电源拓扑电路详解

电源拓扑电路详解
电源拓扑电路详解

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。即不考虑图形的大小形状,仅考虑点和线的个数。

实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。

电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。同一个拓扑结构可以画成几何形状不同的电路图

拓扑电路非常适用于DC-DC变换器。每种拓扑都有其自身的特点和适用场合。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。

DC/DC电源变换器的拓扑类型主要有以下13种:

(1)Buck Converter降压式变换器;

(2)Boost Conyerter升压式变换器;

(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;

(4)Cuk Converter升压,升压串联式变换器;

(5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器;

(6)F1yback Converter反激式(亦称回扫式)变换器;

(7)Eorward Converter正激式变换器:

(8)Double Switches Forward Converter双开关正激式变换器;

(9)Active Clamp Forward Converter有源箝位

(0)Half Bridge Converter半桥式变换器;

(11)Full Bridge Converter全桥式变换器;

(12)Push—pall Convener推挽式变换器:

(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

一、常见电源拓扑介绍。

1、Buck Converter降压式变换器。如图1

图1 BUCK 降压拓扑

特点:a、把输入降至一较低电压。

b、输出总是小于或等于输入。

c、输入电流不连续(斩波)。

d、输出电流平滑。

e、电感/电容滤波器滤平开关后的方波。

2、Boost Conyerter升压式变换器。如图2

图2 BOOST升压拓扑

特点:a、把输入电压升至一较高电压。

b、与降压所用器件一样,只是重新安排了电感、二极管、开关的位置。

c、输出总是大于或等于输入(忽略二极管的正向压降)。

d、输入电流平滑。

e、输出电流不连续(斩波)。

3、Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;如图3

图3 反相性开关变换拓扑

特点:a、电感、开关、二极管的另一种安排方案。

b、输入电流不连续(斩波),输出电流也不连续(斩波)。

c、输出总是和输入反相,但是幅度可以小于和大于输入。

4、F1yback Converter反激式(亦称回扫式)变换器。如图4

图4 反激式拓扑

特点:a、“反激”变换器实际上是降压-升压电路隔离(变压器耦合)形式。

b、如降压-升压一样工作,但电感有两个绕组,而且同时作为变压器和电感。

c、输出可以为正,也可以为负,由线圈和二极管的极性决定。

d、输出电压可以大于或小于输入电压,由变压器的匝数决定。

e、这是隔离拓扑结构中最简单的电路。

f、增加次级绕组和电路可以得到多个输出。

5、Eorward Converter正激式变换器。如图5

图5 正激式拓扑

特点:a、降压电路的变压器耦合形式。

b、不连续的输入电流,平滑的输出电流。

c、由于采用变压器,输出可大于或小于输入,可以是任何极性。

d、增加绕组和电路可以有多路输出。

e、每个开关周期中必须对磁芯去磁,通常的做法是增加一个和初级绕组匝数相同的绕组,在开关接通阶段存储在初级绕组中的能量,在开关断开阶段通过另一个绕组和二极管泄放。

6、Double Switches Forward Converter双开关正激式变换器。如图6

图6 双正激式拓扑变换

特点:a、两个开关同时工作。

b、开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

c、每个开关上的电压永远不会超过输入电压。

d、无需对绕组磁通复位。

7、Push—pall Convener推挽式变换器。如图7

图7 推挽式拓扑

特点:a、开关(FET)的驱动不同相,进行PWM调制以调节输出电压。

b、良好的变压器磁芯利用率,在两个半周期中都传输功率。

c、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

d、施加到FET的电压是输入电压的两倍。

8、Half Bridge Converter半桥式变换器。如图8

图8 半桥式拓扑变换

特点:a、较高功率变换器极为常用的拓扑结构。

b、开关(FET)的驱动不同相,进行PWM调制以调节输出电压。

c、良好的变压器磁芯利用率,在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。

d、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

e、施加在FET的电压与输入电压相等。

9 Full Bridge Converter全桥式变换器.如图9

图9 全桥式拓扑

特点:a、较高功率变换器最为常用的拓扑结构。

b、开关(FET)以对角对的形式驱动,进行脉冲宽度调制以调整输出电压。

c、良好的变压器磁芯利用率,在两个半周期中都传输功率。

d、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

e、施加在FET上的电压与输入电压相等。

f、在给定的条件下,初级电流是半桥的一半。

10、SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器。如图10

如图10 单端初级电感式变换拓扑

特点:a、输出电压可以大于或小于输入电压。

b、与升压电路一样,输入电流平滑,但输出电流不连续。

c、能量通过电容从输入传至输出。

d、需要两个电感。

11、Cuk Converter升压,升压串联式变换器.如图11

图11 CUK拓扑

特点:a、输出与输入反相。

b、输出电压幅度可以大于或小于输入电压。

c、输入、输出电流都是平滑的。

d、能量通过电容从输入传至输出。

e、需要两个电感,电感可以耦合获得零纹波电感电流。

二、DC-DC开关电源拓扑的分类。根据主其回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:

非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构。串联——在主回路中开关器件与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源。

1.2. 并联式结构。并联——在主回路中,相对于输入端而言,开关器件与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。例如boots 拓扑型的开关电源就是属于并联型式的开关电源。

1.3.极性反转型变换器结构(inverting)。极性反转——输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。(也是串联式开关电源的一种,一般又称为反转式串联开关电源)。

开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

2. 隔离式电路的类型:隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。

2.1. 单端正激式single Forward Converter(又叫单端正激式变压器开关电源)。单端——通过一只开关器件单向驱动脉冲变压器。

正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。目前属于这种模式的开关电源有:串联式开关电源,buck 拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释放才向负载释放能量。属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。

正激变压器——脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。

所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器

的次级线圈正好有功率输出。(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。)

2.2. 单端反激式Single F1yback Converter(单端反激式变压器开关电源)

所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。脉冲变压器磁能被积累的问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护。从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,

2.3. 推挽Push pull (变压器中心抽头)式。种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

2.4. 全桥式Full Bridge Converter。这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。

2.5. 半桥式Half Bridge Converter。电路的结构类似于全桥式,只是把其中的两只开关管换成了两只等值大电容。

主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。这种电路常常被用于各种非稳压输出的DC变换器,如电子荧光灯驱动电路中。

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

开关电源拓扑结构对比(全)

开关电源拓扑结构概述(降压,升压,反激、正激) 开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源 https://www.360docs.net/doc/3415159931.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电

三相不间断电源的电路拓扑与控制策略(精)

三相不间断电源的电路拓扑与控制策略 1 UPS的电路拓扑 UPS的可靠运行离不开各模块的协调工作,下面就UPS主要功能模块电路拓扑进行简要分析。 1.1 整流和功率因数校正电路 整流电路在应用中构成直流电源装置,是公共电网与电力电子装置的接口电路,其性能将影响公共电网的运行和用电质量。高性能的UPS要求有较高的输入功率因数,并尽量减少输入电流的谐波分量 。传统单相UPS多采用模拟方法,三相UPS多采用相控式整流电路和电压型单管整流电路。 1.1.1 传统三相相控式整流电路和电压型单管整流电路 相控式整流电路采用半控式功率器件作为开关,存在着以下问题: 1)网侧谐波电流的存在将降低设备网侧功率因数,增加无功功率; 2)相控整流换流方式,导致换流期中电网电压畸变,不仅使自身电路性能受到影响,而且对电网产生干扰,对同一接地点的网间其他设备带来不良影响; 3)相控整流环节是一个时滞环节,无法实现输出电压的快速调节。 电压型单管整流电路是三相不控整流桥加Boost电路的简称,它的缺点是:电流峰值大,不仅妨碍系统功率的提高,也增加了导通损耗和开关损耗;为了保持网侧功率因数的提高,Boost电路必须有一定的升压比,这对三相电路会导致直流输出电压过高。 1.1.2 电流型三相桥式整流电路 电流型三相桥式整流电路如图1所示,其优点是反馈控制简单,不需要在控制电路中加入电流反馈,只须调节各开关管的占空比就可以实现输入电流正弦化;直流侧的电压较低。缺点是输入电流正弦度不是很好,在输入侧必须加入并联电容,实现移相。这种电路现在开始成为研究的热点之一。这种电路适用于大功率整流电路且对功率因数要求不高的场合。

开关电源常用拓扑结构图文解释

开关电源常用拓扑结构 开关变换器的拓扑结构是指能用于转换、控制和调节输入电压的功率开关器件和储能器件的不同配置。开关变换器的拓扑结构可以分为两种基本类型:非隔离型和隔离型。变换器拓扑结构是根据系统造价、性能指标和输入/输出负载特性等因素选定。 1、非隔离型开关变换器 一,Buck变换器,也称降压变换器,其输入和输出电压极性相同,输出电压总小于输入电压,数量关系为:其中Uo为输出电压,Ui为输入电压,ton为开关管一周期内的 导通时间,T为开关管的导通周期。降压变换器的电路模式如图2所示。工作原理是:在开关管VT导通时,输入电源通过L平波和C滤波后向负载端提供电流;当VT关断后,L通过二极管续流,保持负载电流连 续。 二,Boost变换器,也称升压变换器,其输入和输出电压极性相同,输出电压总大于输入电压,数量 关系为:。升压变换器的电路模式如图3所示。工作原理是:在VT导通时,电流通过L平波,输入电源对L充电。当VT关断时,电感L及电源向负载放电,输出电压将是输入电压加上输入电源电压,因而有升压作用。

三,Buck-Boost变换器,也称升降压变换器,其输入输出电压极性相反,既可升压又可降压,数量 关系为:。升降压变换器的电路模式如图4所示。工作原理是:在开关管VT导通时,电流流过电感L,L储存能量。在VT关断时,电感向负载放电,同时向电容充电。 四,Cuk变换器,也称串联变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为: 。Cuk变换器的电路模式如图5所示。工作原理是:在开关管VT导通时, 二极管VD反偏截止,这时电感L1储能;C1的放电电流使L2储能,并向负载供电。在VT关断时,VD 正偏导通,这时输入电源和L1向C1充电;同时L2的释能电流将维持负载电流。 2、隔离型开关电源变换器 一,推挽型变换器,其变换电路模型如图6所示。工作过程为:VT1和VT2轮流导通,这样将在二次侧产生交变的脉动电流,经过VD1和VD2全波整流转换为直流信号,再经L、C滤波,送给负载。

最新开关电源拓扑结构

开关电源拓扑结构

开关电源拓扑结构回顾 Lloyd H·Dixon Jr 前言 本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。工作方式的选择对整体电路特性有很大的影响。所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。

一、三种基本拓扑结构: 三种基本的拓扑结构降压式,升压式,反激式如图1所示。串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC的变换),不作论述。这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。 有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。 三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。例如:降压调整器的功能是使输出电压V0小于输入电压V in,并和它V in有相同的极性。升压电路的作用是使V0大于V in,并且有相同的极性。反激拓扑电路的作用是使V0既可大于也可小于V in,但是两者极性相反。

拓扑电路

引言 开关电源被誉为高效节能电源。它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源的基本结构通常由DC/DC功率转换主电路和控制电路两大部分所组成。其中DC/DC主电路进行功率转换,它是开关电源的核心部分,对电源设备的电性能、效率、温升、可靠性、体积和重量等指标有决定性的作用。 主电路中开关转换器的拓扑结构,是指能用于转换、控制和调节输入电压的功率开关元件和储能元件的不同配置。开关转换器拓扑结构可分为两种基本类型:非隔离式和隔离式。这两种类型中又各自包含有不同的电路拓扑种类。 2 非隔离开关转换器 对于小功率DC/DC转换器(例如100W以下),实际上用开关晶体管、开关二极管、电感、电容各一个,就可以组成一台非隔离式DC/DC转换器,是各种DC/DC转换器中最简单的拓扑。其主电路的核心是三端PWM开关,它表示DC/DC转换器PWM开关组合。开关晶体管、开关二极管和电感元件的不同组合,可以构成降压(Buck)、升压(Boost)、降压-升压型(Buck-Boost)和升压-降压型(Boost -Buck)型4种DC/DC转换器的拓扑结构。 2.1降压型拓扑结构 降压型DC/DC转换器将输入电压变换成0≤U0≤Ui 的稳定输出电压,所以又称降压开关电源。图1为降压型DC/DC转换器的典型电路。Ui 为输入电源,通常为电池或电池组。S是主开关管,二极管D是辅助开关管,也称为整流管,一般使用具有较低正向导通电压的肖特基二极管。S是由来自控制电路的脉冲信号控制开关。RL表示负载电阻。 图1 降压型DC/DC转换器电路

在一个开关周期中,首先,在控制电路作用下S导通,二极管因受反向偏压而截止,电流由电池流经S、电感L到电容C和负载。电感电流持续上升,电感储能在增加,能量由电池传送到电感并存储在电感中;第二阶段,控制电路使S截止,切断电池和电感元件的连接,于是电感产生感生电动势使电流维持原来的流向,二极管D导通,为电感电流构成通路,电流由电感L流向电容C和负载,电感电流随着时间而下降,能量由电感流向负载。 经电感L、电容C滤波,在负载RL上可得到脉动很小的直流电压Uo。为推导降压型DC/DC转换器的输出电压与输入电压间的关系,在主开关管S导通、二极管D截止时,忽略S管的正向导通压降;整流管导通、主开关管关断时,忽略二极管的压降;忽略电感、电容的寄生电阻。因为只有在开关管导通期间,储能电感L的电流增加量和开关管截止期间储能电感L中的电流减少量相等时,电路才达到平衡状态,即在稳态时,电感充放电伏秒积相等,因此: D为占空比。改变D,输出电压Uo的平均值也就随之改变。因此,当负载及电网电压变化时,可以通过闭合的反馈控制回路自动地调整占空比D来使输出电压Uo维持不变。 2.3降压-升压型拓扑结构 这个电路的开关管和负载构成并联。在S导通时,电流通过L平波,电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui加上UL,因而有升压作用。 图3是降压-升压型开关电源的典型电路。Ui 为输入电源,S是主开关管,D是整流管。S在控制信号作用下在导通、截止状态间转换。该电路的工作可简单分析如下:第一阶段,S导通,D截止,忽略开关管的正向导通压降,此时,电感电流线性上升,能量从输入电源转换成磁场能存储在电感L中,此时负载得到的能量来自电容C;第二阶段,D导通,S截止,电感电流开始线性下降,能量由电感元件流向电容和负载。经电容C滤波,在负载RL 上可得到脉动很小的直流电压Uo ,计算其平均值,推出降压-升压型DC/DC转换器的输出电压与输入电压间的关系式: 式(3)中,若改变占空比D,则输出电压既可低于电源电压,也可能高于电源电压

(整理)开关电源拓扑结构详解

开关电源拓扑结构详解 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开 入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck 拓扑型开关电源就是属于串联式的开关电源。 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton

把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。 串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

电源拓扑电路详解

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。即不考虑图形的大小形状,仅考虑点和线的个数。 实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。 电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。同一个拓扑结构可以画成几何形状不同的电路图 拓扑电路非常适用于DC-DC变换器。每种拓扑都有其自身的特点和适用场合。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。 DC/DC电源变换器的拓扑类型主要有以下13种: (1)Buck Converter降压式变换器; (2)Boost Conyerter升压式变换器; (3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器; (4)Cuk Converter升压,升压串联式变换器; (5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器; (6)F1yback Converter反激式(亦称回扫式)变换器; (7)Eorward Converter正激式变换器: (8)Double Switches Forward Converter双开关正激式变换器; (9)Active Clamp Forward Converter有源箝位 (0)Half Bridge Converter半桥式变换器; (11)Full Bridge Converter全桥式变换器; (12)Push—pall Convener推挽式变换器: (13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 一、常见电源拓扑介绍。 1、Buck Converter降压式变换器。如图1 图1 BUCK 降压拓扑 特点:a、把输入降至一较低电压。 b、输出总是小于或等于输入。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

开关电源拓扑的选择

第二章 拓扑实际选择 2.1 引言 在设计你的变换器前,你必须首先选择电路拓扑。因为其它所有电路元件设计,像元件选择,磁芯设计,闭环补偿等等都取决于拓扑。所以在设计开始之前,你得首先仔细研究所要开发的电源的要求和技术规范:输入、输出电压,输出功率、输出纹波、电磁兼容要求等等,以保证选择适当的拓扑。 在电力电子技术教科书和开关电源书籍中只是概要地介绍几个基本的拓扑,分别说明这些拓扑工作的基本概念,输出与输入关系,和对元器件基本要求等等,而很少或没有指出该拓扑的长处和短处以及相应的应用场合。而在有关文献中讨论的拓扑就非常多,单就谐振变换器拓扑就有数百种。在如此众多的拓扑中,实际看到经常在产品中使用的拓扑只有大约14种。为何有如此巨大差距?一个很重要的因素是作为电源商品,成本(军品另当别论)和质量作为第一目标。因此,选择的电路拓扑应当考虑到电路复杂性和是否成熟,该拓扑可能使用的元器件定额和是否易购,制造是否需要高级技术人员、特殊的测试设备、元器件是否严格筛选等等,应当从整个电源产品效率、体积、成本以及技术条件和规范综合因素考虑。因此尽管众多研究者为了提高电源效率,减少体积研究如何减少开关损耗,提高开关频率,提出如此多的拓扑,发明者申请了大量专利。这些拓扑和专利在理论上是有价值的,并存在应用的可能性,软开关PWM 和有源箝位等技术都是从研究谐振,准谐振变换器发展而来的。这些新拓扑和专利在某一方面提出了新的途径和方法,但也会带来某些方面的不足,作者和申请者不可能面面俱到。理论上先进就能做出最好产品,这是天真的想法。理论研究始终是探索性的,始终走在生产的前面;而产品是该领域研究最充分,经过若干因素折衷的实践产物。这也是理论研究与生产实际的差别。同时也是专利与生产力的距离。专利往往只是一个好主意(good idea ),只是在某一方面有独创性,是否能转变为产品那就时另一回事。如果为了将效率提高1%,而使得成本提高10%,这是任何厂商不愿意做的。因此很少专利转变为生产力就不足为奇了。但是在体积、重量要求严格而批量小的军品则另当别论。 决定拓扑选择的一个重要因素是输入电压和输出/输入比。图 2.1示出了常用隔离的拓扑相对适用的电压范围。拓扑选择还与输出功率,输出电压路数,输出电压调节范围等有关。一般情况下,对于给定场合你可以应用多种拓扑,不可能说某种拓扑对某种应用是绝对地适用,因为产品设计还有设计者对某种拓扑的经验、元器件是否容易得到、成本要求、对技术人员要求、调试设备和人员素质、生产工艺设备、批量、军品还是民品等等因素有关。因此要选择最好的拓扑,必须熟悉每种拓扑的长处和短处以及拓扑的应用领域。如果随便选择一个拓扑,可能一开始就宣布新电源设计的失败。 2.2 输入和输出 如果输出与输入共地,则可以采用非隔离的 Buck ,Boost 共地变换器。这些电路结构简单,元器 件少。如果输入电压很高,从安全考虑,一般输出 需要与输入隔离。 在选择拓扑之前,你首先应当知道输入电压变 化范围内,输出电压是高于还是低于输入电压?例 如,Buck 变换器仅可用于输出电压低于输入电压的 场合,所以,输出电压应当在任何时候都应当低于 输入电压。如果你要求输入24V ,输出15V ,就可以采用Buck 拓扑;但是输入24V 是从8V ~80V(MIL -STD -704A ),你就不能使用Buck 变换器,因为Buck 变换器不能将8V 变换成15V 。如果输出电压始终高于输入电压,就得采用Boost 拓扑。 ) 图2.1 各种隔离拓扑应用电压范围 如果输出电压与输入电压比太大(或太小)是有限制的,例如输入400V ,要求输出48V 还是采用Buck 变换器,则电压比太大,虽然输出电压始终低于输入电压,但这样大的电压比,尽管没有超出控制芯片的最小占空比范围,但是,限制了开关频率。而且功率器件峰值电流大,功率器件选择困难。如果采用具有隔离的拓扑,可以通过匝比调节合适的占空比。达到较好的性能价格比。 2.3 开关频率和占空比的实际限制 2.3.1 开关频率

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18) 4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31)

摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能进行正确的处理,当然这必须在实时信息可靠前提下才能实现。 (2)拓扑分析的直观性:大规模电力系统的拓扑结构是复杂的,由此拓扑分析本身就是对这一复杂网络的简化,因此其结果的直观性就很重要。如元件状态(运行、停运)标识,不同电压等级的区分等。 (3)拓扑分析的实时性:由拓扑分析的目的可知,拓扑分析必须是快速的,必须满足对实时决策与控制的要求。 (4)拓扑分析的通用性:运行方式变,电网结构就变,也即拓扑结构变,由此在拓扑数据的存储、模型表达等诸多方面都应该考虑其开放性、可扩展性及可维护性等。 综上,电力系统网络拓扑分析的目的是明确的,同时也显现电力系统网络拓扑分析有一定的难度。 关键词:电力系统;关联矩阵;拓扑分析;网络 ABSTRACT Power systems associated topology is the electrical energy, transport stream (production, use) flow, for conversion,

全桥电路基础的拓扑结构

全桥电路基础的拓扑结构 这里整理一下移相全桥电路的基础,基础的拓扑结构为: 其控制方法在《脉宽调制DC/DC全桥变换器的软开关技术》划分为9类,不过可综合成下面四种组态: 1.两臂固定导通时间 Ton=D×Ts/2;

2.Q1&Q3向前导通 Ton=(D×Ts/2+Tadd)~Ts/2,可调节; 【可细分为Ton=Ts/2和Ton

1. +1状态: Q1, Q4同时导通,或d1,d4同时导通。a, b两点间电压Vab = + Vin。 2. -1状态: Q3,Q2同时导通,或d3, d2同时导通。a, b两点间电压Vab = - Vin。 3. 0状态: (Q1,Q4)&(d1,d4)不同时导通,并且(Q3,Q2)&(d3, d2)不同时导通。a, b两点间电压Vab = 0。 三种切换方式 1. +1 => -1 ^ -1 => +1 分析过程:

初始时刻:Q1、Q4导通,向副边传输能量。 下一时刻,Q1、Q4同时关断。因为有C1,C4,Q1,Q4电压缓升,是零电压关断。 在变压器原边漏感Lt的影响下,原边电流方向不变,该电流给C1,C4充电,C2,C3放电。 C1,C4充电至vin,C2,C3放电至0后,二极管D2,D3导通(Vab = -Vin)。以上是暂态过程,实际持续的时间很短,但是由于存在一段时间(Doff),因此此时随着Ip的下降至零,开关管及其反并二极管都在关断状态,电容和漏感发生谐振,导致C2,C3在Q2,Q3开通的时候电压并不为零,因此电容的能量完全消耗在开关管上,这样无法实现软开关。因此+1=>-1时是无法实现软开关的。 2.+1 => 0 ^ -1 => 0

详解开关电源拓扑结构的优缺点

看电压或电流波形的好坏,工程师通常会用其幅值、平均值、有效值、一次谐波等参量互相进行比较,其中幅值和平均值最为直观,因此,电压或电流的幅值与其平均值之比被称为脉动系数S,也有人用电压或电流的有效值与其平均值之比,则称为波形系数K。小编在本文中就将盘点开关电源拓扑结构的优缺点,让它们尽在你的掌握之中。 首先先列出电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki的表示:Sv=Up/Ua——电压脉动系数 (1) Si=Im/Ia——电流脉动系数 (2) Kv=Ud/Ua——电压波形系数 (3) Ki=Id/Ia——电流波形系数 (4) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 反激式开关电源的优点和缺点: (1)反激式开关电源的电压和电流的输出特性要比正激式开关电源的差 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 (2)反激式开关电源的瞬态控制特性相对来说比较差 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下

开关电源各种拓扑集锦

开关电源拓扑六种基本DC/DC变换器拓扑: 1、Buck 2、Boost 3、Buck-Boost 4、CUK 5、Zeta 6、Sepic

基本拓扑是Buck,Boost,其他是演变。Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上, 对于隔离的Boost变换器也有推挽,双电感,全桥等电路。Buck-Boost是反激变换器的原型,属于升降压变换器。 后面三种电路不是很常用,都是升降压变换器。 一、 反激 1、单端反激 2、双端反激 二、 正激 1、绕组复位正激 2、R CD复位正激 3、L CD复位正激

4、有源钳位正激 ● Flyback钳位 ● Boost钳位 5、双管正激 6、无损吸收双正激

7、有源钳位双正激 8、原边钳位双正激 9、软开关双正激

三、 推挽 1、推挽 2、无损吸收推挽 3、推挽正激

推挽变换器是双端变换器。其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。其管子电压应力下降为输入电压。其他等同。 推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题 四、 半桥 1、半桥 2、不对称半桥 3、谐振半桥 4、移相半桥

开关电源拓扑结构优缺点

为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua ——电压脉动系数(1-84) Si = Im/Ia ——电流脉动系数(1-85) Kv =Ud/Ua ——电压波形系数(1-86) Ki = Id/Ia ——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 反激式开关电源的优点和缺点 1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 2 反激式开关电源的瞬态控制特性相对来说比较差。 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。 3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。 反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级

开关电源三大拓扑

开关电源三大基本拓扑 1、摘要 开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。 2、开关电源基础拓扑 开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。 2.1Buck降压型 Buck降压型电路拓扑,有时又称为Step-down电路,其典型的电路结构如下图1所示: Buck电路的工作原理为: 当PWM驱动高电平使得NMOS管T导通的时候,忽略MOS管的导通压降,等效如图2,电感电流呈线性上升,MOS导通时电感正向伏秒为:

当PWM驱动低电平的时候,MOS管截止,电感电流不能突变,经过续流二极管形成回路(忽略二极管电压),给输出负载供电,此时电感电流下降,如下图3所示,MOS截止时电感反向伏秒为: D为占空比,0 2.2Boost升压型 Boost升压型电路拓扑,有时又称为step-up电路,其典型的电路结构如下图4所示: 同样地,根据Buck电路的分析方式,Boost电路的工作原理为:

2.3Buck-Boost极性反转升降压型 Buck-Boost电路拓扑,有时又称为Inverting,其典型的电路结构如下图5所示: 同样地,根据Buck电路的分析方式,Buck-Boost电路的工作原理为: 3、Buck与Buck-Boost组合 金升阳K78系列的产品采用了Buck降压型的电路结构进行设计,是LM78XX系列三端线性稳压器的理想替代品,效率最高可达96%,不需要额外增加散热片,同时还兼有短路保护和过热保护,值得说明的是它能够完美支持负输出。 上面提到金升阳K78系列产品可以支持负输出,这是怎么做到的呢? 从上面Buck电路以及Buck-Boost电路结构原理来看,主要的区别是两者二极管与功率电感的位置互换。因此,若将Buck电路的输出Vo引脚接成输入的GND,而之前的输入GND 就变成了负电压输出了,即变成了Buck-Boost的电路结构。对应到金升阳K78xx-500R2系列的产品就变成了如下图6所示的负输出。

开关电源主回路拓扑结构概述

开关电源主回路拓扑结构概述 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离史与非隔离式两大类型。 一、非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1、串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T 关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。 2、并联式结构

并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。 由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。 3、极性反转型变换器结构 极性反转——输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。 开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

开关电源几种拓扑结构的工作细节及波形

开关电源几种拓扑结构的工作细节 下面讲解几种拓扑结构的工作细节 ■降压调整器: 连续导电 临界导电 不连续导电 ■升压调整器 (连续导电) ■变压器工作 ■反激变压器 ■正激变压器 1、Buck-降压调整器-连续导电 ■电感电流连续。 ■Vout 是其输入电压 (V1)的均值。 ■输出电压为输入电压乘以开关的负荷比 (D)。 ■接通时,电感电流从电池流出。 ■开关断开时电流流过二极管。 ■忽略开关和电感中的损耗, D与负载电流无关。 ■降压调整器和其派生电路的特征是: 输入电流不连续 (斩波), 输出电流连续 (平滑)。

2、Buck-降压调整器-临界导电 ■电感电流仍然是连续的,只是当开关再次接通时“达到”零。这被称为“临界导电”。 输出电压仍等于输入电压乘以D。 3、Buck-降压调整器-不连续导电 ■在这种情况下,电感中的电流在每个周期的一段时间中为零。■输出电压仍然 (始终)是 v1的平均值。 ■输出电压不是输入电压乘以开关的负荷比 (D)。

■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。 4、Boost升压调整器 ■输出电压始终大于(或等于)输入电压。 ■输入电流连续,输出电流不连续(与降压调整器相反)。 ■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情 况下: 在本例中,Vin = 5, Vout = 15, and D = 2/3. Vout = 15,D = 2/3.

5、变压器工作(包括初级电感的作用) ■变压器看作理想变压器,它的初级(磁化)电感与初级并联。 19、反激变压器 ■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。 6、Forward 正激变换变压器 ■初级电感很高,因为无需存储能量。

相关文档
最新文档