实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验
实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性

和声光调Q实验

实验目的

1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计

算;

2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则;

3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解

激光器在连续和调Q脉冲工作状态下的激光功率输出特性,

4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。

实验原理

1. 固体Nd:YAG激光器工作原理

固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。

激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

图4-1 四能级系统结构示意图

在集居数反转状态的物质称为激活介质。当光通过此介质时,得到放大。这种放大作用的大小通常用增益系数G 来描述,它表示光通过单位长度激活介质后光强增长的百分数。G 是光强的函数,同时也是反转集居数Δn 的函数。当光在激活介质中传播时,随着光强增强,单位体积内的反转集居数Δn 减少,G 也随之减小,这称为增益饱和效应,当光强很小时,增益系数用G 0来表示,称为小信号增益系数,它与光强无关。激光器能够产生自激振荡的条件可由下式表达:

m I 0

s I =(G -α)α≥0 也即G 0≥α (4.1) 式中I m 为腔内光强,仅与放大器本身参数有关:I s 为饱和光强(为描述增益饱和效应引入的参量);α为包括激光介质损耗和谐振腔损耗在内的平均损耗系数。这里激光介质的损耗有吸收、散射损耗;谐振腔的损耗有反射镜的透射、吸收、衍射损耗及谐振腔失调引起的偏折损耗等。当光腔内折射率均一时,(4.1)还可表示为:l G 0≥αL 式中l 为工作物质长度,L 为谐振腔长度,若光泵激励足够强,使得l G 0=αL 时,激光器开始振荡,为此时应的输入光泵的能量称为激光器的阈值输入能量E t ,相应反转集居数为阈值反转集居数Δn t 。当l G 0>αL ,腔内光强增加,且正比于(l G 0≥αL),此时激光输出能量将随之增加,由此可见,激光器的增益特性和损耗特性将直接影响该系统的输入输出特性。对一台激光器系统,存在一个最佳透过率T m ,当T=T m 时,对于相同的输入能量输出能量最大。 通常的激光器谐振腔的损耗是不变的,一旦光泵浦使反转粒子数达到或略超过阈

值时,激光器便开始振荡,于是激光上能级的粒子数因受激辐射而减少,致使上能级不能积累很大的反转粒子数,只能被限制在阈值反转数附近,这是普通激光器峰值功率不能提高的原因。

2. 声光调Q 的原理

既然激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变激光器的阈值来实现,具体的说,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,激光器谐振腔的损耗大于增益,Q 值很低,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积累得很多。当反转粒子数积累到最大时,再突然把阈值调到很低,Q 值很高,此时,积累在上能级的大量粒子便雪崩式的跃迁到低能级,于是在极短的时间内将能量释放出来,就获得峰值功率极高的巨脉冲激光输出。

调Q 技术正是利用了上述原理,通过某种方式使激光谐振腔的Q 值产生突变,使受激辐射在很短的时间建立并达到最大值,获得峰值功率高于兆瓦,脉宽为几十纳秒的激光巨脉冲。常用调Q 方法有转镜调Q 、电光调Q 、声光调Q 和被动调Q 。

对于连续泵浦的固体激光器通常采用声光调Q 的形式。

声光调Q 激光器是利用声光相互作用原理,采用声光调制器件进行调Q 的激光器。

声波是一种弹性波(纵向应力波),当它在介质中传播时,使介质产生相应的弹性形变,引起介质的密度成疏密相间的交替变化,因此介质的折射率也随着发生周期性的变化,等于在介质中形成一个光学的“相位光栅”,该光栅的光栅常数等于声波的波长。当光波通过此介质的时候,会产生光的衍射,衍射光的强度、频率、方向都会随着超声场的变化而变化。

声光Q 开关器件的结构由声光介质、电声换能器、吸声材料和驱动电源组成。其原理示意图如图4-2所示由声光晶体和调Q 驱动电源组成装置。声光介质主要采用熔融石英、玻璃、钼酸铅等。换能器常采用石英、铌酸锂等晶体制成。吸声材料常用铅橡胶或玻璃棉等。按着声波频率的高低以及声光作用区长度的不同,声光相互作用可以分为Raman-Nath 衍射和Bragg 衍射两种类型。当光波入射方向与声波阵面夹角为布拉格角sin 2B S S

f n λθυ=时,产生Brag

g 衍射。这时衍射光

为0级和1级(或-1级)衍射光。当调制功率达到一定水平以后,入射光的能量可以被完全转移到1级(或-1级)衍射光中去。

把声光Q开关器件插入谐振腔内,当声光电源产生的高频振荡信号加在声光调Q器件的换能器上时,使声光介质折射率发生变化,形成等效的“相位光栅”,

角的偏当光束通过声光介质时,便产生布拉格衍射。衍射光相对于0级光有2

B

离(如当超声频率在20~50MHz范围时,石英对1.06μm的光波的衍射角为0.3~0.5o),这一角度完全可以使光波偏离出腔外,使谐振腔处于高损耗低Q值状态,不能产生振荡,或者说Q开关将激光“关断”。当高频信号的作用突然停止,则声光介质中的超声场消失,于是谐振腔又突变为高Q值状态,相当于Q开关“打开”。Q值交替变化一次,就使激光器输出一个调Q脉冲。

图4-2 声光开关处于关断状态时工作原理示意图

为了使工作物质所存储的能量在很短的时间内以单一脉冲发射,Q开关必须在短于激光脉冲建立的时间内完成由低Q值到高Q的转变(阶跃式变化)。对于声光Q开关,断开的时间主要由声波通过光束的渡越时间决定(电子开关时间不是主要的),以熔融石英为例,声波通过1mm的长度需要时间约为200ns(声速为5mm/s),这一时间对于某些高增益的脉冲激光器来说显得太长。因此,声光Q 开关一般用于增益较低的连续激光器,而且声光Q开关所需要的驱动调制电压很低(小于200V)。故容易实现对连续激光器调Q以获得高重复频率的脉冲输出,一股重复率可达1~20KHz。但由于声光Q开关对高能量激光器的开关能力比较差,故不宜用于高增益调Q激光器。

声光Q开关用于连续激光器时,需要用脉冲调制器产生频率为f的矩形脉冲来调制高频振荡器的信号,因此声光介质中超声场出现的频率为脉冲调制信号的频率,于是激光器输出重复率为f的调Q脉冲序列。为了能使工作物质激光上能级积累足够多的粒子,并且避免过多的自发辐射损耗,以便激光器在保证一定的

峰值功率下得到最大的反转粒子数利用率,相邻两个脉冲的时间间隔1/f大致要与激光工作物质的上能级寿命相等,对于Nd:YAG激光器,其上能级寿命约为230μs,因此,选取调Q重复率f在4~5kHz为宜。在这种情况下,反转粒子数的利用率最高。重复频率过高或过低都会影响调Q效果。

实验内容

1.不加入声光调Q器件测量连续Nd:YAG激光器不同透过率下静态输出特性和阈值电流,得到最佳透过率参数。

2.了解声光调Q的基本原理,观察红光的纳曼-奈斯衍射现象。加入声光调Q器件测量连续Nd:YAG激光器调Q和连续工作状态下输出特性,计算斜率效率和动静比。

3. 不同泵浦电流和调Q频率下声光调Q输出特性实验。测量声光不同调Q频率下的激光输出功率的特性并绘出曲线。

实验装置

图4-3 不包含调Q器件Nd:YAG激光输出特性实验装置图

图4-4 包含调Q器件Nd:YAG激光输出特性实验装置图

连续半导体泵浦固体激光器静态输出特性和声光调Q实验采用图4-3和图4-4所示的实验装置,进行连续半导体泵浦固体激光器静态输出特性和声光调Q 实验。包括:半导体泵浦模块、全反镜、输出镜、声光调Q开关、功率计。

实验步骤

连续半导体泵浦固体激光器静态输出特性和声光调Q实验步骤如下:1.开启循环冷却水箱。

2.开启激光电源。

3.采用图4-3实验装置图,按照实验一的步骤1-5调整激光谐振腔,可以观察到激光输出。

4.改变激光泵浦输入电流,分别测量输出功率,得到一组输出功率随输入电流变化曲线。

5.更换输出镜透过率,重复实验步骤3和4,得到另一组输出功率随输入电流变化曲线。与前一组比较,得到输出镜最佳透过率。

6.降低激光输入电流,直至无激光输出,加入声光调Q开关,采用图4-4实验装置图,按照实验一的步骤1-5调整激光谐振腔,可以观察到激光输出。7.开启半导体准直激光,打开声光调Q电源,观察纳曼—奈斯衍射现象。8.关闭声光调Q电源,改变激光泵浦输入电流,分别测量输出功率,得到一组输出功率随输入电流变化的静态曲线。此时输入电流最大不超过15A。9.打开声光调Q电源,固定声光调Q频率,改变激光泵浦输入电流,得到一组输出功率随输入电流变化的动态曲线。

10.改变声光调Q频率,重复实验步骤9,得到几组输出功率随输入电流变化的

动态曲线。

11. 关闭激光电源。

12. 关闭声光调Q电源。

13. 关闭循环冷却水箱。

实验结果处理:通过实验可以观察到明显的纳曼—奈斯衍射现象,绘制出静态工作和调Q工作状态下,激光输出功率与输入电流关系曲线图,计算斜率效率和动静比。比较不同调Q频率下激光输出特性曲线,给出实验结论和分析,理解

最佳的调Q频率的含义。

实验教学建议:学生可以分成4人一组,两个人负责调整谐振腔和测量激光功率,两个人负责激光器电源、调Q电源和冷却水箱的操作,激光泵浦输入电流和调Q频率的调整,并且进行数据记录工作。

实验学时建议:4学时。

安全注意事项:

本设备激光器属于Ⅳ类激光产品,输出的是可见和不可见的激光,眼睛切勿对着激光输出端直视,眼睛和皮肤要避免暴露于激光直射或者漫反射的区域。一定要做好人身安全和眼睛安全防护。

静态存储器-实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称静态随机存储器实验 班级 学号 姓名 同组人员无 实验日期 2015-10-24

一、实验目的与要求 掌握静态随机存储器RAM 工作特性及数据的读写方法 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 实验所用的静态存储器由一片6116(2K ×8bit)构成(位于MEM 单元),如下 图所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS 常接地线。 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如下图所示,由于T3的参与,可以保证MEM 的写脉宽与T3一致,T3由时序单元的TS3给出。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1时为读,WR=1时为写。 XMRD XIOR XIOW XMWR RD IOM WE T3 读写控制逻辑 实验原理图如下如所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

半导体泵浦激光原理实验

半导体泵浦激光原理实验 理工学院光信息2班贺扬10329064 合作人:余传祥 【实验目的】 1、了解与掌握半导体泵浦激光原理及调节光路方法。 2、掌握腔内倍频技术,并了解倍频技术的意义。 3、掌握测量阈值、相位匹配等基本参数的方法。 【实验仪器】 808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 激光的产生主要依赖受激辐射过程。 处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。 激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: 式中均为与物质有关的系数,且逐次减小。 当E很大时,电场的平方项不能忽略。 ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: 式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。 【实验装置】 图2 实验装置示意图

半导体特性分析实验

半导体特性分析实验(PN结I-V特性测试) 在微电子和固态电子学领域,半导体PN结几乎是构成一切有源器件以及像二极管一些无源器件的最基本单元。本实验的目的是了解PN结的基本I-V特性,包括有非线性、整流性质,学习曲线拟合方法,求出波尔兹曼常数。 一、实验目的 了解PN结的基本特性,掌握PN结的伏安特性,学习曲线拟合方法,求出波尔兹曼常数。 二、实验内容 测试未封装PN结的I-V特性曲线,进行曲线拟合,求出波尔兹曼常数。三、仪器设备 4200-SCS半导体特性测试系统,二极管,探针台 四、实验原理 1、PN结的伏安特性 在半导体材料中,P型区域与N型区域的交界处附近会形成一个特殊的区域,这个区域叫PN结。PN结是半导体器件的核心,检测半导体器件实际上就是通过外部引脚测量内部PN结。PN结具有三个重要参数:单向导电;正向导通压降;反向击穿电压,它们是判断PN结好坏、识别无标识的半导体器件类型和各引脚电极的主要依据。二极管就是一个单独封装的PN结。在未封装前检测PN结,进行实时监控,可以更及时迅速发现质量问题,减少浪费。 单向导电:当给PN结施加正向电压时,即正极(连接到P区)接正、负极接负(联结到N区)接负。PN结呈现为导通状态,有正向电流流过,并且该电流将随着正向电压的增加,急剧增大。当给PN结施加相反的电压时,二极管呈现为截止状态,只有少量的穿透电流I BO(μA级以下)流过。 正向导通压降:PN结上加上正向电压导通后,会保持一个相对固定的端电压VF,VF称为“正向导通压降”,其数值依选用的半导体基材不同而有别,锗半导体约为0.3V;硅半导体约为0.7V。

反向击穿电压:当给PN 结施加的反向电压值达到其所能承受的极限值(反向击穿电压VZ ,大小因不同的PN 结有别)时,二极管呈现为导通状态,且在允许的反向电流范围内,其端电压会基本保持为VZ ,即PN 结反向击穿后具有“稳压特性”。 这些参数都可以在伏安特性曲线也就是PN 结的I-V 特性曲线上可以得到。在直角坐标系中,如果以PN 结的端电压V 为横坐标,电流I 为纵坐标,得到一条曲线,该曲线就被称为PN 结的伏安特性曲线,见图1。从图中可以看到,在给二极管加上的正向电压数值必须大于Vr 时才可以导通,Vr 称为死区电压。 图 1 2、由PN 结的伏安特性拟合波尔兹曼常数 从固体理论可知,理想的PN 结的正向电流-电压关系满足下式 1T k eU exp [I I B 0???? ?????= (1) 其中,I 是通过PN 结的正向电流,I 0是反向饱和电流(与半导体的性质和掺杂有关),U 是加在PN 结上的正向电压,T 为绝对温度,k B 为波尔兹曼常数,e 为基本电荷。常温下,38T k /e B ≈,()1T k /eU exp B >>,则(1)式可以近似写成 ??? ?????=T k eU exp I I B 0 (2) 在常温下,PN 结的正向电流随正向电压按e 指数规律变化。测量得到了PN 结的伏安特性以及温度T 后,可以利用基本电荷值,求得波尔兹曼常数k B 。将式 (2)两边取对数,即可得到

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

半导体存储器原理实验报告

_管理_学院__信息管理与信息系统_专业_2_班______组、学号3109005713___姓名_吴兴平_ ___协作者_林敬然__________ 教师评定_____________ 半导体存储器原理实验 1.实验目的与要求: 实验目的:(1)掌握静态存储器的工作特性及使用方法。(2)掌握半导体随机存储器如何存储和读取数据。 实验要求:按练习一和练习二的要求完成相应的操作,并填写表2.1各控制端的状态及记录表2.2的写入和读出操作过程。 2. 实验方案: (1)使用了一片6116静态RAM(2048×8位),但地址端A8-A10脚接地,因此实际上存储容量为256字节。存储器的数据线D7-D0接至数据总线。 (2)使用一片8位的74LS273作为地址寄存器(AR),地址寄存器的输出端接存储器6116的地址线A7-A0,所以存储单元的地址由地址存储器AR提供。 (3)数据开关(INPUT DEVICE)用来设置地址和数据,它经过一个三态门74LS245与数据总线相连,分别给出地址和数据。 (4)地址显示灯A D7-AD0与6116地址线相连,用来显示存储单元的地址,数据总线上的显示灯B7-B0用来显示写入存储单元的数据或从存储单元读出的数据。 (5)存储器有三个控制信号:CE片选信号、OE读命令信号、WE写信号。当片选信号CE=0时,RAM被选中,可以进行读/写操作;当CE=1时,RAM未被选中,不能进行读/写操作。读命令信号OE在本实验中已固定接地,在此情况下,当CE=0,WE=1时,存储器进行写操作,当CE=0,WE=0时,存储器进行读操作。

(6)LDAR是地址存储器AR存数控制信号。 (7)按图连接好实验电路,检查无误后通电。 (8)将表2.2的地址和内容转化为二进制。 (9)参考以上操作,向存储器单元里先写第一个单元的地址、然后向第一个地址,再写第二个地址,然后向第二个地址单元写内容,就这样不断循环操作,直到做完。 3. 实验结果和数据处理: (1)填写表2.1各控制端的状态。如下图所示: 表2.1 (2)记录表2.2的写入和读出操作过程。 向存储器的00H,01H,02H,03H,04H,05H,06H地址单元分别写入数据AAH,55H,33H,44H,66H,08H,F0H(十六进制),如表所示:

计算机组成原理上机实验报告

《计算机组成原理实验》课程实验报告 实验题目组成原理上机实验 班级1237-小 姓名 学号 时间2014年5月 成绩

实验一基本运算器实验 1.实验目的 (1)了解运算器的组成原理 (2)掌握运算器的工作原理 2.实验内容 输入数据,根据运算器逻辑功能表1-1进行逻辑、移位、算术运算,将运算结果填入表1-2。 表 1-1运算器逻辑功能表 运算类 A B S3 S2 S1 S0 CN 结果 逻辑运算65 A7 0 0 0 0 X F=( 65 ) FC=( ) FZ=( ) 65 A7 0 0 0 1 X F=( A7 ) FC=( ) FZ=( ) 0 0 1 0 X F=( ) FC=( ) FZ=( ) 0 0 1 1 X F=( ) FC=( ) FZ=( ) 0 1 0 0 X F=( ) FC=( ) FZ=( ) 移位运算0 1 0 1 X F=( ) FC=( ) FZ=( ) 0 1 1 0 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 0 1 1 1 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 算术运算 1 0 0 0 X F=( ) FC=( ) FZ=( ) 1 0 0 1 X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 1 X F=( ) FC=( ) FZ=( ) 1 1 0 0 X F=( ) FC=( ) FZ=( ) 1 1 0 1 X F=( ) FC=( ) FZ=( ) 表1-2运算结果表

实验报告-半导体泵浦激光原理

激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏

离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 光的倍频是一种最常用的扩展波段的非线性光学方法。激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。 当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。电极化强度产生的极化场发射出次级电磁辐射。当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。 P=ε0χE 在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: P=αE+βE2+γE3+?

式中α,β,γ,…均为与物质有关的系数,且逐次减小。 考虑电场的平方项 E=E0cosωt P(2)=βE2=βE02cos2ωt=βE02 (1+cos2ωt) 出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: η=I2ω ω ∝βL2Iω sin2(Δkl/2) 式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率n2ω总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

实验报告——半导体激光器输出光谱测量

实验报告——半导体激光器输出光谱测量 实验时间:2017.03.04 一、实验目的 1、了解半导体激光器的基本原理及基本参数; 2、测量半导体激光器的输出特性和光谱特性; 3、了解外腔选模的机理,熟悉光栅外腔选模技术; 4、熟悉压窄谱线宽度的方法。 二、实验原理 1.半导体激光器 激光(LASER)的全称 light amplification by stimulated emission of radiation 意为通过受激发射实现光放大。 激光器的基本组成如下图: 必要组成部分无外乎:谐振腔、增益介质、泵浦源。 在此基础上,激光产生的条件有二: 1)粒子数反转 通过外界向工作物质输入能量,使粒子大部分处于高能态,而非基态。 2)跃迁选择定则 粒子能够从基态跃迁到高能态,需要两个能级之间满足跃迁选择定则,电子相差 的奇数倍角动量差。 世界上第一台激光器是1960年7月8日,美国科学家梅曼发明的红宝石激光器。 1962年世界上第一台半导体激光器发明问世。 2.半导体激光器的基本原理 半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。 没有杂质的纯净半导体,称为本征半导体。 如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n 型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍

实验四 静态随机存储器实验

实验四静态随机存储器实验 一.实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二.实验设备 TDN—CM++计算机组成原理教学实验系统一台,排线若干。 三.实验内容 1.实验原理 实验所用的半导体静态存储器电路原理如图所示,实验中的静态存储器一片6116 (2K﹡8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。 地址灯AD0—AD7与地址线相连,显示地址线内容。数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。 因地址寄存器为8位,接入6116的地址A7—A0,而高三位A8—A10接地,所以 其实际容量为256字节。6116有三个控制线:CE(片选线)OE(读线)WE(写 线)。当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。本实 验中将OE常接地,在此情况下,当CE=0 WE=0时进行读操作,其写时间与T3 脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由“SWITCH UNIT”单元的二进制开关模拟,其中SW—B为 低电平有效,LDAR为高电平有效。 2.实验步骤 (1)在时序电路模块中有两个二进制开关“STOP”和“STEP”,将“STOP” 开关置为“RUN”状态,将“STEP”开关置为“STEP”状态。 (2)按“图4 存储器实验连线图”连接实验线路,仔细查向无误后接通电源。 由于存储器模块内部的连线已经接好,因此只需完成电路的形成、控制信 号模拟开关、时钟脉冲信号T3与存储模块的外部连接。 (3)给存储器的00 01 02 03 04地址单元中分别写入数据11 12 13 14 15,具体操作步骤如下:(以向00号单元写入11为例)

计算机组成原理实验报告(运算器组成、存储器)

计算机组成原理实验报告 一、实验1 Quartus Ⅱ的使用 一.实验目的 掌握Quartus Ⅱ的基本使用方法。 了解74138(3:8)译码器、74244、74273的功能。 利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。 二.实验任务 熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。 新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。 三.74138、74244、74273的原理图与仿真图 1.74138的原理图与仿真图 74244的原理图与仿真图

1. 4.74273的原理图与仿真图、

实验2 运算器组成实验 一、实验目的 1.掌握算术逻辑运算单元(ALU)的工作原理。 2.熟悉简单运算器的数据传送通路。 3.验证4位运算器(74181)的组合功能。 4.按给定数据,完成几种指定的算术和逻辑运算。 二、实验电路 附录中的图示出了本实验所用的运算器数据通路图。8位字长的ALU由2片74181构成。2片74273构成两个操作数寄存器DR1和DR2,用来保存参与运算的数据。DR1接ALU的A数据输入端口,DR2接ALU的B数据输入端口,ALU的数据输出通过三态门74244发送到数据总线BUS7-BUS0上。参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到DR1或DR2暂存。 图中尾巴上带粗短线标记的信号都是控制信号。除了T4是脉冲信号外,其他均为电位信号。nC0,nALU-BUS,nSW-BUS均为低电平有效。 三、实验任务 按所示实验电路,输入原理图,建立.bdf文件。 四.实验原理图及仿真图 给DR1存入01010101,给DR2存入10101010,然后利用ALU的直通功能,检查DR1、

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性 和声光调Q实验 实验目的 1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计 算; 2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则; 3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解 激光器在连续和调Q脉冲工作状态下的激光功率输出特性, 4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。 实验原理 1. 固体Nd:YAG激光器工作原理 固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。 激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

静态随机存储器实验

静态随机存储器实验 一、实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二、实验设备 (1)TDN-CM+或者TDN-CM++教学试验系统一套和导线若干。 (2)PC机(或示波器)一台。 三、实验原理 实验所用的半导体静态存储器电路原理如图1所示。(见最后一页) 实验中的静态存储器由一片6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。(地址灯为AD0--AD7显示地址线内容。)数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。 地址寄存器为8位,接入6116的地址A7—A0,其高三位A8—A10接地,那么实际容量为256字节。 6116有三个控制线:CE(片选线),OE(读线),WE(写线)。当CE=0和OE=0时进行读操作,WE=0时进行写操作。 本实验中将OE常接地,在此情况下,当CE=0,WE=0时进行读操作,CE=0,WE=1时进行写操作,其写时间与T3脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由SWITCH UNIT单元的二进制开关模拟,其中SW-B为低电平有效,LDAR为高电平有效。 四、实验步骤 (1)具体接线方法如图2所示。(见最后一页)按图连接实验线路,仔细查线无误后,接通电源。 (2)形成时钟脉冲信号T3。 1、接通电源,用示波器接入方波信号源的输出插孔H23,调节电位器W1及W2, 使H23端输出实验所期望的频率的方波。 2、将时序电路模块中的φ和H23排针相连。 3、在时序电路模块中有两个二进制开关STOP和STEP。将STOP开关置为 "RUN"状态,STEP开关置为"EXEC"状态时,按动微动开关START,则T3输出。 为连续的方波信号.此时,调节电位器W1,用示波器观察,使T3输出实验要求的脉冲信号。同时可测得T3的频率和占空比(我用的是f=85.03HZ 占空比为0.24)。 然后使STOP开关为"RUN"状态,STEP开关为"STEP"状态时,每按动一次微动开关START,则T3输出一个单脉冲,其脉冲宽度与连续方式相同。 (3)写存储器。给存储器的00,01,02,03,04地址单元分别写入数据11H,12H,13H,14H,15H。具体如下 1、写地址。关闭存储器的片选(CE=1),打开地址锁存器门控信号(LDAR=1),打开数据开关三态门(SW-B=0),由数据开关给出所要写入的存储单元的地址,按动START产生T3脉冲将地址打入地址锁存器。

《计算机组成原理》实验二报告

《计算机组成原理》 实验报告 学院:计算机学院 专业:软件工程 班级学号:130803 313002384 学生姓名:胡健华 实验日期:2014-11-13 指导老师:李鹤喜 五邑大学计算机学院计算机组成原理实验室

实验二 一、实验名称:SRAM 静态随机存储器实验 二、实验目的: 掌握静态随机存储器RAM工作特性及数据的读写方法。 三、实验内容: 1、向存储器中指定的地址单元输入数据,地址先输入AR寄存器,在地址灯上显示;再将数据 送入总线后,存到指定的存储单元,数据在数据显示灯显示。 2、从存储器中指定的地址单元读出数据, 地址先输入AR寄存器,在地址灯显示; 读出的数据送入 总线, 通过数据显示灯显示。 四、实验设备: PC机一台,TD-CMA实验系统一套。 五、实验步骤: 1、关闭实验系统电源,按图2-4 连接实验电路,并检查无误,图中将用户需要连接的信号用 圆圈标明。 2、将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为‘单步’档。 3、将CON 单元的IOR 开关置为1(使IN 单元无输出),打开电源开关,如果听到有‘嘀’报 警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。 图2-4

4、给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据11H、12H、13H、14H、15H。 由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST 产生T3 脉冲,即将地址打入到AR 中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST 产生T3脉冲,即将数据打入到存储器中。写存储器的流程如图2-5 所示(以向00 地址单元写入11H为例): 图2-5 5、依次读出第00、01、02、03、04 号单元中的内容,观察上述各单元中的内容是否与前面写 入的一致。同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN 单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。读存储器的流程如图2-6 所示(以从00 地址单元读出11H 为例): 图2-6 如果实验箱和 PC 联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看附录1),方法是:打开软件,选择联机软件的“【实验】—【存储器实验】”,打开存储器实验的数据通路图,如图2-7 所示。 进行上面的手动操作,每按动一次ST 按钮,数据通路图会有数据的流动,反映当前存储器所做的操作(即使是对存储器进行读,也应按动一次ST 按钮,数据通路图才会有数据流动),或在软件中选择“【调试】—【单周期】”,其作用相当于将时序单元的状态开关置为‘单步’档

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

实验二-静态随机存储器-(罗忠霖)

集美大学计算机工程学院实验报告 课程名称:计算机组成原理指导教师:汪志华实验成绩:实验项目编号: 3.6实验项目名称:静态随机存储器实验 班级:计算1013姓名:何荣贤 罗忠霖学号:2010810071 2010810072 上机实践日期:2012/11/15上机实践时间:2学时 一、实验目的 掌握静态随机存储器RAM工作特性及数据的读/写方法。 二、实验设备 (1)TDN-CM+或TDN-CM++教学实验系统一套; (2)PC机(或示波器)一台; 三、实验原理 ⑴、在此实验中,所用的半导体静态存储器又一片6116(2K×8)构成,其数据线接至 数据总线,地址线又地址锁存器(74LS273)给出。地址灯AD7-AD0与地址线连, 显示地址线内容。数据开关经三态门(74LS245)连至数据总线,分时给出地址和 数据。 ⑵、6116有三个控制线:CE(片选线)、OE(读线)、WE(写线)。当片选有效 (CE=0)时,OE=0时进行读操作,WE=0时进行写操作,在本实验中,将OE 常接地,因此6116的引脚信号WE = 1时进行度操作,WE = 0时进行写操作。 ⑶、要对存储器进行读(写)操作,必须设置控制端CE=0,WE=0(WE=1),同时有T3 脉冲到来。 ⑷、实验时,将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可 调(在本实验中影响不大),其它电平控制信号由“SWITCH UNIT”单元的二进制 开关模拟,其中SW-B(三态门)为低电平有效,LDAR为高电平有效。 四、实验步骤 (1)将时序电路模块中的Φ和H23排针相连。将时序电路模块中的二进制开关 “STOP”设置为“RUN”状态、将“STEP”设置为"STEP"状态。注意:关于stop 和step的说明: 将“STOP”开关置为“Run"状态、“STEP”开关置为“EXEC” 状态时,按动微动开关START,则T3输出为连续的方波信号,此时调节电位器 W1,用示波器观察,使T3输出实验要求的脉冲信号。当“STOP”开关置为 “RUN”状态、“STEP”开关置为"STEP"状态时,每按动一次微动开关START, 则T3输出一个单脉冲,其脉冲宽度与连续方式相同。 (2)按图2连接实验线路,仔细查线无误后接通电源。

静态随机存储器实验实验报告

**大学 实验(实训)报告 实验名称运算器、存储器 所属课程计算机组成与结构 所在系计算机科学与技术 班级 学号 姓名 指导老师 实验日期 实验静态随机存储器实验 2、1、实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2、2、实验内容 给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据 11H、12H、13H、14H、15H,再依次读出数据。 2、3、实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 2、4、实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM单元),如图2-1所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如下图,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。

的读写,一致,T3 时为读,WR=1 实验原理如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0 的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器给出。数据开关经一个三态门连至数据总线,分时给出地址与数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

MR MW D7 —————D0D7 —————D0 A7 —————A0 OE CS T3 IOM RD WE 读写译码 RD WR 74LS27374LS245IN 单元 AD7 ||| AD0 LDAR IOR IN_B A10 —A8————— ————— ——————————----—————6116 实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD 、WR 高有效,MR 与MW 低有效,LDAR 高有效。 2、5.实验步骤

实验1NdYAG固体激光器实验

hv 2 1 (a) 2 1 (b) 2 E 1 (c) 图1、光与物质作用的吸收过程 Nd :YAG 固体激光器实验 一、 实验内容与器件 1、了解半导体激光器的工作原理和光电特性 2、掌握半导体泵浦固体激光器的工作原理和调试方法 二、 实验原理概述 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔 E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子, 在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完 全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 图2、光与物质作用的受激辐射过程

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2 YAG 固体激光器 固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。固体激光器工作物质是固体激光器的核心。影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。实验中,我们采用掺钕钇铝石 榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可 见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。在本实验中,半导体激光器是用来做固体激光器的泵浦光源。我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。 图4 3:Nd YAG +晶体的吸收光谱(300K ) YAG 中3Nd +与激光产生有关系的能级结构如图5所示。它属于四能级系统。其激光上 能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2 I 相应于1E 。由于1.06m μ比1.35m μ波长的荧光强约4 倍,在本实验中,我们通过腔镜镀膜,E 1 E 3 E 2 图3、三能级系统示意图

半导体特性测试仪

4200-SCS半导体特性分析系统- 集成前沿的脉冲能力和精密DC测量,用于65nm节点及更小尺寸 Document Actions 型号:4200-SCS 主要特点及优点 直观的、点击式Windows?操作环境 独特的远端前置放大器,将SMU的分辨率扩展至0.1fA 新的脉冲和脉冲I-V能力用于先进半导体测试 新的示波器卡提供集成的示波器和脉冲测量功能 内置PC提供快速的测试设置、强大的数据分析、制图与打印、以及测试结果的大容量存储 独特的浏览器风格的软件界面,根据器件的类型来安排测试,可以执行多项测试并提供测试序列与循环控制功能

内置stress/measure、looping和数据分析用于点击式可靠性测试,包括五个符合JEDEC 的范例测试 支持多种LCR表、吉时利开关矩阵配置与吉时利3400系列和安捷伦81110脉冲发生器等多种外围设备 包括驱动软件,支持Cascade Microtech Summit12K 系列、 Karl Suss PA-200和PA-300、micromanipulator 的8860 自动和手动探针台 先进半导体支持包括吉时利提供的IC-CAP器件建模包驱动程序并支持Cadence BSIM ProPlus/Virtuoso 和Silvaco UTMOST器件建模工具 容易使用的4200-SCS型半导体特性分析系统用于实验室级的器件直流参数测试、实时绘图与分析,具有高精度和亚fA级的分辨率。它提供了最先进的系统集成能力,包括完整的嵌入式PC 机,Windows NT操作系统与大容量存储器。其自动记录、点击式接口加速并简化了获取数据的过程,这样用户可以更快地开始分析测试结果。更多特性使stress-measure能力适合广泛的可靠性测试。 相关应用 半导体器件 片上参数测试 晶圆级可靠性 封装器件特性分析 C-V/I-V 特性分析,需选件4200-590高频C-V分析器 高K栅电荷俘获 受自加热效应影响的器件和材料的等温测试 Charge pumping用于MOSFET器件的界面态密度分析 电阻性的或电容性的MEM驱动器特性分析 光电子器件

相关文档
最新文档