迥路。 (6)按:“ON-OFF”或“1-0”开关:1---起动;0—停止。 起动延时: (a)30HK-036、065、115;第一台起动时间:5分58秒,每台间隔:1M (b)30HR-161、195、225;第一台起动时间:1.5-3分钟,每台间隔:0.5M (c)30HK-036部分绕组起动,两线圈间隔:1-2秒 (7)起动后观察: (a)油面稳定情况(是否由于加热不够,油被带走) (b)吸、排气压力是否有异常。 (c)观察冷媒视镜:是否有泡。湿度显示颜色:红-湿;蓝-干。 (8)关于故障停车后的重新起动。 3、停车: (1)正常停车: A:每天常规停车: (a)按:“OFF”或“O”按钮。 (b)约10分钟后再停水泵。

相关文档
最新文档