《数值计算方法》试题集及答案

《数值计算方法》试题集及答案
《数值计算方法》试题集及答案

《计算方法》期中复习试题

一、填空题:

1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得

?≈3

1

_________

)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.25

2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2

x 的系数为 ,拉格

朗日插值多项式为 。

答案:-1,

)2)(1(21

)3)(1(2)3)(2(21)(2--------=

x x x x x x x L

3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;

4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

答案

)(1)(1n n n n n x f x f x x x '---

=+

5、对1)(3

++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );

6、计算方法主要研究( 截断 )误差和( 舍入 )误差;

7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为

( 1

2+-n a b );

8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为

( 0.15 );

11、 两点式高斯型求积公式?1

d )(x

x f ≈(

?++-≈1

)]

321

3()3213([21d )(f f x x f ),代数精度

为( 5 );

12、 为了使计算

32)1(6)1(41310--

-+-+

=x x x y 的乘除法次数尽量地少,应将该表达

式改写为

11

,))64(3(10-=

-++=x t t t t y ,为了减少舍入误差,应将表达式1999

2001-改写为 199920012

+ 。

13、 用二分法求方程01)(3

=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为

0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 计算积分?1

5

.0d x

x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 ,用

辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值

多项式为 )1(716)(2-+=x x x x N 。

16、 求积公式

?∑=≈b

a k n

k k x f A x x f )(d )(0

的代数精度以( 高斯型 )求积公式为最高,具有

( 12+n )次代数精度。

17、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求?5

1

d )(x

x f ≈( 12 )。

18、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。

19、如果用二分法求方程043

=-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。

20、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2

33x c x b x a x x x x S 是三次样条函数,则

a =( 3 ),

b =( 3 ),

c =( 1 )。

21、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则

∑==

n

k k

x l

0)(( 1 ),∑==

n

k k j

k x l

x 0

)((

j

x ),当2≥n 时

=

++∑=)()3(20

4x l x x

k k n k k

( 32

4++x x )。

22、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

23、改变函数f x x x ()=+-1 (x >

>1)的形式,使计算结果较精确 ()x x x f ++=

11

24、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10 次。

25、设

()???≤≤+++≤≤=21,10,22

3

3x c bx ax x x x x S 是3次样条函数,则 a= 3 , b= -3 , c= 1 。 26、若用复化梯形公式计算?

10

dx

e x ,要求误差不超过6

10-,利用余项公式估计,至少用

477个求积节点。

27、若4

321()f x x x =++,则差商2481632[,,,,]f = 3 。

28、数值积分公式1

12

18019()[()()()]f x dx f f f -'≈-++?的代数精度为 2 。

选择题

1、三点的高斯求积公式的代数精度为( B )。

A . 2

B .5

C . 3

D . 4 2、舍入误差是( A )产生的误差。

A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 3、3.141580是π的有( B )位有效数字的近似值。

A . 6

B . 5

C . 4

D . 7 4、用 1+x 近似表示e x

所产生的误差是( C )误差。 A . 模型 B . 观测 C . 截断 D . 舍入

5、用1+3x

近似表示3

1x +所产生的误差是( D )误差。

A . 舍入

B . 观测

C . 模型

D . 截断 6、-324.7500是舍入得到的近似值,它有( C )位有效数字。 A . 5 B . 6 C . 7 D . 8

7、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( A )。 A . –0.5 B . 0.5 C . 2 D . -2 8、三点的高斯型求积公式的代数精度为( C )。 A . 3 B . 4 C . 5 D . 2 9、( D )的3位有效数字是0.236×102。

(A) 0.0023549×103 (B) 2354.82×10-2 (C) 235.418 (D) 235.54×10-1 10、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=?(x),则f(x)=0的根是

( B )。

(A) y=?(x)与x 轴交点的横坐标 (B) y=x 与y=?(x)交点的横坐标 (C) y=x 与x 轴的交点的横坐标 (D) y=x 与y=?(x)的交点

11、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x-x1)(x -x2)…(x-xn -1)(x -xn),

(B)

)!1()

()()()()1(+=

-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x-x0)(x -x1)(x -x2)…(x-xn -1)(x -xn), (D)

)

()!1()

()()()(1)1(x n f x P x f x R n n n n +++=

-=ωξ

12、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列{xn}n=0,1,2,…

一定收敛到方程f(x)=0的根。

13、为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立

相应的迭代公式,迭代公式不收敛的是(A )。

(A)

1

1:,1

1

12-=-=+k k x x x x 迭代公式

(B)21211:,11k

k x x x x +=+

=+迭代公式

(C)

3

/12123)

1(:,1k k x x x x +=+=+迭代公式

(D)

11:,12

2

1

2

3+++==-+k k k

k x x x x x x 迭代公式

14、在牛顿-柯特斯求积公式:

?

∑=-≈b

a

n

i i n i x f C a b dx x f 0

)()

()()(中,当系数)(n i C 是负值时,公

式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n ,

(1)二次;

(2)三次; (3)四次; (4)五次

15、取1732.≈计算4

1)x =,下列方法中哪种最好?( )

(A)28- (B)24(-; (C ) ;。

26、已知

33

0221224()()()x x S x x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b 的值为( ) (A )6,6; (B)6,8; (C)8,6; (D)8,8。

(A); (B)4; (C) ; (D ) 2。 17、形如112233()()()()

b a

f x dx A f x A f x A f x ≈++?

的高斯(Gauss )型求积公式的代数精度为

( )

(A)9; (B)7; (C ) 5; (D) 3。

18、计算的Newton 迭代格式为( )

(A)

132k k k x x x +=+;(B )1322k k k x x x +=+;(C) 122k k k x x x +=+;(D) 133k k k x x x +=+

。 19、用二分法求方程32

4100x x +-=在区间12[,]内的实根,要求误差限为31102ε-=?,则对

分次数至少为( )

(A )10; (B)12; (C)8; (D)9。

20、设()i l x 是以019(,,,)k x k k ==为节点的Lagrange 插值基函数,则9

0()i

k kl k ==

∑( )

(A)x ; (B )k ; (C )i ; (D )1。 33、5个节点的牛顿-柯特斯求积公式,至少具有( )次代数精度 (A

)5; (B)4; (C)6; (D)3。

21、已知

33

022122

4()()()x x S x x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b 的值为( ) (A )6,6; (B)6,8; (C)8,6; (D)8,8。

35、已知方程3

250x x --=在2x =附近有根,下列迭代格式中在02x =不收敛的是( )

(A)1k x += (B)1k x += (C )315k k k x x x +=--; (D)

3

1225

32k k k x x x ++=-。 (A ) 4; (B)2; (C)1; (D)3。

23、5个节点的Gauss 型求积公式的最高代数精度为( ) (A)8; (B )9; (C)10; (D)11。

三、是非题(认为正确的在后面的括弧中打?,否则打?)

1、已知观察值)210()(m i y x i i ,,,,

, =,用最小二乘法求n 次拟合多项式)(x P n 时,)(x P n 的次数n 可以任意取。 ( )

2、用1-22

x 近似表示cos x 产生舍入误差。 ( )

3、))(()

)((210120x x x x x x x x ----表示在节点x 1的二次(拉格朗日)插值基函数。 ( ? )

4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。

( ? )

5、矩阵A =?

???? ?

?-521352113具有严格对角占优。 ( ) 四、计算题:

1、求A 、B 使求积公式

?-+-++-≈1

1)]21

()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求

?

=2

1

1

dx

x I (保留四位小数)。

答案:2

,,1)(x x x f =是精确成立,即

???

??=+=+32212222B A B A 得98,91==B A

求积公式为

)]21

()21([98)]1()1([91)(1

1f f f f dx x f +-++-=?- 当3)(x x f =时,公式显然精确成立;当4

)(x x f =时,左=52,右=31。所以代数精度

为3。 2、已知

分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。

答案:

)53)(43)(13()

5)(4)(1(6

)51)(41)(31()5)(4)(3(2

)(3------+------=x x x x x x x L

差商表为

5、已知

求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。 答案:解:

正规方程组为

???

?

?=+==+41

34103101510520

120a a a a a

6、已知x sin 区间[0.4,0.8]的函数表

如用二次插值求63891.0sin 的近似值,如何选择节点才能使误差最小?并求该近似值。 答案:解: 应选三个节点,使误差

尽量小,即应使|)(|3x ω尽量小,最靠近插值点的三个节点满足上述要求。即取节点

}7.0,6.0,5.0{最好,实际计算结果

596274.063891.0sin ≈,

7、构造求解方程0210=-+x e x

的根的迭代格式 ,2,1,0),(1==+n x x n n ?,讨论其收敛

性,并将根求出来,4

110||-+<-n n x x 。

答案:解:令

010)1(,

02)0(,210e )(>+=<-=-+=e f f x x f x

.

且010e )(>+='x

x f )(∞+-∞∈?,

对x ,故0)(=x f 在(0,1)内有唯一实根.将方程0)(=x f 变形为 则当)1,0(∈x 时

)e 2(101

)(x x -=

?,

1

10

e

10e |)(|<≤-='x x ?

故迭代格式

收敛。取5.00=x ,计算结果列表如下:

且满足 6671095000000.0||-<≤-x x .所以008525090.0*≈x .

10、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据。

解:当0

0?有一位整数.

要求近似值有5位有效数字,只须误差

4)

(11021

)(-?≤

f R n .

)(12)()(

2

3

)

(1ξf n a b f R n ''-≤,只要

即可,解得

所以 68=n ,因此至少需将 [0,1] 68等份。

12、取节点1,5.0,0210===x x x ,求函数x

x f -=e )(在区间[0,1]上的二次插值多项式)(2x P ,

并估计误差。

解:

)

15.0)(05.0()

1)(0()10)(5.00()1)(5.0()(5.002----?

+----?

=--x x e x x e x P

相关主题
相关文档
最新文档