含根式函数值域的求法

含根式函数值域的求法
含根式函数值域的求法

含根式函数值域的几何求法

函数值域和最大值、最小值问题是高中数学中重要的问题,其求解的方法很多,常见的解法有:观察法、配方法、均值不等式法、反函数法、换元法、判别式法、单调函数法、图解法等。其中,利用数形结合来求函数的值域,尤其是含根式函数的值域,具有其独特的效果,它能够把满足题意的几何图形画出来,生动形象的直观图,提示和启发我们的解题思路,有时,图形式直接提供了我们寻求的答案,因此,几何法既可以使题意更加明确,又可以使运算得到简化。

例1 求函数312+-+=x x y 的最小值.

解:由03≥+x 得:3-≥x .

令???≥+=-≥+=)

0(3)5(12v x v u x u ,消去x 得:)0,5()5(212≥-≥+=v u u v 则点()v u ,在)5(2

12+=u v 的抛物线段上,又在直线y u v -=上,如图1,易知,当直线与抛物线相切时,-y 取最大值,取y 最小值。

联立方程组?????-=+=y

u v u v )5(212, 消去u 整理得:

0522=---y v v ,由△=0,

即:0)5(24)1(2=--??--y 解得:=y 8

41-. ∴ 原函数的最小值为841-

. 评注:本题可以利用代数换元法,将含根式函数的值域问题转化为二次型函数在某区间上的值域问题,其解题过程中运算量并不大,而且不难接受理解。因此,本题利用构造直线与抛物线进行求解,并没有真正体现出几何解法的优越性。

图1

例2 求函数131-++-=x x y 的值域. 分析:本题不能用换元法进行求解,因此,我们也来尝试利用几何解法。 解:由???≥+≥-0301x x 解得:13≤≤-x . 令???≤≤+=≤≤-=)20(3)20(1v x v u x u ,消去x 得:)20,20(422≤≤≤≤=+v u v u

则点()v u ,在422=+v u 的园弧上,又在直线1++-=y u v 上,

如图2,显然OB y OA ≤+≤1

又 ∵ 22,2==OB OA

∴ 1221-≤≤y 即为原函数所求的值域。

例3 求函数106422+-++=x x x y 的最小值.

分析:当我们把106422+-++=x x x y 化为:

y 2222)10()3()20()0(-+-+-+-=x x 时,容易联想到两点间距离。

解:

106422+-++=x x x y 2222)10()3()20()0(-+-+-+-=x x

设P (x , 0),A (0, 2),B (3, 1),则问题转化

为在x 轴上找一点P ,使得P 到A 、B 两点的

距离之和最小。如图3,易求得点A 关于x 轴

的对称点A / 的坐标为(0, -2),则:

B A BP P A BP AP //=+=+即为最小.

∴ 32)12()30(22/min =--+-==B A y .

评注:本题可用判别式法以及构造复数由模的重

要不等式进行求解,但是判别式法计算量很大,不易 图2

图3

图4 u

求解,而复数法实质上就是上述解法的另一种形式,可见,利用数形结合求解含根式函数的值域,不但简化了解题过程,而且在思维上提高了认识,对培养学生的创造力具有重要的意义。

例4 求函数2214401016x x x x y -+--+=的值域. 解:由2214401016x x x x y -+--+=得:

)

2(]5)2[(9)5(9222--------=x x x x y . 我们可以看到上式的右边表示过函数2)5(9--=x u 上自变量x 相差2的任意两点的直线的斜率,如图4,

∴ AB CD k y k ≤≤2 ∵ B ,C 两点的坐标分别为()()

22,6,22,4

∴ 2,2=-=AB CD k k

∴ 222≤≤-y 即:2222≤≤-y . ∴ 原函数的值域为[]

22,22-.

例5 求函数113632424+--+--=x x x x x y 的最大值.

解:由已知函数得:222222)0()1()3()2(-+---+-=x x x x y

上式可看作抛物线2v u =上的点P 到点A (3,2),B (0,1)距离之差的最大值,如图5.

由AB PB PA ≤-可知:当点P 在AB

的延长线上的P / 处时,y 取最大值AB .

∴ 10)12()03(22max =-+-=y .

例6 求函数7)2(4222+---=x x y 的值域. 图5

解:令???≤≤--=≤≤=)20()2(4)40(2v x v u x u , 消去x 整理得:4)2(22=+-v u ,

则2222)2(2722)2(2722-++-?

-+=+-=v u v u y , 其中22)2(27

22-++-v u 是半园A :4)2(22=+-v u (20≤≤v )上点到直线l :0722=+-v u 的

距离,如图6,从圆心A 作AC ⊥l 于C 交半园A 于E ,BD ⊥l 于D ,则BD v u CE ≤-++-≤22)2(27

22

∵ 22211

2-=

-=AC CE , 2215

=BD

∴ BD y CE ?-+≤≤?-+2222)2(2)2(2

∴ 152411≤≤-y 即为所求函数的值域.

例7 求函数2

212+-=x x y 的最大值. 分析:把原函数化为)

2(0212----=x x y 时,我们就容易联想到两点的斜率公式。 解:由???≠+≥-0

20212x x 解得:2222≤≤-x . .

令??

???≤≤-=≤≤-=)10(21)2222(2v x v u x u ,

消去x 整理得:1222=+v u ,

图6

则2212+-=x x y )

2(0212----=x x . 其中)

2(0212----x x 可看作是椭圆弧1222=+v u )2222(≤≤-u 上点P 与点Q (-2,0)连线的斜率k ,如图7易知:当直线过点Q 且与椭圆弧相切时,其斜率取最大值。

联立方程组???+==+)

2(1222u k v v u ,消去v 化简整理得:

0144)2(2222=-+++k u k u k ,

由△=0,即:

0)14()2(4)4(2222=-?+?-k k k

解得:=k 714或=k -7

14(舍去). ∴ 原函数的最大值为

714.

图7

根式函数值域定稿版

根式函数值域 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

探究含有根式的函数值域问题 含根式的函数的值域或者最值问题在高中数学的学习过程中时常遇到,因其解法灵活,又缺乏统一的规律,给我们造成了很大的困难,导致有些学生遇到根式就害怕。为此,本文系统总结此类函数值域的求解方法,供学生参考学习。 1.平方法 例1:求31++-=x x y 的值域 解:由题意知函数定义域为[]1,3-,两边同时平方得:322422+--+=x x y =4+()4212+- +x 利用图像可得[]8,42∈y ,又知?y 0[]22,2∈∴y 所以函数值域为[]22,2 析:平方法求值域适用于平方之后可以消去根式外面未知量的题型。把解析式转化为()x b a y ?+=2 的形式,先求y 2 的范围,再得出y 的范围即值域。 2.换元法 例2: 求值域1)12--=x x y 2)x x y 2 4-+= 解:(1)首先定义域为[)+∞,1,令()01≥-=t x t ,将原函数转化为 [)+∞∈,0t ,?? ????+∞∈∴,815y 析:当函数解析式由未知量的整数幂与根式构成,并且根式内外的未知量的次幂保持一致。可以考虑用代数换元的方法把原函数转化成二次函数,再进行值域求解。 (2)首先,函数定义域为[]2,2-∈x ,不妨设αsin 2=x ,令?? ????-∈2,2ππα

则原函数转化为:??? ? ?+=+=4sin 22cos 2sin 2παααy ?? ????-∈2,2ππα,∴??????-∈+43,44πππα 析:形如题目中的解析式,考虑用三角换元的方法,在定义域的前提下,巧妙地规定角的取值范围,避免绝对值的出现。 不管是代数换元还是三角换元,它的目的都是为了去根式,故需要根据题目灵活选择新元,并注意新元的范围。 3.数形结合法 例3:1)求()()8222+-+= x x y 的值域。 2)求1362222+-++-= x x y x x 的最小值。 解:(1)()()8222+-+=x x y 82++-=x x 其解析式的几何意义为数轴上的一动点x ,到两定点2与-8的距离之和,结合数轴不难得到[]+∞∈,10y (2)解析式可转化为()()41312 2+++=--x x y , 定义域为R ,进行适当的变形 ()()=+++--413122x x ()()()()2031012 222----+++x x , 由它的形式联想两点间的距离公式,分别表示点到点的距离与点的距离之和。 点()0,x P 到()1,1A 和()2,3B 的距离之和。即PB PA y +=,结合图形可知 13min =+'=PB A P y ,其中()1,1-'A 析:根据解析式特点,值域问题转化成距离问题,结合图形得出最值,进而求出了值域。 例4:1) 求x x y x 2312 +--+=的值域

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

高中函数值域的12种求法

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y-1或y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为 {y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

根式和一次函数

实数 3.1无理数 有理数总可以用有限小数或无限循环小数表示。反过来,任何有限小数或无限循环小数也都是有理数。 1.无理数的概念:无限不循环小数叫做无理数(两个条件:①无限②不循环)。 练习:下列说法正确的是() (A)无限小数是无理数; (B)带根号的数是无理数; (C)无理数是开方开不尽的数; (D)无理数包括正无理数和负无理数 2.无理数: (1)特定意义的数,如∏; (2)特定结构的数;如2.02002000200002… (3)带有根号的数,但根号下的数字开不尽方,如 3.分类:正无理数和负无理数。 3.2平方根 1.定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫做二次方根)。 2.表示方法: 正数a有两个平方根,一个是a的算术平方根a;另一个是-a,它们是 一对互为相反数,合起来是0 3.开平方:求一个数a的平方根的运算,叫做开平方(其中,a叫被开方数,且a为非负数)。开平方与乘方是互为逆运算。 判断:(1) 2是4的平方根() (2) -2是4的平方根() (3)4的平方根是2 () (4)4的算术平方根是-2 () (5)17的平方根是17() (6)-16的平方根是-4 () 小结: 一个正数有两个平方根,它们互为相反数; 0只有一个平方根,它是0本身; 负数没有平方根。 3.3立方根 1.定义: 如果一个数x的立方等于a,即x3=a, 那么这个数x叫做a的立方根(三次方根)。 2.性质: 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 3.开立方: 求一个数a的立方根的运算,叫做开立方(其中,a叫被开方数)。 4.平方根与立方根的联系与区别: (1)联系:①0的平方根、立方根都有一个是0; ②平方根、立方根都是开方的结果。 (2)区别:①定义不同;②个数不同;③表示方法不同;④被开方数的取值范围不同。

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数值域的13种求法

函数值域十三种求法 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y =的值域 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得: 4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法(只有定义域为整个实数集R 时才可直接用) 例4. 求函数 22 x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 21≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为????? ?23,21

例5. 求函数)x 2(x x y -+=的值域 解:两边平方整理得: 0y x )1y (2x 222=++-(1) ∵R x ∈ ∴ 0y 8)1y (42≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出 的范围可能比y 的实际范围大,故不能确定此函数的值域为????? ?23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ 0)x 2(x x y ≥-+=∴ 21y ,0y min +==∴代入方程(1) 解得:] 2,0[22 222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域 解:由原函数式可得: 3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:33(,)(,)55 -∞?+∞

探究二次根式函数值域的求法

探究二次根式函数值域的求法 有些含有二次根式的函数值域问题是高中数学中常见的题型,它的形式多种多样,方法也灵法多变,几乎涵盖了所有的函数值域的求法。正因为它含有二次根式,因而求有关此类值域时也就有了它独特的一面。下面通过不同的角度进行探究。 探究一:求x x x 3245)(f ---= 的值域 设想一:观察此函数不难发现f ()x 在其定义域内是增函数,利用函数的单调性求其值域。 解:()x x x f 3245---= 05≥-∴x 2403≥-x 5≥∴x 8≤x 即函数的定义域为[]8,5 又()x f 在其定义域内是增函数。 ()()35m i n -==∴x f ,x f x 即有最小值时当 当()()38max ==x f x f x 的最大值,即时, 综上所述,函数()x f 的值域为[] 3,3,- 设想二:在解析几何中,一个代数式往往有一些特定的几何意义,这就为我们实施数与形的转换提供了理论依据,而此题目正类似于我们学过的直线与圆。 解: ()x x x f 3245---= ()x x x f ---=∴835 设a=x b x -=-8,5 (a ≥0,b ≥0) y=()x f 易得 3 32 2 =++=b a y b a 故y 可视为斜率为3的直线a 在圆3a 2 2 =+b 上移动,何时截距最大,何时截距最 小。由于0≥a ,0≥b 所以32 2=+b a 表示的仅为第一象限内 41 由图易知,直线经过A 点时,截距 y 最小,直线过B 点时,截距 y 最大。 将A (3,0),B (0,3)分别代入b y a 3+=中, y +﹛

含根式函数值域的求法

含根式函数值域的几何求法 函数值域和最大值、最小值问题是高中数学中重要的问题,其求解的方法很多,常见的解法有:观察法、配方法、均值不等式法、反函数法、换元法、判别式法、单调函数法、图解法等。其中,利用数形结合来求函数的值域,尤其是含根式函数的值域,具有其独特的效果,它能够把满足题意的几何图形画出来,生动形象的直观图,提示和启发我们的解题思路,有时,图形式直接提供了我们寻求的答案,因此,几何法既可以使题意更加明确,又可以使运算得到简化。 例1 求函数312+-+=x x y 的最小值. 解:由03≥+x 得:3-≥x . 令???≥+=-≥+=) 0(3)5(1 2v x v u x u ,消去x 得:)0,5()5(212≥-≥+=v u u v 则点()v u ,在)5(21 2+=u v 的抛物线段上,又在直线y u v -=上,如图1,易知,当直线 与抛物线相切时,-y 取最大值,取y 最小值。 联立方程组?????-=+=y u v u v )5(212, 消去u 整理得: 0522=---y v v ,由△=0, 即:0)5(24)1(2=--??--y 解得:=y 841 -. ∴ 原函数的最小值为841 -. 评注:本题可以利用代数换元法,将含根式函数的值域问题转化为二次型函数在某区间上的值域问题,其解题过程中运算量并不大,而且不难接受理解。因此,本题利用构造直线与抛物线进行求解,并没有真正体现出几何解法的优越性。 例2 求函数131-++-=x x y 的值域. 分析:本题不能用换元法进行求解,因此,我们也来尝试利用几何解法。 解:由???≥+≥-0301x x 解得:13≤≤-x . 令???≤≤+=≤≤-= )20(3)20(1v x v u x u ,消去x 得:)20,20(422≤≤≤≤=+v u v u 则点()v u ,在422=+v u 的园弧上,又在直线1++-=y u v 上, 图 2 图1

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

函数与二次根式

八上期末练习(1) 姓名: 一、填空题: 1、下列式子中:3,40,1,,1,2,16222-+++n b a a a ,是二次根式的是 ,若A=42)9(+a ,则A 的算术平方根是 。 2.若a 为正整数,a -5为整数,则a 的值可以是 ;已知t=212x --,当x= 时, t 的最大值是 。 3.已知有理数a,b 满足等式,33 2 235a b a -+ =-则a= ;b= 。 4.如果x 是任意实数,则2x = ;()2 2a a = 成立的条件是 ;当a 时, 12=a a ;当a 时,12 -=a a ; 5 2 690y y -+=则xy= ; 6.已知直线1y x =,2113y x = +,24 55 y x =-+的图象如图所示,若无论x 取何值,y 总取1y 、2y 、3y 中的最小值,则y 的最大值为 。 7.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2, C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是______________. 8.已知直线y=- 3x+ 3与x 轴,y 轴分别交于A ,B 两点,在坐标轴上取一点P ,使得△PAB 是等腰三角 形,则符合条件的点P 有( )个. A 、4 B 、6 C 、7 D 、8 9.如图所示,直线OP 经过点P (4 ,,过x 轴上的点1、3、5、7、9、11…分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2…Sn ,则Sn 关于n 的函数关系式是 第6题图 第9题

高中数学求值域的10种方法

求函数值域的十种方法 一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。 例1.求函数1y = 的值域。 【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。 【练习】 1.求下列函数的值域: ①32(11)y x x =+-≤≤; ②x x f -+=42)(; ③1 += x x y ; ○ 4()112 --=x y ,{}2,1,0,1-∈x 。 【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞U ;○4{1,0,3}-。 二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如 2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例2.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例3.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得 ][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为: 0)(≥x f 。 例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

函数值域求法十一种(可编辑修改word版)

x x x x 函数值域求法十一种 1.直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 y =1 例1. 求函数x 的值域。 解:∵x ≠ 0 1 ≠ 0 ∴x 显然函数的值域是:(-∞,0) (0,+∞) 例2. 求函数y = 3 -的值域。 解 :∵ ≥ 0 ∴-≤ 0,3 -≤ 3 故函数的值域是:[-∞,3] 2.配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数y = x 2- 2x + 5, x ∈[-1,2] 的值域。解:将函数配方得:y = (x - 1) 2+ 4 ∵x ∈[-1,2] 由二次函数的性质可知:当x=1 时,y min = 4 ,当x =-1时,y max = 8故函数的值域是:[4,8] 3.判别式法例 4. 求函数y = 1 + x + x2 1 + x2的值域。 解:原函数化为关于x 的一元二次方程(y - 1)x 2+ (y - 1)x = 0 (1)当y ≠ 1时,x ∈R ?= (-1) 2- 4(y - 1)(y - 1) ≥ 0 1 ≤ y ≤ 3 解得:2 2 1∈?1 , 3 ? (2)当y=1 时,x = 0 ,而??2 2 ??

? 1 , 3 ? 故函数的值域为?? 2 2 ? ? 例5. 求函数y = x + 的值域。 解:两边平方整理得:2x 2 - 2(y + 1)x + y 2 = 0 (1) ∵x ∈R ∴? = 4(y + 1) 2 - 8y ≥ 0 解得:1 - ≤ y ≤ 1 + 但此时的函数的定义域由x(2 - x) ≥ 0 ,得0 ≤ x ≤ 2 由? ≥ 0 ,仅保证关于x 的方程:2x 2 - 2(y + 1)x + y 2 = 0 在实数集R 有实根, 而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 ? 1 , 3 ? ? ≥ 0 求出的范围可能比y 的实际范围大,故不能确定此函数的值域为?? 2 2 ? ? 。 可以采取如下方法进一步确定原函数的值域。 ∵0 ≤ x ≤ 2 ∴y = x + ∴y min = 0, y = 1 + x 1 = ≥ 0 代入方程(1) ∈[0,2] 解得: 2 + 即当 x 1 = 2 - 24 2 2 时, 原函数的值域为:[0,1 + 2 ] 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时, 应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函 数的值域。 3x + 4 例6. 求函数5x + 6 值域。 x = 4 - 6y 解:由原函数式可得: y = 4 - 6y 5y - 3 x ≠ 3 则其反函数为: 5x - 3 ,其定义域为: 5 x(2 - x) 2 2 x(2 - x) 2 2 + 2 - 24 2 2

函数的值域专题

函数的值域专题 第I 类:简单的复合函数 引例1:241x y --=;)4(log 22x y -=;124++=x x y ;1sin sin 2++=x x y 第II 类:带分式的复合函数(换元、部分分式法、反解(判别式法)、公式法) 引例2:直接写出函数=y x x 3121+-的值域为____________,曲线的对称中心为________;若添加条件[]1,0∈x ,则值域为________; 根据以上结论直接写出函数的值域:)2,0(sin 31sin 21?? ????∈+-=πx x x y ;[])1,0(3121∈+-=x x x y 引例3:求函数1 32+-=x x y 的值域 变式:求函数312-+= x x y 的值域 变式:求函数x x x x y cos sin 2cos sin ++=(?? ????∈2,0πx )的值域 引例4:求函数1 58522+++=x x x y 的值域 变式:若已知函数)(1 3)(22R x x n x mx x g ∈++-=的值域为[]8,2,求实数n m ,的值 解答: 练:若已知函数)(1 8)(22R x x n x mx x g ∈+++=值域为[]9,1,求实数n m ,的值 第III 类:带根式的复合函数 引例5:求函数x x y 21--=的值域; 思考:根式函数)0(≠+++=AC D Cx B Ax y 的值域如何研究? 引例6:求函数x x x f 211)(--+=的值域; 变式1:求函数x x x f 21)(-=的值域; 变式2:求函数x x y -++=31的值域;

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。这些解题思想与方法贯穿了高中数学的始终。 常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+020 1x x ?? ?≠-≥2 1 x x

根式函数的性质及其应用

根式函数b ax y += 2的性质及其应用 摘要: 关键词: 1、 引言 高考题中经常会出现含根式函数b ax y +=2的相关试题,根据试题的条件和结论的内在联系,抓住关键的结构特征,借助其图象和性质,即可快速准确地解决试题. 下面,我们对形如)0,(2>+=b a b ax y 的根式函数的性质进行归纳,以期抛砖引玉. 2、 性质归纳 性质1(定义域) R 性质2( 值域 ) ),[+∞b 性质3(单调性) 在()0,∞-上单调递减,在()+∞,0上单调递增 性质4(奇偶性) 偶函数 性质5(对称性) 关于y 轴对称 将根式函数)0,(2>+=b a b ax y 变形为),0,(22b y b a b ax y ≥>=-,得 性质6(特殊性) ① 该函数的图象是焦点在y 轴上的双曲线的上支 ② 有两条渐近线,方程为x a y ±= ③ 该函数是R 上的凹函数 有了性质作辅助,遇题便有章可依. 3、 典例分析 例1 已知+∈R b a ,,且1=+b a ,求证:22141422≥+++b a 证明:设函数14)(2 +=x x f ,它的图象是双曲线14 12 2 =-x y 的上支(如右图)

)(x f 是R 上的凹函数, ∴ )2 (2)()(b a f b f a f +≥+ ∴ 124214142 22+?? ? ??+≥+++b a b a 即得2214142 2≥+++b a 证毕. 推广: 若),,2,1(n i R x i i =∈,且11 =∑=n i i x ,则有21 2bn a b ax n i i +≥+∑= 例2 已知R b a ∈,,求证:||2|1414|22b a b a -≤+-+ 证明:① 若b a =,显然成立. ② 若b a ≠,原不等式等价于2|1 414|22≤-+-+b a b a 设函数14)(2 +=x x f ,则b a b a -+-+1 41422可看作函数)(x f 图象上任意两点 ()14,2+a a P ,() 14,2+b b Q ()b a ≠连线的斜率, 即转化为求导函数)('x f 的值域问题. 1 44)(2'+= x x x f ,∴ 2| |2| |41 4||4|)(|2'<< += x x x x x f ∴ 2|1 414| 22≤-+-+b a b a . 综上所述,||2|1414|22b a b a -≤+-+ 点拨:本题的实质是考查双曲线上支上任意两点连线的斜率必介于两渐近线的斜率2-与2之间. 例3 当b a <<0时,求证:()14414142 22+-> +-+a a b a a b 证明:原不等式等价于 1 441 4142 22+>-+-+a a a b a b 设函数14)(2 +=x x f ,则a b a b -+-+1 41422可看作函数)(x f 图象上任意两点 ()()a f a P ,,()()b f b Q ,连线的斜率.由高等数学中的拉格朗日中值定理可知,在 ()b a ,上存在一点ξ,使得 )() ()('ξf a b a f b f =--.

函数值域13种求法

函数值域十一种求法 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1y = 的值域 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域 解:∵ 0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4 y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:2 3y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ? ????∈23,211 故函数的值域为? ???? ?23,21

例5. 求函数) x 2(x x y -+= 的值域 解:两边平方整理得:0 y x )1y (2x 22 2 =++-(1) ∵R x ∈ ∴0y 8)1y (42 ≥-+=? 解得:2 1y 21+ ≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0 ≥?,仅保证关于 x 的方程:0y x )1y (2x 22 2 =++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出 的范围可能比 y 的实际范围大,故不能确定此函数的值域为? ???? ?23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ )x 2(x x y ≥-+ =∴ 2 1y ,0y min + ==∴代入方程(1) 解得:] 2,0[2 22 22x 4 1∈-+= 即当 2 2 222x 4 1-+= 时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6 x 54 x 3++值域 解:由原函数式可得:3 y 5y 64x --= 则其反函数为: 3 x 5y 64y --= ,其定义域为: 5 3x ≠ 故所求函数的值域为:3 3(,)(,)5 5 -∞?+∞

函数值域求法十五种

在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 基本知识 1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。 2.函数值域常见的求解思路: ⑴划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。 ⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。 特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷可以用函数的单调性求值域。 ⑸其他。 1. 直接观察法 对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域 例1. 求函数的值域。 解:∵∴ 显然函数的值域是: 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例2. 求函数的值域。 解:将函数配方得: ∵ 由二次函数的性质可知:当x=1时,,当x=-1时,

故函数的值域是:[4,8] 3. 判别式法 例3. 求函数的值域。 解:两边平方整理得:(1) ∵∴ 解得: 但此时的函数的定义域由,得 由,仅保证关于x的方程:在实数集R有实根,而不 能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能 比y的实际范围大,故不能确定此函数的值域为。 可以采取如下方法进一步确定原函数的值域。 ∵∴ ∴代入方程(1) 解得:即当时, 原函数的值域为: 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例4. 求函数值域。

相关文档
最新文档