虚拟现实技术基础和实用算法

虚拟现实技术基础和实用算法
虚拟现实技术基础和实用算法

虚拟现实技术基础和实用算法

目录

第一章虚拟现实技术概论……………………………………………………………( ) 1.1 虚拟现实技术概念和发展 ………………………………………………………………( ) 1.2 虚拟现实系统的分类 ……………………………………………………………………( ) 1.2.1 按数据流向进行分类…………………………………………………………………( ) 1.2.2 按时间和空间进行分类………………………………………………………………( ) 1.2.3 按传感器与人的感觉器官进行分类…………………………………………………( ) 1.2.4 按隔离与融合进行分类………………………………………………………………( ) 1.3 虚拟现实系统的硬件组成 ………………………………………………………………( ) 1.3.1 虚拟世界生成设备 ………………………………………………………………… ( ) 1.3.2 感知设备………………………………………………………………………………( ) 1.3.3 跟踪设备………………………………………………………………………………( ) 1.3.4 基于自然方式的人机交互设备………………………………………………………( ) 1.4 虚拟现实系统的体系结构 ………………………………………………………………( ) 1.4.1 非分布式虚拟现实体系结构…………………………………………………………( ) 1.4.2 分布式虚拟现实体系结构……………………………………………………………( ) 1.5 虚拟现实的研究内容 ……………………………………………………………………( ) 1.6 增强现实技术与随身增强现实技术 ……………………………………………………( ) 1.6.1 增强现实技术的定义…………………………………………………………………( ) 1.6.2 增强现实技术系统的实现分类及其优缺点分析……………………………………( ) 1.6.3 增强现实与虚拟现实比较……………………………………………………………( ) 1.6.4 增强现实的关键技术…………………………………………………………………( ) 1.6.5 随身增强现实技术……………………………………………………………………( )参考文献………………………………………………………………………………………( )

第二章虚拟现实系统典型硬件装置…………………………………………………( ) 2.1 简 介………………………………………………………………………………………( ) 2.2 立体显示原理 ……………………………………………………………………………( ) 2.2.1 人眼的结构与立体视觉机制…………………………………………………………( ) 2.2.2 立体显示原理…………………………………………………………………………( ) 2.3 虚拟现实立体显示器 ……………………………………………………………………( ) 2.3.1 台式立体监示器显示系统……………………………………………………………( ) 2.3.2 头盔式立体显示器……………………………………………………………………( ) 2.3.3 洞穴式立体显示装置(CA VE)…………………………………………………… ( ) 2.3.4 响应工作台立体显示装置……………………………………………………………( ) 2.3.5 墙式立体显示装置……………………………………………………………………( ) 2.4 位置跟踪器 ………………………………………………………………………………( ) 2.4.1 位置跟踪器的性能指标………………………………………………………………( ) 2.4.2 位置跟踪器技术分类及其典型技术…………………………………………………( ) 2.4.3 虚拟现实系统对位置跟踪器的性能要求……………………………………………( )

2.5 触觉与力觉反馈装置 ……………………………………………………………………( ) 2.5.1 触觉反馈装置…………………………………………………………………………( ) 2.5.2 力觉反馈装置…………………………………………………………………………( ) 2.6 虚拟现实的交互设备 —— 传感手套…………………………………………………( )

参考文献………………………………………………………………………………………( )

第三章真实感图形的实时绘制技术…………………………………………………( ) 3.1 图形学基础 ………………………………………………………………………………( ) 3.1.1 虚拟场景表示…………………………………………………………………………( ) 3.1.2 场景坐标系……………………………………………………………………………( ) 3.1.3 取景变换………………………………………………………………………………( ) 3.1.4 光栅化…………………………………………………………………………………( ) 3.2 消隐 ………………………………………………………………………………………( ) 3.2.1 景物空间消隐算法……………………………………………………………………( ) 3.2.2 图像空间消隐算法……………………………………………………………………( ) 3.3 光亮度计算 ………………………………………………………………………………( ) 3.3.1 Phong光照明模型……………………………………………………………………( ) 3.3.2 增量光亮度计算………………………………………………………………………( ) 3.4 纹理映射技术 ……………………………………………………………………………( ) 3.4.1 纹理映射原理…………………………………………………………………………( ) 3.4.2 投影纹理映射技术……………………………………………………………………( ) 3.4.3 两步法纹理映射技术…………………………………………………………………( ) 3.5 实时消隐技术 ……………………………………………………………………………( ) 3.5.1 层次Z缓存算法………………………………………………………………………( ) 3.5.2 可见性预计算技术……………………………………………………………………( ) 3.6 大规模复杂场景的实时漫游系统 ………………………………………………………( ) 3.6.1 场景数据的管理………………………………………………………………………( ) 3.6.2 场景加载管理…………………………………………………………………………( ) 3.6.3 场景层次结构的管理…………………………………………………………………( ) 3.6.4 纹理数据的管理………………………………………………………………………( ) 3.6.5 实时漫游系统的实例…………………………………………………………………( ) 3.7 小结 ………………………………………………………………………………………( )参考文献………………………………………………………………………………………( )

第四章多细节层次模型生成和绘制…………………………………………………( ) 4.1 简 介………………………………………………………………………………………( ) 4.2 基本概念 …………………………………………………………………………………( ) 4.2.1 重要性度量……………………………………………………………………………( ) 4.2.2 简化元操作……………………………………………………………………………( ) 4.2.3 网格简化算法的类型…………………………………………………………………( ) 4.3 网格简化算法 ……………………………………………………………………………( ) 4.3.1 概述……………………………………………………………………………………( ) 4.3.2 基于顶点聚类的模型简化算法………………………………………………………( )

4.3.3 基于删除操作的模型简化算法………………………………………………………( ) 4.3.4 基于折叠操作的模型简化算法………………………………………………………( ) 4.3.5 动态模型简化算法……………………………………………………………………( ) 4.4 多分辨率模型生成算法 …………………………………………………………………( ) 4.4.1 简介……………………………………………………………………………………( ) 4.4.2 MRM模型 ……………………………………………………………………………( ) 4.4.3 MRM模型自动生成算法……………………………………………………………( ) 4.4.4 多分辨率BSP树……………………………………………………………………( ) 4.5 实时连续LOD模型绘制 …………………………………………………………………( ) 4.

5.1 与视点无关的网格简化预处理………………………………………………………( ) 4.5.2 与视点相关的实时网格简化算法……………………………………………………( )参考文献………………………………………………………………………………………( )

第五章基于图象的建模和绘制………………………………………………………( ) 5.1 简 介………………………………………………………………………………………( ) 5.1.1 基于几何的建模和绘制………………………………………………………………( ) 5.1.2 基于图象的建模和绘制………………………………………………………………( ) 5.1.3 绘制流水线的比较……………………………………………………………………( ) 5.1.4 IBMR的基本方法分类……………………………………………………………( ) 5.2 图象变换 …………………………………………………………………………………( ) 5.2.1 图象变换的前向映射和逆向映射技术………………………………………………( ) 5.2.2 图象变形技术…………………………………………………………………………( ) 5.3 相关的立体视觉理论 ……………………………………………………………………( ) 5.3.1 摄象机定标……………………………………………………………………………( ) 5.3.2 对应点的寻找方法……………………………………………………………………( ) 5.4 基于图象的建模技术 ……………………………………………………………………( ) 5.4.1 全景图…………………………………………………………………………………( ) 5.4.2 光场(Light Field)和照明图(Lumigraph) …………………………………………( ) 5.4.3 同心圆拼图(Concentric Mosaic)…………………………………………………( ) 5.5 基于图象的绘制 …………………………………………………………………………( ) 5.5.1 视图变形技术…………………………………………………………………………( ) 5.5.2 基于光场的绘制………………………………………………………………………( ) 5.5.3 基于同心拼图的绘制…………………………………………………………………( ) 5.6 实例系统 …………………………………………………………………………………( ) 5.6.1 QuickTime VR Authoring Studio……………………………………………………( ) 5.6.2 Lightpack光场著作和绘制软件包…………………………………………………( ) 5.7 我们的相关工作 …………………………………………………………………………( ) 5.7.1 小波空间中基于图象的建模…………………………………………………………( ) 5.7.2 小波空间中的视图合成………………………………………………………………( )参考文献………………………………………………………………………………………( )

第六章碰撞检测…………………………………………………………………………( ) 6.1 概述…………………………………………………………………………………………( ) 6.1.1 概念……………………………………………………………………………………( )

6.1.3 基本算法和典型问题…………………………………………………………………( ) 6.2 时间步长问题的解决方法 ………………………………………………………………( ) 6.3 多物体的碰撞检测方法 …………………………………………………………………( ) 6.3.1 包围盒排序法…………………………………………………………………………( ) 6.4 两物体的碰撞检测方法 …………………………………………………………………( ) 6.4.1 包围盒层次法…………………………………………………………………………( ) 6.4.2 距离跟踪法……………………………………………………………………………( ) 6.5 特殊应用的碰撞检测 ……………………………………………………………………( ) 6.5.1 触觉交互………………………………………………………………………………( ) 6.5.2 可变形物体……………………………………………………………………………( ) 6.5.3 基于体表示物体………………………………………………………………………( ) 6.6 公开算法软件包简介 ……………………………………………………………………( ) 6.7 小结 ………………………………………………………………………………………( )参考文献………………………………………………………………………………………( )

第七章三维真实感声音生成…………………………………………………………( ) 7.1 简 介………………………………………………………………………………………( ) 7.2 空间听觉感知 ……………………………………………………………………………( ) 7.2.1 方向的感知……………………………………………………………………………( ) 7.2.2 声源距离的感知………………………………………………………………………( ) 7.3 室内声学仿真 ……………………………………………………………………………( ) 7.3.1 室内声学仿真方法概述………………………………………………………………( ) 7.3.2 虚声源算法……………………………………………………………………………( ) 7.3.3 声线跟踪算法…………………………………………………………………………( ) 7.3.4 声线跟踪与虚声源混合算法…………………………………………………………( ) 7.3.5 声音脉冲响应插值算法………………………………………………………………( ) 7.3.6 基于有限元法的室内声学仿真方法…………………………………………………( ) 7.4 真实感声音的生成 ………………………………………………………………………( ) 7.4.1 真实感声音生成的一般过程…………………………………………………………( ) 7.4.2 距离因素的实现………………………………………………………………………( ) 7.4.3 方位因素的实现………………………………………………………………………( ) 7.4.4 运动声源的模拟………………………………………………………………………( ) 7.4.5 开发环境和实例………………………………………………………………………( )参考文献………………………………………………………………………………………( )

第八章 面向实时漫游的虚拟现实造型语言VRML…………………………………( ) 8.1 简介 ………………………………………………………………………………………( ) 8.1.1 什么是VRML…………………………………………………………………………( ) 8.1.2 VRML发展的历史……………………………………………………………………( ) 8.1.3 VRML的设计目标和准则……………………………………………………………( ) 8.1.4 VRML应用框架………………………………………………………………………( ) 8.2 VRML世界的构造…………………………………………………………………………( ) 8.2.1 文件头…………………………………………………………………………………( )

8.2.3 事件结构………………………………………………………………………………( ) 8.2.4 感知器…………………………………………………………………………………( ) 8.2.5 脚本和插值器…………………………………………………………………………( ) 8.2.6 原型:封装和重用……………………………………………………………………( ) 8.2.7 分布式场景……………………………………………………………………………( ) 8.2.8 VRML和WWW………………………………………………………………………( ) 8.2.9 显示和交互……………………………………………………………………………( ) 8.3 VRML的组成元素…………………………………………………………………………( ) 8.3.1 基本定义………………………………………………………………………………( ) 8.3.2 域………………………………………………………………………………………( ) 8.3.3 节点及实例化…………………………………………………………………………( ) 8.3.4 可扩展性………………………………………………………………………………( ) 8.3.5 原型PROTO和重用USE……………………………………………………………( ) 8.3.6 细节层次(LOD)……………………………………………………………………( ) 8.4 交互控制特征 ……………………………………………………………………………( ) 8.4.1 事件和路由访问………………………………………………………………………( ) 8.4.2 动画事件路径…………………………………………………………………………( ) 8.4.3 动画和时间……………………………………………………………………………( ) 8.4.4 动作感知器……………………………………………………………………………( ) 8.4.5 可见和接近感知器及碰撞检测………………………………………………………( ) 8.4.6 脚本……………………………………………………………………………………( ) 8.5 实例 ………………………………………………………………………………………( ) 8.5.1 实例1…………………………………………………………………………………( ) 8.5.2 实例2…………………………………………………………………………………( ) 8.5.3 实例3…………………………………………………………………………………( ) 8.6 小结 ………………………………………………………………………………………( )参考文献………………………………………………………………………………………( )

虚拟现实技术考试题答案

虚拟现实技术试题(一) 1、虚拟现实是一种高端人机接口,包括通过视觉、听觉、触觉、嗅觉和味觉等多种感觉通道的实时模拟和实时交互。 2、虚拟现实与通常CAD系统所产生的模型以及传统的三维动画是不一样的。 3、虚拟现实技术应该具备的三个特征:Immersion(沉浸) Interaction(交互) Imagination(想象) 4、一个典型的虚拟现实系统的组成主要由头盔显示设备\多传感器组\力反馈装置 5、从虚拟现实技术的相关概念可以看出,虚拟现实技术在人机交互方面有了很大的改进。常被称之为“基于自然的人机界面”计算机综合技术,是一个发展前景非常广阔的新技术。 6、根据虚拟现实对“沉浸性”程度和交互程度的不同,可把虚拟现实系统划分为四种典型类型沉浸式\桌面式\增强式\分布式。 7、有关虚拟现实的输入设备主要分为两类。三维位置跟踪器 8、在虚拟现实系统的输入设部分,基于自然交互设备主要有力反馈设备\数据手套\三维鼠标. 9、三维定位跟踪设备是虚拟现实系统中关键设备之一,一般要跟踪参与对象的宽度、高度、深度、俯仰角(pitch)、转动角(yaw)和偏转角(roll),我们称为6自由度(6DOF)。 10、空间位置跟踪技术有多种,常见的跟踪系统有机械跟踪器\电磁跟踪器\超声波跟踪器\惯性跟踪器\光学跟踪器。 11、所谓力反馈,是运用先进的技术手段将虚拟物体的空间无能运动转变成物理设备的机械运动,使用户能够体验到真实的力度感和方向感,从而提供一个崭新的人机交互界面。该项技术最早应用于尖端医学和军事领域。 12、立体显示技术是虚拟现实系统的一种极为重要的支撑技术。要实现立体的显示。现已有多种方法与手段进行实现。主要有互补色\偏振光\时分式\光栅式\真三维显示 . 12、正是由于人类两眼的视差,使人的大脑能将两眼所得到的细微差别的图像进行融合,从而在大脑中产生有空间感的立体物体视觉。 13、HMD(Head_Mounted_Display),头盔式显示器,主要组成是显示元件\ 光学系统 14、洞穴式立体显示装置(CAVE Computer Automatic Virtual Enviroment)系统是一套基于高端计算机的多面式的房间式立体投影解决方案,CAVE主要组成由高性能图形工作站\投影设备\跟踪系统\声音系统。 13、三维视觉建模又可细分为几何建模、物理建模、行为建模技术,分别是基于物体的几何信息来描述物体模型的建

虚拟现实课程标准

《虚拟现实》课程标准 一、课程概况 注:课程类别填公共基础课、专业基础课、专业核心课、岗位方向课。 二、专业对课程要求 虚拟现实课程是岗位方向课,操作性强,应用前景广阔。该课程主要以学习VR交互的实现流程与技术。课程主要考核学生制作VR游戏的模型制作、UI设计、交互功能等。重视学生分析问题和解决问题能力的培养,使他们具有进一步学习相关知识和技能的能力。另外通过该课程的“教、学、做”一体化教学,培养学生良好的创新能力,提高学生的职业技能与职业素养,为培养创新型、发展型的高素质数字媒体技术人才服务。 三、课程培养目标 1、总体目标 通过学习这门课程使学生掌握Unity的基础知识,熟悉Unity游戏制作的工作流程、创作方法。更重要的是让学生能熟悉VR制作与开发的整体设计与实现过程,提高学生实践操作能力。同时培养吃苦耐劳、爱岗敬业、团队协作的工匠精神和诚实、守信、善于沟通与合作的良好品质,为发展职业能力奠定良好的基础。 2、知识目标 (1)掌握虚拟现实技术基础知识; (2)掌握Unity3d软件的基本使用流程; (3)掌握三维交互的基本原理。 3、能力目标 (1)能操作Unity软件,完成地形的制作; (2)掌握虚拟场景中的UI设计流程;

(3)掌握C#编程在Unity中的使用; (4)Unity在实际项目中的开发能力。 4、素养目标 (1)具有正确的职业观; (2)具有胜任相关工作的良好业务素质; (3)具备基本的审美修养和创造性思维能力; (4)具备运用所学知识分析和解决问题的能力。 四、课程设计思路 《虚拟现实》课程目标的设计主要遵循前导课程的掌握情况以及学生个体能力发展方向的需求与特点,旨在体现《虚拟现实》课程标准的整体性、灵活性。 1、根据实际项目制作为教学主线,整个课程内容由以下几个模块组成,构建由“Unity 基础知识——UI交互——C#编程语言——项目开发”的课程内容体系,每个模块都有相关的项目与任务来支撑。运用“以训带练,以练带学”的教学方法构建以实践为主渠道的教学体系。以能力培养为主线,把知识传授、能力培养和素质教育融为一体。 2、在教学中,采取个别辅导、分组教学等多种手段,激发学生学习的主动性和创造性。让学生学会发现问题、研究问题,并能独立解决问题。 3、以推动学科建设为目的,不断更新教学手段和方法,学习其它先进的教学成果来丰富课堂教学,使本课程的教学始终适应专业发展的要求,并为学生后续的专业学习提供强有力的支撑。 五、课程内容设计 1、课程整体设计

虚拟现实技术简介

虚拟现实简介及行业发展前景 一、虚拟现实简介 虚拟现实(Virtual Reality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物 百科内容: VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术

模拟系统。 概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。 虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。 二、虚拟现实分类 行业概况: 北京傲唯刃道科技有限公司甘健先生认为:供求关系是一个行业能否快速发展的前提。目前来看,市场需求是很大的,而供应方面却略显不足,尤其是拥有核心知识产权,专利产品及服务质量过硬的企业并不多,行业整体缺乏品牌效应。在需求旺盛的阶段,行业需求巨大,

毕业论文:浅谈虚拟现实技术

论文虚拟现实技术

浅谈虚拟现实技术 摘要虚拟现实(Virtual Reality,VR)技术是近年来新兴的借助计算机及最新传感器技术创造的一种崭新的人机交互手段,其核心是建模与仿真。概括介绍了虚拟现实技术的概念、特征及应用领域,涉及的关键技术,最新研究进展,应用与前景展望。 关键词虚拟现实技术,研究现状,相关应用,信息安全 一.虚拟现实的概念、特征及应用领域 虚拟现实是一种由计算机和电子技术创造的新世界,是一个看似真实的模拟环境,通过多种传感设备,用户可根据自身的感觉,使用人的自然技能对虚拟世界中的物体进行考察和操作,参与其中的事件,同时提供视、听、触等直观而自然的实时感知,并使参与者“沉浸”于模拟环境中。虚拟现实(Virtual Reality,VR)技术是指借助计算机及最新传感器技术创造的一种崭新的人机交互手段,其核心是建模与仿真。 虚拟现实技术主要包括模拟环境、感知、自然技能和传感设各等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。常用的有立体头盔、数据于套、三维鼠标、数据衣等穿戴于用户身上的装置和设置于现实环境中的传感装置,如摄像机、地板压力传感器等。 (虚拟现实技术穿戴的装备)

GrigoreBurdea和Philippe Coiffet在著作“Virtual Reality Technology”一书中指出,虚拟现实具有三个最突出的特征,即人们称道的“3I”特性:交互性(interactivity) 、沉浸感(Illusion of Immersion) 和构想性(imagination)。交互性主要是指参与者通过使用专门输入和输出设备,用人类的自然技能实现对模拟环境的考察与操作的程度。沉浸感是虚拟现实最主要的技术特征,它是指参与者在纯自然的状态下,借助交互设备和自身的感知觉系统,对虚拟环境的投入程度。构想性是指借助虚拟现实技术,使抽象概念具像化的程度。另外还有多感知性(Multi-Sensory)。所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能,由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。 所以,“3I+M”就是虚拟现实系统的基本特征。 自1968年Ivan Sutherland发表一篇名为“The Ultimate Display”的论文至今,虚拟现实技术已经伴随着计算机技术的进步得到长足的发展。如今,众多的设备可被用于虚拟现实,包括头戴式显示器、数据手套、动作捕捉系统等[1]。虚拟现实技术已经在诸如建筑设计、军事仿真、虚拟制造、游戏娱乐、医学等领域得到广泛的应用。在教育、心理学、环保、文化艺术领域,虚拟现实技术也得到越来越多的关注[2]。 二.虚拟现实涉及的关键技术[3] 虚拟现实的关键技术主要包括:动态环境建模技术,实时三维图形生成技术,立体显示和传感器技术,应用系统开发工具,系统集成技术,实时三维计算机图形技术,广角立体显示技术,对观察者头、眼和手的跟踪技术,触觉、力觉反馈技术,立体声、语音输入输出技术。 动态环境建模技术:虚拟环境的建立是VR系统的核心内容,目的就是获取实际环境的三维数据,并根据应用的需要建立相应的虚拟环境模型。 实时三维图形生成技术:三维图形的生成技术已经较为成熟,那么关键就是“实时”生成。为了达到实时的目的,至少保证图形的刷新频率不低于15帧/秒,最好高于30帧/秒。

VR+BIM基础知识介绍[详细]

BI米+VR BI米(Building Infor米ation米odeling,建筑信息模型)将成为建筑供给端同时也是最前端(设计环节)引领行业变革的重要推动力之一,VR(虚拟现实)提升BI米应用效果并加速其推广应用.BI米是以建筑工程项目各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息,具有可视化,协调性,模拟性,优化性和可出图性五大特点.VR沉浸式体验,加强了具象性及交互功能,大大提升BI米应用效果,从而推动其在建筑设计加速推广使用. BI米同时受益于国家政策支持、工业4.0需求(精益建造及工业化生产)以及互联网技术进步的推动,可提高生产效率、节约工程造价和缩短建设工期,也是建筑工业化生产最核心的推动力之一.建筑工程管理长期面临着工期紧张、工程复杂、协作困难等问题,应用BI米进行项目管理有助于协助各施工部门沟通、加强成本管理和安全管理,从而降低工程复杂度,缩短工期,加速资金周转.房地产行业健康发展,居民对住房质量及个性化需求,国家智慧城市、工业4.0战略要求企业采用数字化建筑平台,大数据、云计算以及3D打印等技术进步,共同推动BI米系统加速发展. VR逐步照进建筑设计领域,已有效应用于西方工业设计;未来五年内有望在中国建筑设计领域广泛推广使用,目前已在样板房展示等营销领域落地.目前国外在视频拍摄、电子游戏等领域已经有了完善的VR产品,在工业设计中谷歌、微软、索尼等产品逐渐进入工业设计中.欧美知名建筑设计公司目前已在建筑设计模型测试中使用VR技术,英国IVR NATION公司搭建了的VR模型应用于建筑设计,模型真实度达到90%.我们预计未来五年VR技术有望在建筑设计中逐步推

虚拟现实技术-综述

浅谈虚拟现实技术在规划领域中的应用 作者:Why 摘要:随着信息时代的到来,越来越多的高新技术应用到社会的各个领域中来,而作为信息技术发展的首要驱动力的“虚拟现实”技术也越来越多地应用到规划领域中来。本文着重论述了虚拟现实技术在城市规划中的应用范围、应用的意义及其为我们带来的便利。 关键词:虚拟现实、范围、发展、迫切性、城市规划 虚拟现实(Virtual Reality,简称VR),又称灵境技术,是90年代为科学界和工程界所关注的技术。它的兴起,为人机交互界面的发展开创了新的研究领域;为智能工程的应用提供了新的界面工具;为各类工程的大规模的数据可视化提供了新的描述方法。它是一种基于可计算信息的沉浸式交互环境,具体的说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互使用、相互影响,从而产正亲临其境的真实环境的感受和体验。这种技术的应用,改进了人们利用计算机进行多工程数据处理的方式,尤其在需要对大量抽象数据进行处理时;同时,它在许多不同领域的应用,可以带来巨大的经济效益。 1、虚拟现实技术的发展概述 1965年,Sutherland在篇名为《终极的显示》的论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟现实系统的基本思想,从此,人们正式开始了对虚拟现实系统的研究探索历程。 随后的1966年,美国MIT的林肯实验室正式开始了头盔式显示器的研制工作。在这第一个HMD的样机完成不久,研制者又把能模拟力量和触觉的力反馈装置加入到这个系统中。1970年,出现了第一个功能较齐全的HMD系统。基于从60年代以来所取得的一系列成就,美国的JaronLanier在80年代初正式提出了“VirtualReality”一词。 80年代,美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技术的广泛关注。1984年,NASAAmes研究中心虚拟行星探测实验室的M.McGreevy和J.Humphries博士组织开发了用于火星探测的虚拟环境视觉显示器,将火星探测器发回的数据输入计算机,为地面研究人员构造了火星表面的三维虚拟环境。在随后的虚拟交互环境工作站(VIEW)项目中,他们又开发了通用多传感个人仿真器和遥现设备。 进入90年代,迅速发展的计算机硬件技术与不断改进的计算机软件系统相匹配,使得基于大型数据集合的声音和图象的实时动画制作成为可能;人机交互系统的设计不断创新,新颖、实用的输入输出设备不断地进入市常而这些都为虚拟现实系统的发展打下了良好的基矗例如1993年的11月,宇航员利用虚拟现实系统成功地完成了从航天飞机的运输舱内取出新的望远镜面板的工作,而用虚拟现实技术设计波音777获得成功,是近年来引起科技界瞩目的又一件工作。可以看出,正是因为虚拟现实系统极其广泛的应用领域,如娱乐、军事、航天、设计、生产制造、信息管理、商贸、建筑、医疗保险、危险及恶劣环境下的遥操作、教育与培训、信息可视化以及远程通讯等,人们对迅速发展中的虚拟现实系统的广阔应用前景充满了憧憬与兴趣。 2、虚拟现实在规划领域的应用范围 虚拟现实在规划信息存储和查询系统中的应用 例如土质数据库系统,地域信息系统,地理信息系统,城市政策信息系统等。这一类系

虚拟现实技术在教育中应用的优势与挑战

虚拟现实技术在教育中应用的优势与挑战作者:范安琪袁玖根 来源:《发明与创新(职业教育)》 2019年第4期 范安琪袁玖根 (江西科技师范大学,江西南昌330038) 摘要:如今科技发展的越来越迅速,教育随着科技的发展也不断有新的教学媒体的出现。在多媒体技术后,虚拟现实技术(Virtual Reality)的出现无疑将对教学产生一定的影响。文 章主要探讨虚拟现实技术在教育教学中应用的优势与挑战。 关键词:虚拟现实技术;教育应用;优势与挑战 虚拟现实是以计算机技术为核心,结合相关科学技术,生成与一定范围真实环境在视、听、触感等方面高度近似的数字化环境,用户借助必要的装备与数字化环境中的对象进行交互作用、相互影响,可以产生亲临对应真实环境的感受和体验。 一、虚拟现实技术在教育中应用的现状 虚拟现实技术在20世纪80年代就开始应用于教育了,当时人们还对这方面的研究给予较 少的关注度。而现在世界上许多发达国家都设立了相关项目,如澳大利亚和新西兰于2009年合作成立的虚拟世界工作组和美国林登实验室的Second Life项目等。我国也有很多研究学者在 探索该技术运用于教学中的应用成果。 二、虚拟现实技术在教育应用中的优势 (一)更好地帮助学生学习知识与技能 运用虚拟现实技术可以在仿真的模拟环境中对知识和技能进行不断地巩固和重复学习训练,学习者将处于一个安全的环境中练习观察到的行为和机会,以促进学习者在高效率的环境下达 到预期的教学目标。采用情景记忆(Episodic Memory),这种包含有关生活经历的信息,如特别引人注目的教学活动。通常很难记住课堂上讨论过的学习内容,但是很容易记住教室的样子、老师的桌子的位置。在虚拟技术课堂上通过现代教育技术,创设生动、逼真的教学情境,使用 虚拟现实头戴式显示设备、手柄或传感手套等交互设备从视觉、听觉和触觉这三方面使学生如 临其境。情境记忆为学习者提供一种模式,使他们能够在此基础上掌握知识,发展能力,形成 感情并生成意义。 (二)个性化的学习环境提升学生学习兴趣 个性化学习环境的设计通过虚拟现实技术可以促进学生心流(Flow)的产生,心流是一种 精神状态的运作,在这种状态下,一个人完全沉浸在他所做的事情中,全神贯注。它包含了在 活动过程中的精神投入和持续的参与,是介于无聊和焦虑之间的理想状态。在传统课堂中很难 实现心流,但是通过虚拟现实技术却可以很好地进行相关教学设计。 游戏化学习就是采用游戏化的方式来学习,它是目前比较新颖的教学理论和教育实践。一 个人对一个事物感兴趣,他就会愿意去尝试,努力去做从而做得更好。那么把这个事物换成学习,当学习也变得有趣时,相信学习者也会学有所成。同样对比传统课堂,虚拟现实技术在这

vr技术基本常识

vr技术基本常识 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。 简介虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。发展历史虚拟现实技术演变发展史大体上可以分为四个阶段有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963)年以前虚拟现实萌芽为第二阶段(1963 -1972 )虚拟现实概念的产生和理论初步形成为第三阶段(1973 -1989 )虚拟现实理论进一步的完善和应用为第四阶段(1990 -2004 )。 特征多感知性 指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。 虚拟现实存在感 指用户感到作为主角存在丁模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。 虚拟现实交互性 指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。 虚拟现实自主性

虚拟现实技术应用及其未来展望

虚拟现实技术应用及其未来展望 虚拟现实是利用计算机、电子技术、图像技术、传感器技术、多媒体技术、人机接口技术及仿真技术等多种科学技术发展起来的计算机领域的最新技术, 是一种可以创建和体验虚拟世界的计算机仿真系统。虚拟技术是一门富有挑战性的交叉技术、前沿科学和研究领域。目前虚拟技术已涉及到军事、教育、医学、心里学、商业、影视等领域,是21世纪的重要发展学科。 一、虚拟技术的特征 虚拟环境是利用计算机生成并控制的,因此人处在利用虚拟技术创建的拟环境之中和真实环境是没有差别的。虚拟现实具有3个最突出的特性:交互性、沉浸性和构想性。 1、交互性: 人们可以通过使用专门的输入和输出设备(主要通过数据手套、头盔、数据衣等)以自然地方式(如自身的语言、动作等)和虚拟世界中的对象进行交互操作和交流。 2、沉浸感: 沉浸感是指用户在纯自然的状态下借助交互设备和自身的感知觉系统对虚拟环境的投入程度。虚拟世界给人一种身临其境的感觉。 3、构想性:指借助虚拟技术可以使用户沉浸其中并获得新的知识,从而使用户深 化概念和萌发新意。因此说虚拟现实可以启发人创造性思维,使抽象概念具体化。 二、虚拟现实技术的应用领域 虚拟现实技术应用非常广泛,它可以用于军事、教育训练、设计规划、产品建模、心理学治疗及艺术与娱乐等多方面。 1、军事领域 虚拟现实技术已成为军事和航天领域的先锋技术虚拟技术最初是美国航空航天局与军事部门为了模拟训练而开发的。现在广泛用于各兵种部队的战术研究、演习、模拟训练和培训等,战斗实验室已成为数控战士的战场。 “司令部军事演习”也已成为一种军事演习的重要形式,这类演习可用于为未来战争组织装备、主导原则和综合训练等决策提供参考数据。美国航空航天局埃姆斯研究中心还建立了一座虚拟实验室,它所拥有的飞机模型器无论从规模上还是从逼真程度来看都处于世界之最,主要用于研究现在的或拟议中的飞机飞行控制、制导、座舱显示、自动化和操纵的品质,它能够获得有关飞机性能的实时数据和视图,并且航空研究人员和设计师坐在家里就可以“进入”该实验室进行操作,其灵敏度远远高于现在的任何其他此类研究手段。 虚拟现实技术在军事领域中发挥着重要的作用,被广泛的应用于军事训练、武装装备的研究和生产以及军事教育等各个方面。目前的军事模拟训练

虚拟现实技术基础与应用代码-8 综合实例

8.3.2 场景模型的构建 建立了消防车的3ds模型后,我们就可以来定义一个消防车类了。消防车类中包含车身、云梯、吊篮成员对象,这些对象通过前节介绍的3ds载入类C3DSLoader来定义。此外我们在吊篮上安置一个消防水枪来模拟喷水效果,为此用前章定义好的粒子系统类CparticleSys来定义一个水枪效果对象。为实现云梯的交互运动,增加了云梯水平旋转的变量theta,和俯仰运动的变量phi。车身的运动由变量Position来控制。其消防车类的定义如下: //注:以下代码写在文件Motor.h中 #include "gl/glut.h" #include "3DSLoader.h" #include "Particle.h" class CMotor //消防车类 { public: float Position[3]; //车位置 float theta; //云梯支架旋转角 float phi; //云梯俯仰角 //定义3ds载入对象 C3DSLoader m_3DSMotor; //车身 C3DSLoader m_3DSSupport; //云梯支架 C3DSLoader m_3DSLadder; //云梯 C3DSLoader m_3DSBasket; //篮子 CParticleSys m_WaterGun; //水枪效果 CMotor(); //构造函数 virtual ~CMotor(); //析构函数 void DrawMotor(); //绘制车 void Init(); //初始化 }; 车身模型,云梯模型和吊篮模型的载入以及水枪的初始化通过成员函数Init来完成,其实现形式如下: //注:以下代码写在文件Motor.cpp中 void CMotor::Init() { m_3DSMotor.Load3DSModel("3DSModel\\武警学院车身1.3DS"); m_3DSSupport.Load3DSModel("3DSModel\\云梯支架.3ds"); m_3DSLadder.Load3DSModel("3DSModel\\云梯.3ds"); m_3DSBasket.Load3DSModel("3DSModel\\吊篮.3ds"); m_WaterGun.SetPosition(0,0,0); //水枪位置 m_WaterGun.SetMode(0.5,100, 10,-0.8,1); //粒子系统模式设置 m_WaterGun.Init(PI/2,PI/3);//水枪方向 } 消防车的绘制过程在成员函数DrawMotor中来完成,其实现形式如下: //注:以下代码写在文件Motor.cpp中 void CMotor::DrawMotor()

虚拟现实系统的组成

虚拟现实系统的组成 1 构建虚拟现实系统的目的 使参与者沉浸于多维信息空间中,进行仿真、建模,获取知识和形成新概念。 目标:利用并集成高性能的计算机软硬件及各类先进的传感器,去构建一个使参与者处于身临其境的沉浸感、具有完善的交互作用、能帮助和启发构思的信息环境。 技术支持:各种传感器技术、三维显示和音响器、虚拟环境产生器、程序设计工具集、计算机高速网络和高性能计算机平台。 2 虚拟现实系统的组成 用户通过头盔、手套和话筒等输入设备为计算机提供输入信号,虚拟现实软件收到输入信号后加以解释,然后对虚拟环境数据库进行必要更新,调整当前虚拟环境视图,并将这一新视图及其它信息如声音立即传送给输出设备,以便用户及时看到效果。 系统由输入部分、输出部分、虚拟环境数据库、虚拟现实软件组成。 2.1输入部分 虚拟现实系统通过输入部分接收来自用户的信息。用户基本输入信号包括用户的头、手位置及方向、声音等。其输入设备主要有: (1)数据手套 用来监测手的姿态,将人手的自然动作数字化。用户手的位置与

方向用来与虚拟环境进行交互。如在使用交互手套时,手势可用来启动或终止系统。类似地,手套可用来拾起虚拟物体,并将物体移到别的位置。 (2)三维球 用于物体操作和飞行控制。 (3)自由度鼠标 用于导航、选择及与物体交互。 (4)生物传感器 用来跟踪眼球运动。 (5)头部跟踪器 通常装在HMD头盔上跟踪头部位置,以便使HMD显示的图像随头部运动而变化。用户头的位置及方向是系统重要的输入信号,因为它决定了从哪个视角对虚拟世界进行渲染。 (6)语音输入设备 通过话筒等声音输入设备将语音信息输入,并利用语音识别系统将语音信号变成数字化信号。 2.2 输出系统 虚拟现实系统根据人的感觉器官的工作原理,通过虚拟现实系统的输出设备,https://www.360docs.net/doc/346735603.html,使人对虚拟现实系统的虚拟环境得到虽假犹真、身临其境的感觉。主要是由三维图像视觉效果、三维声音效果和触觉 (力觉)效果来实现的。 (1)三维图像生成与显示

虚拟现实技术行业应用范围

虚拟现实技术行业应用范围 1.城市规划 在城市规划中经常会用到虚拟现实技术,用虚拟现实技术不仅能十分直观的表现虚拟的城市环境,能运用三维GIS地理信息系统来表现直观的三维地形地貌,为城市建设提供可靠的参考数据。而且能很好的模拟各种天气情况下的城市,能了解排水系统,供电系统,道路交通,沟渠湖泊等等。而且能模拟自然灾害的突发情况。对于政府在城市规划的工作中起到了举足轻重的作用。 2.医学 虚拟现实技术在医学领域上的应用主要体现在医学动画上。传统的医学动画仅仅只能在平面、三维的角度展示医学原理、人体结构等。而虚拟现实技术的应用突破了视角的限制,让人能进到“体内”,在人体内漫游,以任意角度观察人体结构。 3.文物保护 虚拟现实技术在文物保护方面也是应用相当广泛的,埃及的金字塔就做过网上的体验中心,运用了全景虚拟技术和三维虚拟技术,而且IBM目前正在运用VR虚拟现实技术对北京故宫进行整个故宫的数字虚拟。届时大家也许可以在网上直接看到数字三维化的故宫。 4.交通 无论是在空中、陆地还是海洋河流的交通规划模拟方面,VR虚拟现实技术都有其得天独厚的优势,不仅仅能用三维GIS技术将各种交通路线表现得十分到位,更能动态模拟各种自然灾害情况。 5.房地产 近几年在房地产的表现和推广应用方面,VR虚拟现实技术被得到越来越多的应用,把虚拟现实和传统的建筑动画、地产动画结合起来,不仅十分完美的表现室内的环境和整个小区的环境,设施。还能表现不存在但即将建成的绿化带,https://www.360docs.net/doc/346735603.html,喷泉,休息区,运动场等等。不仅如此,用户还能在三维的室内空间中自由行走、任意漫游、仔细欣赏小区的每一处风景。大大刺激了浏览者的感受。 6.游戏 对于游戏的开发,目前虚拟现实技术比较适合开发:角色扮演类、动作类、冒险解迷类、竞速赛车类的游戏,其先进的图像引擎丝毫不亚于目前的主流游戏引擎的图像表现效果,而且整合配套的动力学和AI系统更给游戏的开发提供了便利。 7.军事 虚拟现实技术就是诞生于军事应用,在军事应用方面很多,包括:模拟战场,模拟操作,模拟驾驶,模拟装配等等。都需要通过VR技术来实现。而且在相关军事工作汇报中也会有VR技术的支持。 8.家电 家电产品的展示、展览、发布上。运用虚拟现实技术不仅可以完美表现产品的外观,更能将其功能表现的淋漓尽致。而且家电行业产品种类繁多、数量庞大。市场需求量十分大,无论是使用全景虚拟还是视频虚拟还是三维虚拟技术都能在家电行业大有作为。

浅谈虚拟现实技术特点教学提纲

浅谈虚拟现实技术特 点

浅谈虚拟现实技术特点,组成和分类。常用的虚拟现实软件,硬件和优缺点。 经过3节课的老师的讲解和上网资料的查看,我对虚拟现实技术有了浅显的了解。 一:虚拟现实技术特点: 虚拟现实(VirtualReality)又称灵境技术是利用三维图形生成技术、多传感交互技术以及高分辨显示技术,生成三维逼真的虚拟环境,使用者戴上特殊的头盔、数据手套等传感设备,或利用键盘、鼠标等输入设备,便可以进入虚拟空间,成为虚拟环境的一员,进行实时交互,感知和操作虚拟世界中的各种对象,从而获得身临其境的感受和体会。 虚拟现实技术具有以下五个主要特征: (1)沉浸性使之所创造的虚拟环境能使学生产生“身临其境”感觉,使其相信在虚拟环境中人也是确实存在的,而且在操作过程中它可以自始至终的发挥作用,就像真正的客观世界一样。 (2)交互性是在虚拟环境中,学生如同在真实的环境中一样与虚拟环境中的任务、事物发生交互关系,其中学生是交互的主体,虚拟对象是交互的客体,主体和客体之间的交互是全方位的。 (3)构想性是虚拟现实是要能启发人的创造性的活动,不仅要能使沉浸于此环境中的学生获取新的指示,提高感性和理性认识,而且要能使学生产生新的构思。

(4)动作性是指学生能以客观世界的实际动作或以人类实际的方式来操作虚拟系统,让学生感觉到他面对的是一个真实的环境。 (5)自主性是虚拟世界中物体可按各自的模型和规则自主运动。 二:虚拟现实技术组成和分类: 1 :虚拟现实系统的组成 用户通过头盔、手套和话筒等输入设备为计算机提供输入信号,虚拟现实软件收到输入信号后加以解释,然后对虚拟环境数据库进行必要更新,调整当前虚拟环境视图,并将这一新视图及其它信息如声音立即传送给输出设备,以便用户及时看到效果。 系统由输入部分、输出部分、虚拟环境数据库、虚拟现实软件组成。 2:虚拟现实系统的分类 虚拟现实系统按照不同的标准有不同的分类,通常分为以下四类:(1)桌面虚拟现实系统(Desktop VR) (2)沉浸式虚拟现实系统(Immersive VR) (3)分布式虚拟现实系统(Distributed VR) (4)增强式虚拟现实系统(Augmented Reality AR) 2.1桌面虚拟现实系统(简称PCVR) 桌面虚拟现实系统是一套基于普通PC平台的小型虚拟现实系统。利用中低端图形工作站及立体显示器,产生虚拟场景,参与者使用位置跟踪器、数据手套、力反馈器、三维鼠标、或其它手控输入设备,实现虚拟现实技术的重要技术特征:多感知性、沉浸感、交互性、真实性。

多媒体技术应用基础知识要点

《多媒体技术应用》基础知识要点 一、多媒体技术基础(书本第一章和第二章内容) 1、媒体、多媒体及多媒体技术的概念 (1)媒体的含义 媒体(medium)在计算机领域有两种含义:一是指存储信息的实体,如磁带、磁盘、光盘等,二是指承载信息的载体,如数字、文字、声音、图形和图像等。多媒体技术中的媒体是指后者。 (2)多媒体及多媒体技术的概念 多媒体是指对多种媒体的综合,多媒体技术是指以计算机为平台综合处理多种媒体信息。通常情况下,多媒体不仅指多媒体本身,也包括多媒体技术。 2、多媒体技术的特征 多媒体技术有三个显着的特征:集成性、交互性、实时性。 3、多媒体技术的应用 (1)生活中的多媒体 MP3音乐、影视动画、数字电视等。 (2)多媒体技术的现状 音频技术、视频技术、数据压缩技术、网络传输技术。 (3)多媒体技术的发展前景 虚拟现实、多媒体数据库和基于内容检索、多媒体通信技术。 4、多媒体计算机系统的组成 (1)多媒体计算机的概念 多媒体计算机是指具有多媒体信息处理功能的个人计算机。 (2)多媒体计算机配置标准 多媒体计算机一般应包括:具有多媒体功能的操作系统;硬件部分至少应包括光盘驱动器、声卡、音箱或耳机等。 (3)常见多媒体硬件设备 CD—ROM驱动器、音频卡、视频卡、扫描仪、数码相机、数码摄像机等。 (4)常用的多媒体软件工具 多媒体软件根据它的应用层面可以分为多媒体操作系统、多媒体数据采集和编辑软件、多媒体创作和集成软件三大部分。 常见的多媒体数据采集和编辑软件有:Windows系统附件中的“录音机”、PhotoShop、Flash、3DSMAX、Premiere等;常见的多媒体创作和集成软件有:Authorware、方正奥思、Director、PowerPoint等。 5、多媒体作品的规划和设计 制作多媒体作品是一个集文本、图像、声音、动画、视频之大成的工程。 多媒体作品设计的一般步骤:需求分析、规划设计、脚本编写。 需求分析包括应用需求分析和创作需求分析。规划设计包括系统结构设计和功能模块设计。 6、多媒体数据压缩技术 数据压缩是为了减少文件所占的存储空间。数据之所以能够被压缩,首先是因为数据本身确实存在着冗余,其次是在许多情况下媒体本身允许有少量的失真。

虚拟现实应用技术专业实训课程的教学研究

龙源期刊网 https://www.360docs.net/doc/346735603.html, 虚拟现实应用技术专业实训课程的教学研究作者:曾鹏 来源:《学习与科普》2019年第30期 摘要:本文基于笔者的教学实践和相关研究,首先介绍了虚拟现实技术的前景和实训课程出现的问题,然后问题从教学理念、教学方式、教学反馈三个方面,对虚拟现实应用技术专业实训课程的优化进行了研究。 关键词:虚拟现实应用技术专业;实训课程;优化 伴随着我国新一轮产业革命的临近,虚拟现实应用技术也开始逐渐活跃在人们的视野之中。虚拟现实应用技术可供应用的领域非常广泛,在影视、航天、建筑和医学等方面都能得到应用,各个高校顺应产业改革的步伐,也纷纷开始了虚拟现实技术与应用专业的相关课程。本文以虚拟现实应用技术专业实训课程为例,基于产教融合的思想对实训课程加以优化,为虚拟现实应用技术专业的进一步发展提供参考。 一、相关性分析 1.虚拟现实应用技术前景 虚拟现实应用技术也称灵境技术,属于仿真技术的一个前沿方向。虚拟现实应用技术依托电子信息、计算机技术和仿真技术,构造出虚拟环境来给用户以沉浸式的体验,当前最为代表性的虚拟现实技术当属VR眼镜。虚拟现实技术集交互性、沉浸性、自主性、构想性和多感知性于一体,当前各高校纷纷开设了虚拟现实技术专业,旨在为社会培育出高素质的技术型人才。 2.实训课程教学现状 因为虚拟现实应用技术专业开设的时间较为短暂,使得其实训课程在构建时便遇到了许多的问题。首先是资源的引入和整体实训课程缺乏一定的系统性,虚拟现实应用技术专业是一项集多种技术于一体的系统性开发工程,要求岗位工作人员不仅需要掌握相关建模语言的编写,更要掌握插补器和传感器的具体应用,需要完备的开发流程进行整体的规范,部分学校在进行实训课程时采用的是手工作坊式的开发模式,与企业的岗位需求有不小的差距;其次是整体积极性不足,主要表现为企业的积极性和学生的热情不足,使得整体的实训进度达不到预期的目标。企业方面主要是因为需要一线人员的长期参与,同时无法获得足够的短期效益,所以积极性不高,学生方面主要是因为实训课程的难度较大,使得部分学生无法跟上实训课程的进度。 二、专业实训课程教学优化设计 1.教学理念优化

虚拟现实技术的概念与类型

虚拟现实技术的概念和类型 虚拟现实技术的概念和类型 1. 虚拟现实的概念 虚拟现实技术是利用三维图形生成技术、多传感交互技术以及高分辨显示技术,生成三维逼真的虚拟环境,使用者戴上特殊的头盔、数据手套等传感设备,或利用键盘、鼠标等输入设备,便可以进入虚拟空间,成为虚拟环境的一员,进行实时交互,感知和操作虚拟世界中的各种对象,从而获得身临其境的感受和体会。 2. 虚拟现实的特征 (1) 沉浸性 虚拟现实技术是根据人类的视觉、听觉的生理心理特点,由计算机产生逼真的三维立体图像.使用者戴上头盔显示器和数据手套等交互设备,便可将自己置身于虚拟环境中,成为虚拟环境中的一员。使用者和虚拟环境中的各种对象的相互作用,就如同在现实世界中的一样。当使用者移动头部时,虚拟环境中的图像也实时地跟随变化,拿起物体可使物体随着手的移动而运动,而且还可以听到三维仿真声音。使用者在虚拟环境中,一切感觉都是那么逼真,有一种身临其境的感觉。。 (2) 交互性 虚拟现实系统中的人机交互是一种近乎自然的交互,

使用者不仅可以利用电脑键盘、鼠标进行交互,而且能够通过特殊头盔、数据手套等传感设备进行交互。计算机能根据使用者的头、手、眼、语言及身体的运动,来调整系统呈现的图像及声音。使用者通过自身的语言、身体运动或动作等自然技能,就能对虚拟环境中的对象进行考察或操作。 (3) 想象 由于虚拟现实系统中装有视、听、触、动觉的传感及反应装置,因此,使用者在虚拟环境中可获得视觉、听觉、触觉、动觉等多种感知,从而达到身临其境的感受。 3.虚拟现实技术的类型 (1) 桌面虚拟现实 (2) 沉浸的虚拟现实 (3) 增强现实性的虚拟现实 (4) 分布式虚拟现实 4.虚拟现实技术在网络教育中的作用 (1) 弥补远程教学条件的不足 在远程教学中,往往会因为实验设备、实验场地、教学经费等方面的原因,而使一些应该开设的教学实验无法进行。利用虚拟现实系统,可以弥补这些方面的不足,学生足不出户便可以做各种各样的实验,获得和真实实验一样的体会,从而丰富感性认识,加深对教学内容的理解。 (2) 避免真实实验或操作所带来的各种危险

虚拟现实基础试题答案

虚拟现实PPT答案文字版 Q1虚拟现实的基本概念,基本类型以及三个重要的特点是什么? 基本概念:虚拟现实(Virtual Reality,简称VR),是一种基于可计算信息的沉浸式交互环境,具体地说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作用、相互影响,从而产生亲临等同真实环境的感受和体验。由计算机系统产生的,相对于实环境的,并有人的操作和参与而形成的一种虚构的、视觉上的、听觉上的、感觉上、嗅觉上的存在,是一种物理 意义上的人机交互和抽象组合。 基本类型: 1.桌面虚拟现实系统(实利用个人计算机和低级工作站进行仿真,将计算机的屏幕作为用户观察虚拟境界的一个窗口。) 2.临境虚拟现实系统(提供完全沉浸的体验) 3.增强型的虚拟现实系统(增强现实中无法感知或不方便的感受) 4.分布式虚拟现实系统(多个用户可通过网络对同一虚拟世界进行观察和操作,以达到协同工作的目的) 重要特点:临境(immersion);交互性(interactivity);想象(imagination)。 1.沉浸感:用户作为主角存在于虚拟环境中的真实程度。 2.交互性:用户对虚拟环境内的物体的可操作程度和从环境得到反馈的自然程度。 3.想象:用户沉浸在多维信息空间中,依靠自己的感知和认知能力全方位地获取知识,发挥主观能动性,寻求解答,形成新的概念。 Q2简述虚拟现实系统的关键技术,主要建模方法。 关键技术: 1.三维真实感图象的实时生成(VR系统要对参与者的行为反应灵敏,并保持内部的一致性和连贯性,保证显示图象的“更新率”能满足目标的要求) 2.大视野立体显示技术(通过配戴头盔给人身临其境的感觉,画面围绕着参与者) 3.位置跟踪器(检测到参与者的物理位置和取向,以便输入到计算机中去产生虚拟境界中相应的图象和声音) 4.立体声的产生(真实而且准确,注意声音的方向感) 5.虚拟环境建模(设计出参与者在一种虚拟境界中会遇到的景物,包括物体建立几何模型,附加信息) 主要建模方法:基于几何和图像的建模、虚拟对象的物理特性建模与行为建模。 (3,增加模型的逼真度: (1)纹理映射贴图:将纹理图像贴在简单物体的几何表面,以近似描述物体表面的纹理细节,加强真实性,实际上是利用二维平面图代替三维模型的局部。 (2)环境映射:采用纹理图像来表示物体表面的镜面反射和规则透视效果。 (3)反走样:提高像素的密度。 最直接的方法:使用实际的航拍卫星图作为地形的纹理。纹理拟合是一个有效的手段。 提高系统实时性

浅析虚拟现实技术

浅析虚拟现实技术应用与未来发展 摘要虚拟现实技术(Virtual Reality,简称VR)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用计算机模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物。本文主要探讨了虚拟现实技术发展历史、当下应用及未来发展展望。 关键字虚拟现实技术历史发展未来趋势应用局限性 虚拟现实技术(Virtual Reality,简称VR)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用计算机模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物【1】。近几年,虚拟现实技术发展迅速,在航空航天、船舶建造与设计、军事模拟、机械工程、先进制造、城市规划、地理信息系统、医学生物等领域中发挥了巨大作用,与网络、多媒体技术并称为2l世纪最具应用前景的三大技术。 一、虚拟现实技术特点简析。 虚拟现实技术涉及计算机图形学、数字图像处理技术、多媒体技术、网络技术、人工智能等等,主要是实时三维计算机图形技术,广角(宽视野)立体显示技术,对观察者头、眼和手的跟踪技术,以及触觉/力觉反馈、立体声、网络传输、语音输入输出技术等的综合。 而虚拟现实技术的三大主要特点则分别是由上述技术组合实现的。 1、沉浸性。 沉浸性是指虚拟现实技术所创造的虚拟环境能使体验者产生“身临其境”感觉,使其相信在虚拟环境中人也是确实存在的,而且在操作过程中体验者可以自始至终的发挥作用,就像真正的客观世界一样。 根据人类视觉、听觉的生理心理特点,由计算机产生逼真的三维立体图像.使用者戴上头盔显示器和数据手套交互设备,便可将自己置身于虚拟环境中,成为虚拟环境中的一员。 2、交互性。 交互性指在虚拟环境中体验者不是被动地感受,而是可以自行改变感受的内容。?体验者是交互的主体,虚拟对象是交互的客体,主体和客体之间的交互是全方位的。 虚拟现实系统中的人机交互是一种近乎自然的交互,可通过键盘、鼠标、头盔、数据手套等设备进行交互。使用者通过自身的语言、身体运动或动作等自然技能,对虚拟环境中的对象进行触摸或操作。 3、多感知性。 多感知性是指除了一般计算机所具有的视觉感知外 还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。 虚拟现实系统中装有视、听、触、动觉的传感及反应装置,因此,使用者在虚拟环境中可获得多种感知,亲身体验交互操作的反应与感受。 二、虚拟现实技术发展历史

相关文档
最新文档