复变函数课后习题答案--西安交大第四版(海滨学院专用)

复变函数课后习题答案--西安交大第四版(海滨学院专用)
复变函数课后习题答案--西安交大第四版(海滨学院专用)

复变函数课后习题答案(海滨专用)

第一章:

第二章:

第三章:

解:

第四章:

解:

第六章:

复变函数课后习题答案(全)69272

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1-+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤

解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+-

西安交通大学复变函数考试题及解答3

一. 填空(每题3分,共30分) 1. i 3= 2. 0z =0是函数5 1cos )(z z z f -= 的 (说出类型,如果是极点,则要说明阶数) 3. i y xy yi x x z f 322333)(--+=,则()f z '= 4. =]0,sin 1 [Re z z s 5. 函数sin w z =在4 z π = 处的转动角为 6. 幂级数∑∞ =0 )(cos n n z in 的收敛半径为R =____________ 7. =?dz z z 1 sin 8.设C 为包围原点在内的任一条简单正向封闭曲线,则=? dz z e C z 2 1 9.函数()1 4 -=z z z f 在复平面上的所有有限奇点处留数的和为___________ 10. =++? = 2 3||22 ) 4)(1(z z z dz 二.判断题(每题3分,共30分) 1.n z z z f =)(在0=z 解析。【 】 2.)(z f 在0z 点可微,则)(z f 在0z 解析。【 】 3.z e z f =)(是周期函数。【 】 4. 每一个幂函数在它的收敛圆周上处处收敛。【 】 5. 设级数∑∞ =0 n n c 收敛,而||0 ∑∞ =n n c 发散,则∑∞ =0 n n n z c 的收敛半径为1。【 】 6. 1 tan()z 能在圆环域)0(||0+∞<<<

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

西安交通大学复变函数考试题及解答1

西安交通大学考试题复变函数 (A 卷) 一、填空题(每题4分,共20分) 1 12i +=______________ 2 |z|=2 1d ()(4) z z i z = +-? 3 幂级数1 n n nz ∞ =∑的收敛半径R=______________ 4 1 R e [,]sin s z z π= ____________________ 5 函数1 z ω=将z 平面上的曲线1x =变为ω平面上的 (,z x iy u iv ω=+=+) 二、单项选择题(每题4分,共20分). 1 设1 ()sin(1)f z z =-,则0z =是()f z 的 【 】 A .可去奇点 B .本性奇点 C .极点 D .非孤立奇点. 2 设1n > 为正整数,则 ||2 1d 1 n z z z =-? 为 【 】 A .0 B . 2i π C. i π D. 2n i π 3 级数1 n n z n ∞ =∑ 在||1z =上 【 】 A .收敛 B .发散 C .既有收敛点也有发散点 D .不确定 4 0 cos lim sin x z z z z z →-= - 【 】 A .3- B. ∞ C. 0 D. 3 5 设13 2 8 ()(1)(1) z f z z z = -+, 则()f z 在复平面上所有有限奇点处的留数之和等 于 【 】 A . 1- B. 1 C. 10 D. 0 三 (10分) 讨论函数2()f z x iy =-的可微性与解析性。 四 (10分) 设()f z 在||(1)z R R <>内解析,且(0)1f =,(0)2f '=,试计算积分 并由此得出22 cos ()2 i f e d πθ θ θ ? 之值。 五 (10分) 已知调和函数22(,)u x y x y xy =-+。求共轭调和函数(,)v x y 及解析函数()(,)(,)f z u x y iv x y =+。 2 2 ||1 ()(1) d z f z z z z =+?

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

西安交通大学复变函数习题

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,50 75100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2 z z -与z z 2的关系是( ) (A )z z z z 22 2 ≥- (B )z z z z 222=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

复变函数课后习题答案全

. .. . . 资料. 习题一答案 1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: (1)1 32i +(2)(1)(2)i i i -- (3)131i i i --(4)821 4i i i -+- 解:(1)1323213i z i -== +, 因此:32 Re , Im 1313z z ==-, (2)3(1)(2)1310 i i i z i i i -+=== ---, 因此,31 Re , Im 1010z z =-=, (3)133335122 i i i z i i i --=-=-+= -, 因此,35 Re , Im 32z z ==-, (4)821 41413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=, 2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+(3)(sin cos )r i θθ+ (4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+

.. .. 3. 求下列各式的值: (1 )5)i -(2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--(4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- (4)2 3 (cos5sin 5)(cos3sin 3) i i ????+- (5 = (6 ) =4. 设12 ,z z i = =-试用三角形式表示12z z 与12z z 解:1 2cos sin , 2[cos()sin()]4 466 z i z i π π ππ =+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212 i i ππππππ =-+-=+, 5. 解下列方程: (1)5 () 1z i +=(2)440 (0)z a a +=> 解:(1 )z i +=由此 25 k i z i e i π=-=-,(0,1,2,3,4)k = (2 )z ==

西交大复变函数考查课习题及答案

西安交通大学现代远程教育考试卷及答案 课 程:复变函数(A ) 专业班号 考试日期 年 月 日 姓 名 学号 期中 期末 一、单项选择题(每题2分,共20分) 1、若函数()z f 在区域D 内解析,则函数()z f 在区域D 内( ) A .在有限个点可导 B .存在任意阶导数 C .在无穷多个点可导 D .存在有限个点不可导 2、设()f z 在01z <<内解析且()0lim 1z zf z →=,那么 ()()Re ,0s f z =( ) A .2i π B .2i π- C .1 D .-1 3、函数()()()411 ++=z z z z f ,在以0=z 为中心的圆环内的洛朗展式有m 个,则m=( ) A .1 B .2 C .3 D .4 4、下列命题正确的是( ) A .i i 2< B .零的辐角是零 C .仅存在一个数z,使得z z -=1 D .iz z i =1 5、函数()z z f arctan =在0=z 处的泰勒展式为( ) A .()∑∞ =+-02121n n n n z (z <1) B .()∑∞=+-01 221n n n n z (z <1) C .()∑∞=++-012121n n n n z (z <1) D .()∑∞=-0221n n n n z (z <1) 6、在下列函数中,()0Re 0==z f s z 的是( )

A .()21z e z f z -= B .()z z z z f 1sin -= C .()z z z z f cos sin += D .()z e z f z 111--= 7、设a i ≠,C :i z -=1,则()=-?dz i a z z C 2cos ( ) A .0 B . 2i e π C .2ie π D .icosi 8、下列函数是解析函数的为( ) A .xyi y x 222-- B .xyi x +2 C .)2()1(222x x y i y x +-+- D .33iy x + 9、下列命题中,不正确的是( ) A .如果无穷远点∞是()f z 的可去奇点,那么()() Re ,0s f z ∞= B .若()f z 在区域D 内任一点0z 的邻域内展开成泰勒级数,则()f z 在D 内解析 C .幂级数的和函数在收敛圆内是解析函数 D .函数22e i e i ω-=+将带形域()0Im z π<<映射为单位圆1ω< 10、函数()()() 2222f z x y x i xy y =--+-在( )处可导。 A .全平面 B .2x = C .2y = D .处处不可导 二、判断题(每题2分,共30分;正确:√;错误:×) 1、对任意的z ,() ()2Ln z 2Ln z =.( ) 2、在柯西积分公式中,如果D a ?,即a 在D 之外,其它条件不变,则积分()=-?dz a z z f i C π210,()D z ∈.( ) 3、区域()0Im z >是无界的单连通的闭区域。( )

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

复变函数课后习题答案(全)

习题一答案 1.求下列复数得实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式与指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+= (2 )1 -+ 2 3 22 2(cos sin)2 33 i i eπ ππ =+=

(3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式得值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 ) (1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33 )sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- = (4)2 3 (cos5sin 5)(cos3sin 3) i i ????+-

复变函数课后部分习题解答

(1) ( J3-i) 解:J3-i=2[cos( -30 °+isi n(-30 °] =2[cos30 ° is in 30 ° (x 3 -i) 5=25[cos(30 5)-isin(30 5)] =2 5(- j3/2-i/2) =-16 y 3-16i

(2) (1+i) 6 解:令z=1+i 则x=Re (z) =1, y=Im (z) =1 r= z =$x2y2 =72 tan : = y=1 x x>0,y>0 属于第一象限角 -- 4 1+i= 2 (cos—+isin - 4 4 (1+i) 6=( 2) 6(cos — +isin —) 4 4 =8 ( 0-i) =-8i 1.2求下式的值

因为 -1= (cos +sin 所以 习题一 1 1.2 (4)求(1-i) 3 的值 6 1 =[cos( 2k /6)+s in( 2k /6)] (k=0,1,2,3,4,5,6).

1 1 解:(1-i) 3二[2 (cos- +isin- )] 3 4 4 = 6 2 [cos( )+isin( ■(8^ )] 12 12 (k=0,1,2) 1.3求方程z3+8=0的所有根。解:所求方程的根就是W=3 8 因为-8=8 (cos +isin ) 所以3 8= [cos( +2k )/3+isin( +2k )/3] k=0,1,2

其中=1r =3 8=2 即 w1=2[cos /3+isi n /3]=1 —3i W2=2[cos( +2 )/3+isin( +2 )/3]=-2 W3=2[COS(+4 )/3+isin( +4 )/3]= 1 习题二 1.5描出下列不等式所确定的区域或者闭区域, 无 并指明它是有界还是界的,单连通还是多连通的。 (1) lm(z)>0 解:设z=x+iy

复变函数课后习题答案(全)

精心整理 习题一答案 1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: ( 1) 1 (2) i 2i 1)(i 2) 3 (i (3) 1 3i (4) i 8 4i 21 i i 1 i 解:( 1) z 1 3 2i , 3 2i 13 因此: Re z 3 , Im z 2 , 13 13 ( 2) z i i 3 i , (i 1)(i 2) 1 3i 10 因此, Re z 3 , Im z 1 , 10 10 ( 3) z 1 3i i i 3 3i 3 5i , i 1 2 2 因此, Re z 3 , Im z 5 , 3 2 ( 4) z i 8 4i 21 i 1 4i i 1 3i 因此, Re z 1, Im z 3, 2. 将下列复数化为三角表达式和指数表达式: ( ) ( ) 1 3i ( ) r (sin i cos ) 1 i 2 3 ( 4) r (cos i sin ) (5)1 cos i sin (0 2 ) 解:( 1) i cos i sin i e 2 2 2 2 2 2 (2) 1 3i i 2(cos i sin ) 2e 3 3 3 ( 3) r (sin i cos ) r[cos( ) i sin( )] ( ) i 2 re 2 2 ( 4) r (cos i sin ) r[cos( ) i sin( )] re i (5)1 cos i sin 2sin 2 2 2i sin cos 2 2 页脚内容

.. 3. 求下列各式的值: (1)( 3 i)5 ( 2) (1 i )100 (1 i)100 (3) (1 3i )(cos i sin ) (4) (cos5 i sin 5 )2 (1 i )(cos i sin ) (cos3 i sin 3 )3 (5) 3 i ( ) 1 i 6 解:( 1) ( 3 i )5 [2(cos( ) i sin( ))] 5 6 6 (2) (1 i )100 (1 i)100 (2i ) 50 ( 2i ) 50 2(2) 50 251 (3) (1 3i )(cos i sin ) (1 i )(cos i sin ) (cos5 i sin 5 ) 2 (4) i sin 3 )3 (cos3 (5) 3 i 3 cos i sin 2 2 (6) 1 i 2(cos i sin ) 4 4 4. 设 z 1 1 i , z 2 3 i, 试用三角形式表示 z z 与 z 1 2 1 2 z 2 解: z cos i sin , z 2 2[cos( ) i sin( )] ,所以 1 4 4 6 6 z 1z 2 2[cos( ) i sin( 4 6 )] 2(cos 12 i sin ) , 4 6 12 5. 解下列方程: (1) (z i )5 1( 2) z 4 a 4 0 ( a 0) 解:( 1) z i 5 1,由此 z 5 1 i 2 k i i , (k 0,1,2,3,4) e 5 (2) z 4 a 4 4 a 4 (cos i sin ) ..

西安交通大学复变函数与积分变换试卷与答案2007-2008第一学期A卷

224 z z ++ 幂级数 1n n n = ∑ 2 Re[(1)sin s z- 6 ()(1)( z i z +- ? 为确定的自然数, 则积分 D.0 ,则下列公式不正确的是 () ω

2 d 1 z+

共 4 页第3 页

共 4 页第 4 页

一、填空题(每题4分,共20分) 1. 45((21)arctan )3ln i k π+++ 2. 0 3. e 4. 5 6 5. 00()()2 F F ωωωω++- 二、单项选择题(每题4分,共20分). 1. D 2. C 3. A 4. C 5. A 三 (1) 解: 设C: ,02i z e θ θπ=≤≤, 1cos 1sin z i θθ-=-+(1分)故 |1|2|sin |2 z θ -=(2 分) 故 202sin (cos sin )2 I i i d π θ θθθ=+?(6 分)83 i π=-(7分) (2) 解: (a) 若1r <, 此时圆周内只有一个奇点10z =,(1分) 且 1 23411111....23!4!z e z z z z =+++++246810 2 11....1z z z z z z =-+-+-++(3分) 故1z -对应的系数:111111...3!5!7!9!11! - +-+-+ =sin1故 2sin1I i π=…(5分) (b) 若1r >, 此时圆周内有三个奇点: 1230,.z z i z i ===-(6分)此时 1 122 2sin12Re [,]2Re [,]11z z e e I i i s i i s i z z πππ=++-++=2sin1i i i e e πππ-++(8分) 四 解: (1) ()212(2)(1)f z z z = --+(1分)=2 2 1121 ()121(1) 2z z z ---+(2分) =2200121()()()22n n n n z z z ∞∞==---∑∑=122100(1)22 n n n n n n z z +∞ ∞++==--∑∑(4分) (2) ()111 ()(2)f z i z z i z i = ---+-

《复变函数》(西安交大)习题解答--第5章习题

第五章习题 1.下列函数有些什么奇点?如果是极点,指出它的级: 1) 211)(+z z ; 2)3 z z sin ; 3)1123+--z z z ; 4)z z )ln(1+; 5)))((z e z z π++112; 6)1 1 -z e ; 7)) (112-z e z 解 1) 211)(+z z =2 21 )()(i z i z z +-,所以0=z 为一级极点,i z ±=为二级极点. 2)显然0=z 是 3 z z sin 的奇点,又在0=z 的去心邻域内的洛朗展开式为 3 z z sin = -+-!!531 22z z z ,+∞<<||z 0 所以0=z 为二级极点. 3) 11 2 3+--z z z = 2111 ) )((-+z z 所以1-=z 为一级极点,2=z 为二级极点. 4)显然0=z 是 z z ) ln(1+的孤立奇点. 又 110 =+→z z z ) ln(lim , 所以0=z 为可去奇点. 5)令0112 =++))((z e z π,解之得),,,()( 21012±±=+=k i k z k , 因为),,,()( 21012±±=+=k i k z k 是z e z z ) )((π++112的零点,所以 ),,,()( 21012±±=+=k i k z k 是 ) )((z e z z π++112的极点,又 10 0112≠' ? ? ????++=k z z z z e z ))((π,),,,( 321±±=k 所以),,,()( 32112±±=+=k i k z k 为z e z z ) )((π++112的一级零点,从而为

相关文档
最新文档