操作系统实验指导——进程同步模拟

操作系统实验指导——进程同步模拟
操作系统实验指导——进程同步模拟

《操作系统》实验指导一开课实验室:

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

操作系统进程同步实验报告

实验三:进程同步实验 一、实验任务: (1)掌握操作系统的进程同步原理; (2)熟悉linux的进程同步原语; (3 )设计程序,实现经典进程同步问题。 二、实验原理: (1)P、V操作 PV操作由P操作原语和V操作原语组成(原语是不可中断的过程) ,对信号量进行操作,具体定义如下: P( S):①将信- 号量S的值减1,即S=S-1; ②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。 V( S):①将信号量S的值加1,即S=S+1 ; ②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。 (2)信号量 信号量(semaphore )的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的 值仅能由PV操作来改变。 一般来说,信号量S30时,S表示可用资源的数量。执行一次P操作意味着请求分配一 个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S均,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。 (3)linux的进程同步原语 ①wait();阻塞父进程,子进程执行; ②#in clude #in clude key_t ftok (char*path name, char proj) ;它返回与路径path name 相对应的一个键值。 ③int semget(key_t key, int n sems, int semflg) 参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key 相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。参数key和semflg的取值,以及何时打开已有信号灯集或者创建一个新的信号灯集与msgget()中的对应部分相同。该调用返回与健值key相对应的信号灯集描述字。调用返回:成功返回信号灯集描述字,否则返回-1。 ④int semop(i nt semid, struct sembuf *sops, un sig ned n sops); semid是信号灯集ID , sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。nsops为sops指向数组的大小。 ⑤int semctl(int semid , int semnum , int cmd , union semun arg) 该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定 具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

2014-2015(1)操作系统实验

实验项目名称:进程的同步(实验一) 1、实验目的 (1) 掌握进程和线程基本概念和属性; (2) 掌握用PV操作解决并发进程的同步问题; (3) 掌握用于同步的信号量初值的设置; (4) 掌握如何处理共享资源的直接制约关系。 2、实验内容 (1) 设计一个模拟若干售票网点的售票程序。界面可以参考图1。还应设计多个后台售票线程并发运行。 图1售票 (2) 模拟:桌上有一只盘子,每次只能放入一个水果。爸爸专向盘子中放苹果,妈妈专向盘子中放桔子,一个女儿专等吃盘子里的苹果,一个儿子专等吃盘子里的桔子。只要盘子空则爸爸或妈妈都可以向盘子放一个水果,仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出水果。放-取水果的几种情况如图2(a)~(f)所示,可以参照进行设计。 (a)盘子空时取水果 (b)父亲放入苹果

(c) 儿子取水果 (d) 女儿取水果 (e)儿子取走桔子 (f)盘子满时放水果 图2 放-取水果 (3) 自选其它能反映进程互斥问题的应用。 实验项目名称:处理机调度(实验二) 1、实验目的 (1) 掌握几种处理机调度算法的基本思想和特点; (2) 理解并发与并行的区别; (3) 比较几种算法的特点。 2、实验内容 编写程序模拟处理机调度,参照图3。 (1) 时间片轮转 (2) 动态优先权调度 (3) 高响应比优先调度

图3 模拟处理机调度 实验项目名称:银行家算法(实验三) 1、实验目的 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、实验内容 (1) 设计进程对各类资源最大申请表示及初值确定。 (2) 设定系统提供资源初始状况。 (3) 设定每次某个进程对各类资源的申请表示。 (4) 编制程序,依据银行家算法,决定其申请是否得到满足。 具体设计可参照图4(a)~(c) 进行。

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

操作系统实验报告(进程调度算法)

操作系统实验报告(进程调度算法)

实验1 进程调度算法 一、实验内容 按优先数调度算法实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验原理 设计一个按优先数调度算法实现处理器调度的程序。 (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: 进程名 指针 要求运行时 间 优先数

状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的优先数从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2

1P1 K 2 P2 K 3 P3 K 4 P4 K 5 P5 0 K4K5K3K1 2 3 1 2 4 1 5 3 4 2 R R R R R PC B1 PC B2 PC B3 PC B4 PC B5 (4) 处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优先数就减“1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行: 优先数-1 要求运行时间-1 来模拟进程的一次运行。 提醒注意的是:在实际的系统中,当一个进程被选中运行时,必须恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行结束。在这里省去了这些工作。

操作系统课程试验

第3章处理机管理 7.1实验内容 处理机管理是操作系统中非常重要的部分。为深入理解进程管理部分的功能,设计几个调度算法,模拟实现处理机的调度。 7.2实验目的 在多道程序或多任务系统中,系统同时处于就绪状态的进程有若干个。也就是说能运行的进程数远远大于处理机个数。为了使系统中的各进程能有条不紊地运行,必须选择某种调度策略,以选择一进程占用处理机。要求学生设计一个模拟单处理机调度的算法,以巩固和加深处理机调度的概念。 7.3实验题目 7.3.1设计一个按先来先服务调度的算法 提示 (1)假设系统中有5个进程,每个进程由一个进程控制块(PCB)来标识。进程控制块内容如图7-1所示。 进程名即进程标识。 链接指针:按照进程到达系统的时间将处于就绪状态的进程连接成一个就绪队列。指针指出下一个到达进程的进程控制块首地址。最后一个进程的链指针为NULL。 估计运行时间:可由设计者指定一个时间值。 达到时间:进程创建时的系统时间或由用户指定。调度时,总是选择到达时间最早的进程。 进程状态:为简单起见,这里假定进程有两种状态:就绪和完成。并假定进程一创建就处于就绪状态,用R表示。当一个进程运行结束时,就将其置成完成状态,用C表示。 (2)设置一个队首指针head,用来指出最先进入系统的进程。各就绪进程通过链接指针连在一起。 (3)处理机调度时总是选择队首指针指向的进程投入运行。由于本实验是模拟实验,所以对被选中进程并不实际启动运行,而只是执行: 估计运行时间减1 用这个操作来模拟进程的一次运行,而且省去进程的现场保护和现场恢复工作。 (4)在所设计的程序中应有显示或打印语句,能显示或打印正运行进程的进程名,已运行是、还剩时间,就绪队列中的进程等。所有进程运行完成是,给出各进程的周转时间和平均周转时间。 先来先服务(FCFS)调度算法 /*源程序1.cpp,采用先来先无法法在Visual C++ 6.0下调试运行*/ /*数据结构定义及符号说明*/ #include #include

操作系统实验报告(进程的创建)(DOC)

实验题目进程的创建小组合作否姓名班级学号 一、实验目的 1、了解进程的创建。 2、了解进程间的调用以及实现。 3、分析进程竞争资源的现象,学习解决互斥的方法。 4、加深对进程概念的理解,认识并发执行的本质。 二.实验环境 Windows 系统的计算机一台,安装了Linux虚拟机 三、实验内容与步骤 1、fork()系统调用的使用例子 程序代码: #include #include #include int glob=3; int main(void) { pid_t pid;int loc=3; printf("before fork();glod=%d,loc=%d.\n",glob,loc); if((pid=fork())<0) { printf("fork() error. \n"); exit(0); } else if(pid==0) { glob++; loc--; printf("child process changes glob and loc: \n"); } else

wait(0); printf("parent process doesn't change the glob and loc:\n"); printf("glob=%d,loc=%d\n",glob,loc); exit(0); } 运行结果: 2、理解vofork()调用: 程序代码: #include #include #include int glob=3; int main(void) { pid_t pid; int loc=3; if((pid=vfork())<0) { printf("vfork() error\n"); exit(0); } else if(pid==0) { glob++; loc--; printf("child process changes the glob and loc\n"); exit(0); } else printf ("parent process doesn't change the glob and loc\n"); printf("glob=%d,val=%d\n",glob,loc);

建筑工程仿真实训平台

建筑工程虚拟仿真实训平台 三好建筑工程仿真实训平台GS2013 一、概述 三好建筑工程仿真实训平台2013,是以Unity3D为平台,结合当前最为流行的三维仿真技术,专门为开设有建筑类专业的中、高等院校而开发,以解决建筑类专业学生的实习实训任务为目标而打造的一款综合性系统软件。整个软件以当前施工现场流行的施工工艺和施工管理为主线,以真实的施工项目为背景而开发,人机交互加三维场景,将整个建筑工程搬进实训室,使学生身临其境,不出校门,即可完成实习、实训任务。从而达到学校育人和企业用人的无缝对接。 现阶段院校建筑类专业课程授课过程中所存在的情景教学资源少、实训操作场地局限、实训操作道具成本较高、重复利用率低等情况,以及学生就业方向对技能的要求,分模块化配套建筑信息化教学课改的专业核心内容,进行虚拟操作体验,从而达到理论结合实践,实践贴近实际的效果。对于提高建筑行业整体水平有较高的指导性和先进性,对提高行业综合实力意义重大。

二、系统介绍 1、功能特点 (1)实现施工管理流程与施工工艺流程同步仿真; (2)场景符合安全文明标化工地要求; (3)菜单形式显示施工任务流程,该任务过程中任意跳转; (4)资料库功能,仿真项目实施过程中所涉及到的图纸、施工方案、各种记录以及其他文件资料。 (5)多视角切换(可根据施工的不同程度,多方位、多视角查看施工情况);

(6)地图热点,实现三维漫游时的不同场景的快速跳转; (7)远近镜头调整; (8)智能语音提示功能,使得整个软件在运行过程中,更加生动形象。 (9)教学模式顺序展示; (10)仿真模式实现交互; (11)考评模式完成考核;理论考试与实务操作相结合,并记录成绩,更科学,更客观的评价学生对实际知识和技能的掌握情况。 (12)丰富的视频; (13)三维漫游功能。 2、专业实现 (1)真实还原施工现场、仿真展示、交互式操作; (2)平台包含典型案例工程、配套实训图纸、《实训任务书》、内业资料、施工管理流程、施工工艺流程; (3)典型工程案例(该工程包含地下室,地上为框支剪力墙、剪力墙结构),囊括现行施工工艺流程;现实生活中的真实项目,项目建筑面积不低于50000平米,楼高不低于50米。 (4)包含各阶段施工图纸、施工方案、技术交底、安全交底,并同步生成工程配套的各种技术资料和施工记录;

操作系统实验报告

操作系统实验报告 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实验二进程调度1.目的和要求 通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。 2.实验内容 阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。 编写程序模拟实现进程的轮转法调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。采用轮转法进程调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。 程序要求如下: 1)输出系统中进程的调度次序; 2)计算CPU利用率。 3.实验环境 Windows操作系统、VC++6.0 C语言 4设计思想: (1)程序中进程可用PCB表示,其类型描述如下:

structPCB_type { intpid;//进程名 intstate;//进程状态 2——表示“执行”状态 1——表示“就绪”状态 0——表示“阻塞”状态 intcpu_time;//运行需要的CPU时间(需运行的时间片个数) } 用PCB来模拟进程; (2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。队列类型描述如下: structQueueNode{ structPCB_typePCB; StructQueueNode*next; } 并设全程量: structQueueNode*ready_head=NULL,//ready队列队首指针 *ready_tail=NULL,//ready队列队尾指 针

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统文件管理系统模拟实验

文件管理系统模拟 1.实验目的 通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现 2.实验内容 为Linux系统设计一个简单的二级文件系统。要求做到以下几点: (1)可以实现下列几条命令(至少4条) login 用户登录 dir 列文件目录 create 创建文件 delete 删除文件 open 打开文件 close 关闭文件 read 读文件 write 写文件 (2)列目录时要列出文件名、物理地址、保护码和文件长度; (3)源文件可以进行读写保护。 3.实验提示 (1)首先应确定文件系统的数据结构:主目录、子目录及活动文件等。主目录和子目录都以文件的形式存放于磁盘,这样便于查找和修改。 (2)用户创建的文件,可以编号存储于磁盘上。入file0,file1,file2…并以编号作为物理地址,在目录中进行登记。 4.源代码 #include #include #include #define MEM_D_SIZE 1024*1024 //总磁盘空间为1M #define DISKSIZE 1024 //磁盘块的大小1K #define DISK_NUM 1024 //磁盘块数目1K #define FATSIZE DISK_NUM*sizeof(struct fatitem) //FAT 表大小

#define ROOT_DISK_NO FATSIZE/DISKSIZE+1 //根目录起始盘块号 #define ROOT_DISK_SIZE sizeof(struct direct) //根目录大小#define DIR_MAXSIZE 1024 //路径最大长度为1KB #define MSD 5 //最大子目录数5 #define MOFN 5 //最大文件深度为5 #define MAX_WRITE 1024*128 //最大写入文字长度128KB struct fatitem /* size 8*/ { int item; /*存放文件下一个磁盘的指针*/ char em_disk; /*磁盘块是否空闲标志位0 空闲*/ }; struct direct { /*-----文件控制快信息-----*/ struct FCB { char name[9]; /*文件/目录名8位*/ char property; /*属性1位目录0位普通文件*/ int size; /*文件/目录字节数、盘块数)*/ int firstdisk; /*文件/目录起始盘块号*/ int next; /*子目录起始盘块号*/ int sign; /*1是根目录0不是根目录*/ }directitem[MSD+2]; }; struct opentable { struct openttableitem { char name[9]; /*文件名*/ int firstdisk; /*起始盘块号*/ int size; /*文件的大小*/ }openitem[MOFN]; int cur_size; /*当前打文件的数目*/ }; struct fatitem *fat; /*FAT表*/ struct direct *root; /*根目录*/ struct direct *cur_dir; /*当前目录*/ struct opentable u_opentable; /*文件打开表*/ int fd=-1; /*文件打开表的

操作系统实验_实验1

广州大学学生实验报告 开课学院及实验室:计算机科学与工程实验室 2015年11月11日 实验课 操作系统成绩 程名称 实验项 进程管理与进程通信指导老师陈康民目名称 (***报告只能为文字和图片,老师评语将添加到此处,学生请勿作答***) 进程管理 (一)进程的创建实验 一、实验目的 1、掌握进程的概念,明确进程的含义 2、认识并了解并发执行的实质 二、实验内容 1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一 个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及'son ……', 父进程显示'parent ……',观察结果,分析原因。 三、实验步骤 1、编写一段程序,使用系统调用fork( )创建两个子进程。 代码: #include main( ) { int p1,p2; while((p1=fork( ))= = -1); /*创建子进程p1*/ if (p1= =0) putchar('b'); else { while((p2=fork( ))= = -1); /*创建子进程p2*/ if(p2= =0) putchar('c'); else putchar('a'); } } 运行结果:

bca,bac, abc ,……都有可能。 2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及'son ……',父进程显示'parent ……',观察结果,分析原因。 代码:#include main( ) { int p1,p2,i; while((p1=fork( ))= = -1); /*创建子进程p1*/ if (p1= =0) for(i=0;i<10;i++) printf("daughter %d\n",i); else { while((p2=fork( ))= = -1); /*创建子进程p2*/ if(p2= =0) for(i=0;i<10;i++) printf("son %d\n",i); else for(i=0;i<10;i++) printf("parent %d\n",i); } } 结果:

操作系统:进程调度实验报告

设计性实验报告 一、实验目的 1.在Linux下用C语言编程模拟优先级进程调度算法和时间片轮转进程调度算法。 2.为了清楚地观察每个进程的调度过程,每次调度程序应将各个进程的情况显示出来。 二、总体设计(设计原理、设计方案及流程等) 1、优先级进程调度算法 采用动态优先级进程调度算法,其基本思想是每次调度总是把处理机分配给优先级最高的进程,同时在运行过程中进程的优先级随着执行或等待的时间而降低或增加。 在该实验中每个进程用一个进程控制块( PCB)表示。进程控制块包含如下信息:进程号,进程名、优先数、需要运行时间、已用CPU时间、进程状态。进程号,名字,优先数,运行的时间,事先人为地指定。每个进程的状态可以是就绪,执行,阻塞或完成4种状态之一。 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。就绪队列中的进程在等待一个时间片后,优先级增1。如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时将进程的优先级减1,然后把它插入就绪队列等待CPU。 2、时间片轮转调度算法 采用简单时间片轮转调度算法,其基本思想是:所有就绪进程按 FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片相同。如果运行进程用完它的时间片后还未完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。直至所有的进程运行完毕。 三、实验步骤(包括主要步骤、代码分析等) 1.打开linux虚拟机,用vim编辑器打开代码进行修改和调整。用gcc编译器进行编译编译运行首先运行优先级算法,如图所示:

进程同步实验报告

实验三进程的同步 一、实验目的 1、了解进程同步和互斥的概念及实现方法; 2、更深一步的了解fork()的系统调用方式。 二、实验内容 1、预习操作系统进程同步的概念及实现方法。 2、编写一段源程序,用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。程序的输出是什么?分析原因。 3、阅读模拟火车站售票系统和实现进程的管道通信源代码,查阅有关进程创建、进程互斥、进程同步的系统功能调用或API,简要解释例程中用到的系统功能或API的用法,并编辑、编译、运行程序,记录程序的运行结果,尝试给出合理的解释。 4、(选做)修改问题2的代码,使得父子按顺序显示字符“a”;“b”、“c”编辑、编译、运行。记录程序运行结果。 三、设计思想 1、程序框架 (1)创建两个子进程:(2)售票系统:

(3)管道通信: 先创建子进程,然后对内容加锁,将输出语句存入缓存,并让子进程自己进入睡眠,等待别的进程将其唤醒,最后解锁;第二个子进程也执行这样的过程。父进程等待子进程后读内容并输出。 (4)修改程序(1):在子进程的输出语句前加上sleep()语句,即等待父进程执行完以后再输出。 2、用到的文件系统调用函数 (1)创建两个子进程:fork() (2)售票系统:DWORD WINAPI Fun1Proc(LPVOID lpPartameter); CreateThread(NULL,0,Fun1Proc,NULL,0,NULL); CloseHandle(hThread1); (HANDLE)CreateMutex(NULL,FALSE,NULL); Sleep(4000)(sleep调用进程进入睡眠状态(封锁), 直到被唤醒); WaitForSingleObject(hMutex,INFINITE); ReleaseMutex(hMutex); (3)管道通信:pipe(fd),fd: int fd[2],其中: fd[0] 、fd[1]文件描述符(读、写); lockf( fd,function,byte)(fd: 文件描述符;function: 1: 锁定 0:解锁;byte: 锁定的字节数,0: 从当前位置到文件尾); write(fd,buf,byte)、read(fd,buf,byte) (fd: 文件描述符;buf : 信息传送的源(目标)地址;byte: 传送的字节数); sleep(5); exit(0); read(fd[0],s,50) (4)修改程序(1):fork(); sleep(); 四、调试过程 1、测试数据设计 (1)创建两个子进程:

相关文档
最新文档