常用滤波器的频率特性分析

常用滤波器的频率特性分析
常用滤波器的频率特性分析

常用滤波器的频率特性分析

摘要:滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。滤波器对实现电磁兼容性是很重要的。本文所述内容主要有滤波器概述及原理、种类等。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。故对常见滤波器中低通滤波器、高通滤波器、带通滤波器和带阻滤波器,EMI 滤波器,从频率出发,进行特性分析。

一、引言

滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

二、原理

滤波器一般有两个端口,一个输入信号、一个输出信号

利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。

滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为

XL·XC=K2

故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率

者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。通带与带阻滤波器都是m常数滤波器,m为截止频率与被衰减的其他频率之衰减比的函数。每一m常数滤波器的阻抗与K常数滤波器之间的关系,均由m常数决定,此常数介于0~1之间。当m接近零值时,截止频率的尖锐度增高,但对于截止频的倍频之衰减率将随着而减小。最合于实用的m值为0.6。至于那一频率需被截止,可调节共振臂以决定之。m常数滤波器对截止频率的衰减度,决定于共振臂的有效Q值之大小。若达K常数及m常数滤波器组成级联电路,可获得尖锐的滤波作用及良好的频率衰减。

三、特性分析

⑴低通滤波器

从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

⑵高通滤波器

与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

⑶带通滤波器

它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

⑷带阻滤波器

与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

低通滤波器与高通滤波器的串联

低通滤波器与高通滤波器的并联

(5)EMI滤波器

电磁干扰滤波器,又名“EMI滤波器”是一种用于抑制电磁干扰,特别是电源线路或控制信号线路中噪音的电子线路设备。

电磁干扰滤波器的功能就是保持电子设备的内部产生的噪声不向外泄漏,同时防止电子设备外部的交流线路产生的噪声进入设备。

因为有害的电磁干扰的频率要比正常信号频率高得多,所以电磁干扰滤波器是通过选择性地阻拦或分流有害的高频来发挥作用的。基本上,电磁干扰滤波器的感应部分被设计作为一个低通器件使交流线路频率通过,同时它还是一个高频截止器件,电磁干扰滤波器的其他部分使用电容来分路或分流有害的高频噪声,使这些有害的高频噪声不能到达敏感电路。这样,电磁干扰滤波器显著降低或衰减了所有要进入或离开受保护电子器件的有害噪声信号。

EMI滤波器的频率特性分析:

(1)基本结构

EMI滤波器是由电感和电容组成的低通滤波器。其一般的拓扑结构如图1所示。

图1 EMI滤波器一般的电路拓扑结构

C X是差模滤波电容,C Y是共模滤波电容;L1为共模扼流圈,L2为独立电感。滤波器共模等效电路和差模等效电路分别如图2和图3所示。其中,L e为共模扼流圈的漏电电感.

图2 共模等效电路

图3 差模等效电路

由图2所示的共模等效电路可以得到图4所示共模电路简化等效图。其中L cm =L1 +0.5×L2 ,C cm =2×C Y。由图3所示的差模等效电路可以得到图4所示的电路形式。其中L dm=L3+2*L2,C1=Cx+0.5×CY。由于一般共模电容C Y远小于差模电容C x,所以可以认为C1=C2。

图4 共模化简等效电路

图5 差模化简等效电路

(2)插入损耗

EMI滤波器对干扰信号的抑制能力用其插入损耗(IL)来衡量。插入损耗定义为:没有滤波器接入时,从干扰信号源传输到负载的功率P1,和接人滤波器后,从干扰信号源传输到负载的功率P2之比,通常用dB表示,滤波器的插入损耗与滤波器网络的网络参量以及源端、负载端阻抗有关[3]。插入损耗可以表示成式(1)的形式

IL=10logp1/p2=

20log(a11R L+a12+a21R S R L+a22R S/R S+R L) (1)

其中,R S和R L分别是源端和负载阻抗,a11,a12,a21,a22为滤波器网络的A参数。

四、应用

常见的滤波器有电源EMI滤波器、开关电源EMI滤波器、反射EMI滤波器、损耗线EMI 滤波器和有源滤波器。

电源EMI滤波器是一种低通滤波器,它能毫无衰减地把直流、50Hz、400Hz的电源功率传输到设备上去,对于其他高频信号则产生很大衰减。电源EMI滤波器,又称电网滤波器、电网噪声滤波器、进线滤波器、噪音滤波器等。

开关电源EMI滤波器已广泛用于许多电子设备中。它与一般的线性稳压电源相比,省去了笨重的电源变压器,具有体积小、效率高的优点。但本身就是EMI源,它产生的EMI信号,即占有很宽的频率范围,又有一定的幅度。要把产生的EMI信号控制在有关EMC标准规定的极限电平一下,必须采用特殊设计的开关电源EMI滤波器。

对反射EMI滤波器来说,要求对EMI信号有最大的抑制作用,基本原则就是阻抗失配,C电容量较大,用于单相交流供电系统时,即使没有接负载,可能也会有较大电流。对某X

C电容器的反射EMI滤些对线与地之间电容器有严重限制的应用场合,要注意选用含合适

X

波器。

损耗线EMI滤波器就是损耗传输线EMI滤波器,也称为吸收滤波器和穿心滤波器等。损耗EMI滤波器直接是由损耗传输线或在上面增加适合的集中电容器构成。

有源滤波器是含有有源器件的各种滤波网络。与利用电感器、电容器实现滤波功能的无源滤波器相比,有源滤波器可以省去体积庞大的电感元件,便于小型化和集成化,适于实现较低频率的滤波。另外,有源滤波器可以获得电压或电流增益,以抵偿滤波网络的损害。有源滤波器的有源器件是晶体管和运算放大器。

五、结论

实践表明,即使对一个经过很好设计并且具有正确的屏蔽和接地措施的系统,也仍然会有不需要的能力传导进入此系统,致使系统的性能降低或引起系统的失灵,滤波器可以把这些不需要的传输能量减小到时系统能满意地工作的电平,是能量很容易的通过,而在通带之外,抑制了能量的传输,所以滤波器是抑制干扰的一种很有效的手段。

参考文献

[1]张厚.《电磁兼容原理》.西安:西北工业大学出版社,2008.

[2]杨克俊.《电磁兼容原理与设计技术》.北京.人民邮电出版社.2004.

[3]贾科林,琼梅,毕闯,等.EMI滤波器的设计及仿真[J].安全与电磁兼容,2007.

滤波器基本原理、分类、应用

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器 二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 推荐精选

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。 低通滤波器与高通滤波器的串联 低通滤波器与高通滤波器的并联 ⒉根据“最佳逼近特性”标准分类 ⑴巴特 沃斯滤波 器 从幅频特 性提出要 求,而不 考虑相频 特性。巴 特沃斯滤 波器具有最大平坦幅度特性,其幅频响应表达式为: ⑵切比雪夫滤波 器 推荐精选

(整理)实验二1实验二模拟滤波器频率特性测试.

实验二模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、学习“模拟滤波器的逼近”; 2、系统函数的展开方法; 3、低通滤波器的结构与转换方法; 预习报告中回答以下问题: 1、实际中常用的滤波器电路类型有哪些,有何特点? 2、有源滤波器、无源滤波器的概念,优缺点和各自的应用场合? 3、绘出低通、带通、带阻、高通四种滤波器的理想频响曲线及实际频响曲线,两者 有何根本区别,产生原因? 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器图2一2高通滤波器

图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。 2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τ φωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 B 函数发 CH1 示 波 器 R R R/2 C C 2C INPUT A IN1 IN2 OUT1 OUT2 GND GND

滤波器主要参数与特性指标

滤波器的主要参数(Definitions): 中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>

各种滤波器及其典型电路.(DOC)

第一章滤波器 1.1 滤波器的基本知识 1、滤波器的基本特性 定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。 功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。 类型: 按处理信号形式分:模拟滤波器和数字滤波器。 按功能分:低通、高通、带通、带阻、带通。 按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器 按传递函数的微分方程阶数分:一阶、二阶、…高阶。 如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线 .2、模拟滤波器的传递函数与频率特性 (一)模拟滤波器的传递函数 模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。 (二)模拟滤波器的频率特性 模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui 是角频率为w 的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性 (三)滤波器的主要特性指标 1、特征频率: (1)通带截止频f p=wp/(2)为通带与过渡带边界点的频率,在该点信号增益 下降到一个人为规定的下限。 (2)阻带截止频f r=wr/(2)为阻带与过渡带边界点的频率,在该点信号衰耗 (增益的倒数)下降到一人为规定的下限。 (3)转折频率f c=wc/(2)为信号功率衰减到1/2(约3dB)时的频率,在很多 情况下,常以fc 作为通带或阻带截频。 (4)固有频率f0=w0/(2)为电路没有损耗时,滤波器的谐振频率,复杂电路 往往有多个固有频率。 2、增益与衰耗 (1)对低通滤波器通带增益Kp 一般指w=0时的增益也用A (0)表示;高 通 指w→∞时的增益也用表示;带通则指中心频率处的增益。 (2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ()A

频率特性分析

实验三 频率特性分析 一·实验目的 1.掌握频率特性的基本概念,尤其是频率特性的几种表示方法。 2.能熟练绘制极坐标频率特性曲线(奈奎斯特曲线)和对数频率特性曲线,尤其要注意的是在非最小相位系统时曲线的绘制。 3.正确应用频率稳定判别方法,包括奈奎斯特稳定判据和对数稳定判据。 4.熟练正确计算相位裕量和幅值裕量。 5.掌握闭环频率特性的基本知识以及有关指标的近似估算方法。 二·实验内容 1增加开环传递函数零极点个数对奈奎斯特图的影响 1)改变有限极点个数n ,使n=0,1,2,3 Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -101234 -3.5-3-2.5-2-1.5-1-0.50 0.511.52n=0 n=1 n=2 n=3 2)改变原点处极点个数v ,当v=1,2,3,4, Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -1.5 -1 -0.5 00.5 1 1.5 2 -2-1.5 -1 -0.5 00.5 1 1.5 2 System: sys P hase Margin (deg): -32.9Delay Margin (sec): 4.41At frequency (rad/sec): 1.3 Closed Loop Stable? No System: sys P hase Margin (deg): -121Delay Margin (sec): 3.49At frequency (rad/sec): 1.2 Closed Loop Stable? No System: sys P hase Margin (deg): 150Delay Margin (sec): 2.28At frequency (rad/sec): 1.15Closed Loop Stable? No System: sys P hase Margin (deg): 51.8Delay Margin (sec): 0.575 At frequency (rad/sec): 1.57 Closed Loop Stable? Yes v=1 v=2 v=3 v=4

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本 次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1. 低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20 02 2 )(ω αωω++= s s K s H p , ,其中 2 221102 12100 1111; 1;1C R K R R C C C R R R R K K f f p -+???? ??+= = + ==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时,)(ωj H 减小,;w 趋 近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV

范围10~6kHz 输出不失真 绘出的幅频特性图如下: 2、高通滤波器 其电路图如下: 其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K 高通的传递函数为20 02 2 )(ω αω++= s s s K s H p ,()() 2 220 2 2 )(ωαωω ω ωω+-= p K j H , 1121 2 021******** ; 1 ; 1C R K C C R C C R R R R K K f f p -+???? ??+= = +==αωω带入数值 后,Kp =1.8, W=0时 )(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时,)(ωj H 保持不变。 对于不同的α,滤波器的幅频特性也不相同 绘制的幅频特性图如下: 3带通滤波器 其电路图如下所示: 其中R1=R2=R3=R=10K,C1=C2=0.01uF ,Ro=8K , 带通的传递函数为 2 02 0)/()/()(ω ωω++= s Q s s Q K s H p ,()H j ω; ()1 223131102 13212 101 213 1211111; ; 111C R K C R C R C R Q C C R R R R R R R K R R C C K K f f f p -+++=+= ??????-+???? ??++=-ωω

滤波器的主要特性指标

电子知识 1、特征频率: ①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 滤波器在通带内的增益并非常数。 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。 ②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。 阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。 4、灵敏度 滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变

化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。 该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。 5、群时延函数 当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

滤波器幅频特性的测试

实验一 1-1 滤波器幅频特性的测试 一.实验目的 1.了解无源和有源滤波器的工作原理及应用。 2.掌握滤波器幅频特性的测试方法。 二.实验原理 滤波器是一种选频装置,可以使某给定频率范围内的信号通过而对该频率范围以外的信号极大地衰减。 1.RC 无源低通滤波器 RC 无源低通滤波器原理如图1-1所示。这种滤波器是典型的一阶RC 低通滤波器,它的电路简单,抗干扰性强,有较好的低频性能,构成的组件是标准电阻、电容,容易实现。其传递函数为 =)(s H 1 1 )()(+= s s u s u i o τ (1-1) 式中:τ=RC 。 低通滤波器频率特性为 ωτ ωj j H += 11 )( (1-2) 图1-1 RC 低通滤波器 其幅频特性 )(ωA 为 2 )(11)(ωτω+= A (1-3) 低通滤波器的截止频率为 RC f c π21 = (1-4) 图1-2 一阶有源低通滤波器 2.RC 有源低通滤波器 RC 有源低通滤波器原理如图1-2所示。它是将一阶RC 低通滤波网络接入运算放大器输入端构成的。运算放大器在这里起隔离负载影响、提高增益和带负载能力的作用。有源低通滤波器的传递函数为 1 )()()(+= = s K s u s u s H i o τ (1-5) 式中:1 1R R K F + =(R 1、R F 参数可参考图1-2,也可自选)。 频率特性为 ωτ ωj K j H += 1)( (1-6) R

式(1-5)与式(1-1)相似,只是增益不同。 3.幅频特性的测试 本实验是对以上两种低通滤波器进行幅频特性测试。滤波器的幅频特性采用稳态正弦激励试验的办法求得。对滤波器输入正弦信号x(t)=x0sinωt,在其输出达到稳态后测量输出和输入的幅值比。这样可得到该输入信号频率ω下滤波器的传输特性。逐次改变输入信号的频率,即可得到幅频特性曲线。 三.实验仪器和设备 1.低频信号发生器一台 2.毫伏表一台 3.直流稳压电源一台 4.RC无源滤波器接线板一块 5.有源低通滤波器线路板一块 四.实验步骤 1.将RC滤波器接线板低通滤波器部分的R值调到适当的位置。将低频信号发生器输出端接入RC低通滤波器输入端,双路毫伏表中的一路接低通滤波器的输入端,另一路接输出端。 2.由信号发生器输出一定幅度的正弦信号电压。先检查低频信号发生器幅值调节旋钮,使之在最小(逆时针旋转到底)位置,输出信号频率调到20Hz,然后逐渐调大信号电压使监测毫伏表指示约1伏,记下滤波器输入和输出的信号电压值。 3.不断由小到大改变滤波器输入信号频率,每改变一次信号频率,待毫伏表读数稳定了以后读取一组滤波器输入和输出信号电压值,记录到原始数据记录纸上。 4.将信号发生器幅值调节旋钮调到最小,按图1-3连接测试系统。考虑到有源低通滤波器具有放大作用,注意监测滤波器输出信号的毫伏表测量档位要比监测输入信号的相应加大。 图1-3 5.重复实验步骤2、3。 五.实验数据处理 1.用对数坐标纸绘出RC无源低通滤波器和有源低通滤波器的幅频特性曲线。 2.比较两种滤波器的特性,分析有源滤波器的优点。 六.思考题 1.若要能自动绘出滤波器的幅频特性曲线,实验系统如何设计?试绘出仪器组合框图,并作简要说明。 2.滤波器的建立时间T e如何测定?

模拟滤波器频率特性测试

实验二 模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、 学习“模拟滤波器的逼近”; 2、 系统函数的展开方法; 3、低通滤波器的结构与转换方法; 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器 图2一2高通滤波器 图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τφωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 五、实验内容及步骤: 将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。 1、RC 高通滤波器的频响特性的测量: 将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差 ,并将测量数据填入表一: 表一 2.RC 低通滤波器的频响特性的测量: 将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。根据被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp) 及Φ(ω),并将测量数据填入表二: 表二 Vi(V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 f(Hz) 150 200 300 350 400 450 500 550 1000 1500 2000 2500 3000 3500 4000 Vo(v) 1.44 1.2 1.26 2.96 3.28 3.60 4 4.24 6.60 7.44 8.00 8.40 8.72 8.76 8.88 φ(ω)(10 -2 ) 5.024 3.768 1.884 1.6328 1.5072 1.256 1.1304 1.0048 0.3768 0.1884 0.11304 0.08792 0.05024 0.04396 0.03768 Vi(V) 10 10 10 10 10 10 10 10 10 10 10

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

常用滤波器的频率特性分析

常用滤波器的频率特性分析 摘要:滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。滤波器对实现电磁兼容性是很重要的。本文所述内容主要有滤波器概述及原理、种类等。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。故对常见滤波器中低通滤波器、高通滤波器、带通滤波器和带阻滤波器,EMI 滤波器,从频率出发,进行特性分析。 一、引言 滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 二、原理 滤波器一般有两个端口,一个输入信号、一个输出信号 利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。 滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为 XL·XC=K2 故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率

控制系统的频率特性分析

实验六 控制系统的频率特性分析 1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出:

F=50时 输入:输出: (2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。 提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/(0.2*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on

3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

四种滤波器的幅频特性教程文件

四种滤波器的幅频特 性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+= +12V,

Vcc-=-12V ,低通滤波器的传递函数20 02 2 )( ω αωω++=s s K s H p , ,其中 2 221102 121001111; 1; 1C R K R R C C C R R R R K K f f p -+???? ??+== +==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548

五数字滤波器幅频特性的测试

实验三 低通、高通滤波器的幅频特性 一、实验目的 ㈠ 进一步熟悉DSP 实验系统的结构、组成及使用方法。 ㈡ 了解数字低通、高通滤波器的特点,学习数字滤波器幅频特性的测量方法。 ㈢ 观察数字滤波器频响特性的周期延拓性。 二、实验原理 ㈠ 用DSP 实验系统实现数字滤波器 一个线性时不变离散系统,或者说一个数字系统可以用系统函数来表示: ∑∑=-=--= N i i i N i i i z a z b z H 1 01)(

也可以用差分方程表示: ∑∑==-+-= N i i N i i i n y a i n x b n y 1 )()()( 由以上两个公式中,当i a 至少有一个不为0时,表达的是一个IIR 数字滤波器;当i a 全都为0时,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器i a 全都为0时的一个特例。 通常,我们把FIR 滤波器的系统函数表示为 H Z h n Z n N n ()()= =--∑01 其差分方程表示为 y n h i x n i i N ()()()= -=-∑0 1 例如:已知一个用双线性变换法设计的三阶低通IIR 数字滤波器,采样频率F s =4KHz,其3dB 截止频率为1KHz,它的传递函数 2 3 21333121)(----++++=z z z z z H 为了用数字信号处理实验系统实现这个滤波器,我们对上式还需进行处理,将其化成一 般表示式 2 32123213333.0116667.05.05.016667.03 1161212161)(--------++++=++++=z z z z z z z z z H 由上式可知,传递函数的各系数为 16667.00=b 5.01=b 5.02=b 16667 .03=b 01=a 3333.02-=a 03=a 相应的差分方程为 ) 2(3333.0)3(16667.0)2(5.0)1(5.0)(16667.0)3()2()1()3()2()1()()(3213210---+-+-+=-+-+-+-+-+-+=n y n x n x n x n x n y a n y a n y a n x b n x b n x b n x b n y 将以上差分方程的计算过程及采样频率Fs 、电路阶数N =3编写成TMS320Cxx 执行程序,输入实验系统,即可实现这个IIR 数字低通滤波器。图7-5-1为实现IIR 数字滤波器的DSP 汇编程序流程图。 ㈡.数字滤波器幅频特性的测量 任一电信网络幅频特性的测量均可采用两种方法:逐点描绘法和扫频测量法。

实验五滤波器的频率特性测试

实验五 滤波器的频率特性测试 一. 实验目的 1. 了解无源和有源滤波器的类型、电路结构、工作原理和特性,比较其性能的不同点。 2. 通过对滤波器频率响应特性的测试,掌握对元件或系统做频率特性测试的方法。 二. 实验所需仪器及元器件 THM-6模拟电路实验箱、直流稳压电源、双踪示波器、数字万用表、 信号发生器、交流毫伏表、运算放大器、电阻、电容、连接线。 三. 实验原理 实验装置及仪器连接方法见图1所示,其中滤波器实验电路可根据实验内容的不同在THM-6模拟电路实验箱接插成不同的滤波器。信号发生器输出幅值恒定、频率可调的正弦波电压作为滤波器的输入信号u i ,由交流毫伏表测量其幅值。在每一给定频率下,从交流毫伏表读出输出电压u o ,从双踪示波器读出u o 滞后u i 的时间,由此可计算两者相位差。直流稳压电源为有源滤波器的运算放大器提供±12V 电源。 图1 滤波器频率特性测试系统框图 四.实验内容及步骤 1.实验内容 ⑴ RC 无源一阶低通滤波器的频率特性测试 电路如图2所示,如果负载电阻R L = ∞,其幅频特性和 相频特性分别为 ()A ω= ()()a r c t g Φωωτ=- 式中,时间常数:RC τ=,截止频率:) 12c f RC π= ⑵ RC 有源一阶低通滤波器的频率特性测试 电路如图3所示,其幅频特性和相频特性分别为 ()A ω= ()() a r c t g Φωωτ=- 式中,时间常数:RC τ=, 11f K R R =+ 图3 有源滤波电路 U o U R R =10k ΩR 1=10k Ω R f =10k ΩR L =1k Ω C= 0.05μ F 图2 无源滤波电路 R =10k ΩR L =1k Ω C= 0.05μ F R L

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

低通滤波系统的频率特性分析

实验一低通滤波系统的频率特性分析 一、实验名称:低通滤波系统的频率特性分析 二、实验目的: 1、观察理想低通滤波器的单位冲激响应与频谱图。 2、观察RC低通网络的单位冲激响应与频谱图。 三、实验原理:(写报告时这部分要详细写并要求有必要的推导过程) 1、理想低通的单位冲激响应为Sa(t-t0)函数,幅频特性在通带内为常数,阻带内为零。在截止频率点存在阶跃性跳变。相频特性为通过原点斜率为-wt0的直线。 2、实际物理可实现的RC低通网络通带阻带存在过渡时间,与RC时间常数有关,通带阻带也不再完全是常数。相频特性为通过原点的曲线。(在原点附近近似直线)。 四、实验步骤: 1、打开MATLAB软件,建立一个M文件。 2、MA TLAB所在目录的\work子目录下建立一个名为heaviside的M文件,创建子程序函 数。 4、建立一个新的M文件,编写主程序并保存。 5、运行主程序,观察理想低通滤波器及实际RC低通滤波电路的单位冲激响应与频谱图。 并记录实验结果。 五、实验结果:(见附录B) 六、思考题: 1、理想低通滤波器的幅频曲线和相频曲线有什么特点? 2、实际RC低通与理想低通滤波器的频谱有何不同?为什么? 3、在实验中的低通网络RC时间常数是多少?对低通滤波器有何影响?

(A) 实验程序 1、子程序[定义阶跃函数] function f=heaviside(t) f=(t>0); 2、主程序[分别对理想低通和实际低通作图:h(t)、|H(jω)|、φ(ω)] %理想低通滤波器的单位冲激响应、幅频特性、相频特性。 syms t f w; figure(1) f=sin(t-1)/(t-1); Fw=fourier(f); %傅立叶变换 x=[-20:0.05:20]; fx=subs(f,t,x); subplot(2,1,1); plot(x,fx); %波形图 grid; W=[-4:0.01:4]; FW=subs(Fw,w,W); subplot(2,2,3); plot(W,abs(FW)); %幅频特性 grid; xlabel(' 频率'); ylabel(' 幅值'); subplot(2,2,4); plot(W,angle(FW)); %相频特性 grid; xlabel(' 频率'); ylabel(' 相位'); %RC低通网络的单位冲激响应、幅频特性、相频特性 figure(2) f=exp(-2*t)*sym('Heaviside(t)'); Fw=fourier(f); %傅立叶变换 x=[-4:0.02:4]; fx=subs(f,t,x); subplot(2,1,1); plot(x,fx); %波形图 grid; W=[-4:0.02:4]; FW=subs(Fw,w,W); subplot(2,2,3); plot(W,abs(FW)); %幅频特性 grid; xlabel(' 频率'); ylabel(' 幅值'); subplot(2,2,4); plot(W,angle(FW)); %相频特性 grid; xlabel(' 频率'); ylabel(' 相位');

频率特性分析仪

项目6 频率特性分析仪 (1) 6.1 项目任务 (1) 6.1.1 知识点 (1) 6.1.2 技能点 (1) 6.2 项目知识 (1) 6.2.1 扫频仪概述 (1) 6.2.2 扫频仪基本原理 (2) 6.2.3 主要技术指标 (5) 6.3 项目实施 (7) 6.3.1 BT-3C型频率特性测试仪简介 (7) 6.3.2 操作实例 (11) 6.3.3使用注意事项 (20)

项目6 频率特性分析仪 6.1 项目任务 6.1.1 知识点 1. 频率特性分析仪(简称扫频仪)的类型、基本结构与用途。 2. 扫频仪的主要性能指标。 3. 扫频仪的面板结构,并绘出扫频仪的面板示意图。 4. 扫频仪的选择、使用及注意事项。 6.1.2 技能点 使用扫频仪测试电路幅频特性、高频阻抗、电路参数。 6.2 项目知识 6.2.1 扫频仪概述 6.2.1.1 定义 频率特性测试仪简称扫频仪,它将扫频信号源及示波器的X-Y显示功能结合为一体,利用示波管直接显示被测二端网络频率特性曲线,是描绘表征网络传递函数的仪器,用于测量网络的幅频特性。扫频仪与示波器的区别在于它能够自身提供测试所需的信号源,并将测试结果以曲线形式显示

在荧光屏上。 在电子测量中,经常遇到对网络的阻抗特性和传输特性进行测量的问题,其中传输特性包括增益和衰减特性、幅频特性、相频特性等。扫频仪就是用来测试上述特性的仪器,它为被测网络的调整,校准及故障的排除提供了极大的方便。 扫频仪是测试电视接收机的主要仪器。电视接收机中的高频头、图象中频放大器、视频放大器和伴音放大器、鉴频器等部分,均可很方便地进行调试,边调边看曲线波形,一直调整到最佳的工作状态。 6.2.1.2 分类 常用分类方法如下: 1. 按照工作频带的宽度,可分为宽带扫频仪和窄带扫频仪; 2. 按照工作频率的不同,可分为低频扫频仪、中频扫频仪、高频扫频仪和超高频扫频仪; 3. 按照处理方式的不同,可分为模拟扫频仪和数字扫频仪; 4. 按照用途的不同,可分为音频扫频仪和视频扫频仪等。 6.2.2 扫频仪基本原理 6.2.2.1 频率特性测量方法 频率特性测量的方法主要包括点频测量法和扫频测量法。 点频测量法即静态测量法,由人工逐次改变输入正弦信号的频率,逐点记录对应频率的输出信号幅度而得到幅频静态特性曲线。该方法缺点:繁琐、费时、不直观、测量误差大。 扫频测量法即动态测量法,扫描信号源一方面为示波器提供扫描信号;另一方面又控制扫频信号源的振荡频率,使其产生从低频到高频的周期性重复变化的等幅正弦波,输送给被测电路,被测电路的输出信号显示为幅频动态特性曲线。扫频法测量简单迅速,可实现频率特性测量的自动化或半自动化。由于扫频频率变化时连续的,所以不会漏掉被测特性的某些细节。扫频法测量网络可边测量边调试,提高工作效率。

相关文档
最新文档