相似三角形的判定讲义全

相似三角形的判定讲义全
相似三角形的判定讲义全

相似三角形的判定

一、知识点讲解

判定定理1:如果一个三角形的两个角与另外一个三角形的两个角对应相等,那么这两个三角形相似。 判定定理2:两边对应相等且夹角对应相等的两个三角形相似。

判定定理3:三边对应成比例的两个三角形相似。

理解:(1)当给出的条件上角为主时,应考虑“两角对应相等”;当给出的条件有边有角时,应考虑“两边对应成比例,夹角相等”;当给出的条件全是边时应考虑“三边对应成比例”。

(2)在利用判定定理2时,一是两边的夹角相等,如果不是夹角则不成立。

二、典例分析

(一)运用判定定理判定三角形相似

例1 在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F 。

(1)求证:△ABE ∽△DFA ;(2)若AB=6,AD=12,AE=10,求DF 的长。

变式练习:

1、如图,DE ∥BC ,EF ∥AB ,则图中相似的三角形一共有( )

A 、1对

B 、2对

C 、3对

D 、4对

2、具备下列各组条件的两个三角形中,不一定相似的是( )

A 、有一个角是40°两个等腰三角形

B 、两个等腰直角三角形

C 、有一个角为100°的两个等腰三角形

D 、两个等边三角形

例2 已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217

,求AD 的长。

变式练习:

1、如图,在△ABC 中,点D 、E 分别在AB 、AC 上,下列条件中不能判定△ABC ∽△AED 的是( )

A 、∠AED=∠

B B 、∠ADE=∠

C C 、AB AC AE A

D = D 、AC

AE AB AD = 2、已知,P 是正方形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,求证:

△ADM ∽△MCP 。

例3 如图,小正方形的边长为1,则下列选项中的三角形(阴影部分)与△ABC 相似的是( )

变式练习:

1、在△ABC 和△A 'B 'C '中,AB=3cm ,BC=6cm ,CA=5cm ,A 'B '=3cm ,B 'C '=2.5cm ,A 'C '=1.5cm ,则下列说法中,错误的是( )

A 、△ABC 与△A '

B '

C '相似 B 、AB 与A 'B '是对应边 C 、相似比为2:1

D 、AB 与A 'C '是对应边

2、网格图中每个方格都是边长为1的小正方形,若A 、B 、C 、D 、E 、F 都是格点,试证明:△ABC ∽△DEF 。

(二)判定定理的运用

例4 如图,在矩形ABCD 中,E 为AD 的中点,连接EC ,过点E 作直线EF 交AB 于点F 。当EF 与CE 满足什么条件时,△AEF 与△DCE 相似?并说明理由。

变式练习:

1、如图,在△ABC 中,∠ADE=∠C ,则下列等式成立的是( )

A 、AC A

B AB AD = B 、BD AD B

C AE = C 、AB AE BC DE =

D 、AB

AD BC DE =

第1题 第2题 第3题

2、如图,∠ABD=∠C ,AB=5,AD=3.5,则AC= 。

3、如图,D 是AC 上一点,BE ∥AC ,BE=AD ,AE 分别交BD 、BC 于点F 、G ,∠1=∠2。求证:FD 2=FG ·FE.

反馈练习 基础夯实

1、如图,AD ⊥BC 于点D ,CE ⊥AB 于点E 交AD 于点F ,则图中与△AEF 相似的三角形的个数是( )

A 、1个

B 、2个

C 、3个

D 、4个

2、如图,在R t △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) A 、23 B 、67 C 、6

25 D 、2 3、如图,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,则下列结论:①△ABC ∽△BCD ;②AB :BC=BC :CD ;③BC 2=AC ·CD ;④AD :DC=AB :BC ,其中正确的结论有( )

A 、1个

B 、2个

C 、3个

D 、4个

4、如下图,下列条件不能判定△ADB ∽△ABC 的是( )

A 、∠ABD=∠AC

B B 、∠ADB=∠AB

C C 、AB 2=A

D ·AC D 、

BC

AB AB AD 5、如图,在△ABC 中,D 是AB 上一点,且AC 2=AD ·AB ,则( )

A 、△ADC ∽△AC

B B 、△BD

C ∽△BCA C 、△ADC ∽△CDB

D 、无相似三角形

6、满足下列条件的各对三角形中是相似三角形的是( )

A 、∠A=60°,AB=5cm ,AC=10cm ;∠A '=60°,A '

B '=3cm ,A '

C '=10cm

B 、∠A=45°,AB=4cm ,BC=6cm ;∠D=45°,DE=2cm ,DF=3cm

C 、∠C=∠E=30°,AB=8cm ,BC=4cm ;DF=6cm ,FE=3cm

D 、∠A=∠A ',且AB ·A 'C '=AC ·A 'B '

7、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB= 。

8、如图,在□ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形 。

第7题 第8题 第9题 第10题 第11题

9、如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 。

10、如图,在△ABC 中,D 是ABA 边上一点,连接CD ,要使△ADC 与△ACB 相似,应添加的条件

是 。(写出一个即可)

11、如图,在△ABC 中,CD ⊥AB ,垂足为D ,下列条件中,能证明△ABC 是直角三角形的有 。 ①∠A+∠B=90°;②AB 2=AC 2+BC 2;③BD

CD AB AC =;④CD 2=AD ·BD 。 12、如图,已知,∠ACB=∠ABD=90°,BC=6,AC=8,当BD= 时,

图中的两个直角三角形相似。

13、如图,∠1=∠2,∠B=∠D ,AB=DE=5,BC=4。

(1)求证:△ABC ∽△ADE ;(2)求AD 的长。

14、如图,△ABC 中,CD 是边AB 上的高,且BD

CD CD AD =。 (1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小。

15、如图,矩形ABCD 为台球桌面,AD=260cm ,AB=130cm 。球目前在点E 的位置,AE=60cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到点D 的位置。

(1)求证:△BEF ∽△CDF ; (2)求CF 的长。

16、已知,如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上滑动,在滑动过程中,以M、N、C为顶点的三角形与△AED可能相似吗?若能,求出相似时CM的长。

能力提升

17、如图,在直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=c,则下列等式成立的是()

A、b2=ac

B、b2=ce

C、be=ac

D、bd=ae

第17题第18题第19题

18、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从点A 出发到点B为止,动点E从点C 出发到点A止,点D运动的速度为1cm/s,点E运动的速度为2cm/s。如果两点同时运动,那么当以点A、

D 、

E 为顶点的三角形与△ABC 相似时,运动的时间是( )

A 、3秒或4.8秒

B 、3秒

C 、4.5秒

D 、4.5秒或4.8秒

19、如图,D 是等边△ABC 边AB 上的一点,且AD :DB=1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF=( )

A 、43

B 、54

C 、65

D 、7

6 20、如图,△AOB 是直角三角形,∠AOB=90°,OB=2OA ,点A 在反比例函数x y 1=

的图像上,若点B 在反比例函数x

k y =的图像上,则k 的值为( ) A 、-4 B 、4 C 、-2 D 、2

第20题 第21题 第22题

21、如图,在平面直角坐标系中,有两点A(4,0),B (0,2),如果点C 在x 轴上(点C 与点A 不重合),当点C 的坐标为 时,使得以点B 、O 、C 为顶点的三角形与△AOB 相似。

22、已知,如图,□ABCD 的对角线相交于点O ,点E 在边BC 上延长线上,且OE=OB ,连接DE 。

求证:(1)DE ⊥BE ;(2)如果OE ⊥CD ,求证:△CED ∽△DEB 。

23、如图,在□ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B 。

(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=36,AF=34,求AE 的长。

24、学习《图形的相似》后,我们可以根据探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件。

(1)“充分于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似在,你可以得到“满足 ,或 ,两个直角三角形相似”;

(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足 的两个直角三角形相似”。请结合下列所给图形,写出已知,并完成证明过程。

已知:如图, 。

求证:R t △ABC ∽R t △A 'B 'C '。

25、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H 。

(1)求证:△ABE ∽△ECF ;

(2)找出与△ABH 相似的三角形,并证明;

(3)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长。

思维拓展

26、如图1,直线AB分别与两坐标轴将于点A(4,0),B(0,8),点C的坐标为(2,0)。

(1)求直线AB的解析式;

(2)在线段AB上有一动点P。

①如图2,过点P分别作x、y轴的垂线,垂足分别为点E、F,若矩形OEPF的面积为6,求点P的坐标;

②连接CP,是否存在点P,使△ACP与△AOB相似,若存在,求出点P的坐标;若不存在,请说明理由。

27、如图,矩形ABCD中,AD=3cm,AB=a cm(a>3)。动点M、N同时从点B出发,分别沿

运动,速度是1cm/s。过点M作直线垂直于AB,分别交AN、CD于点P、Q,当点N到达终点C时,点M 也随之停止运动,设运动时间为t秒。

(1)若a=4cm,t=1s,则PM= cm;

(2)连接PD、PB,若a=5cm,求运动时间t,命名△PNB∽△PAD,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围。

参考答案

反馈练习 基础夯实

1、C

2、B

3、D

4、D

5、A

6、D

7、4

8、△DCF ∽△EBF

9、7 10、AB AC AC AD 11、①②④ 12、215或3

40 13、(1)略 (2)4

25 14、(1)略 (2)90° 15、(1)略 (2)169 16、

55或552 能力提高

17、A 18、A

19、

20、A 21、(-4,0) (1,0) (-1,0)

相似三角形的判定和应用

相似三角形的判定和应用 知识点: 1. 对应角________,对应边_________的两个三角形叫做相似三角形. 2. 相似三角形的对应角________,对应边_________. 3. 相似三角形中,对应边的比叫做___________(或相似系数). 4.证明两个三角形相似的方法: (1)先证_____组对应角相等. (2)先证两边对应成比例,并且____________. (3)先证三边对应___________. 5.如图1,如果ΔABC与ΔA/B/C/的相似比是AB∶A/B/=k,那么ΔA/B/C/与ΔABC的相似比是_ . 6.在图2和图3中: 要证明ΔADE∽ΔABC,只需先证明_________(填一个条件)。 7.在图3中,若DE∥BC,DB∶DA=9∶4,则ΔABC与ΔADE的相似比是______. 8.如图4, ABCD中,G是BC边延长线上一点,AG交DB、DC于E、F, 则图中的相似三角形共有_____对;若AE∶EF=4∶3则ΔAFD与ΔGFC的相似比是______. 9.如图5,当∠ADC=∠____时,ΔABC∽ΔACD;当A2=_________时,ΔABC∽ΔACD. 10. ΔABC的三边长为3、4、5,ΔA/B/C/的最短边为5,若ΔABC∽ΔA /B / C /,则ΔA/B/C/的面积为____. 一、选择题 1.如图,DE∥BC,EF∥AB,则图中相似三角形一共有() A.1对 B.2对 C.3对 D.4对 第1题第2题第3题第4题第5题 2.如图,P是Rt ABC △斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作() A. 1条 B. 2条 C. 3条 D. 4条 3.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件不能使ΔABE和ΔACD相似的是() A. ∠B=∠C . ∠ADC=∠AEB C. BE=CD,AB=AC D. AD∶AC=AE∶AB 4.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有() A ΔADE∽ΔAEF B ΔECF∽ΔAEF C ΔADE∽ΔECF D ΔAEF∽ΔABF 5.如图,E是□ABCD的边BC的延长线上的一点,连结AE交CD于F,图中有相似三角形() 1

相似三角形的性质与判定讲义)

相似三角形的性质与判 定讲义) -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形的性质与判定讲义 【知识点拨】 一、相似三角形性质 (1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比. (4)相似三角形面积的比等于相似比的平方. (5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等 二、 相似三角形的等价关系 (1)反身性:对于任一ABC ?有ABC ?∽ABC ?. (2)对称性:若ABC ?∽'''C B A ?,则'''C B A ?∽ABC ?. (3)传递性:若ABC ?∽C B A '?'',且C B A '?''∽ C B A ''''''?,则ABC ?∽C B A ''''''?. 三、三角形相似的判定方法 1、定义法:对应角相等,对应边成比例的两个三角形相似. 2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 6、判定直角三角形相似的方法: (1)以上各种判定均适用. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. (3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下: (1)(AD )2=BD ·DC ,(2)(AB )2=BD ·BC ,(3)(AC )2=CD ·BC 。 【例题精讲】: E D C B A

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

教案:4.4 两个相似三角形的判定(2)

4.4两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大

C 对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′=A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠B =∠A ′,但两个三角形不相似. 教学过程: 一、复习 1、我们已经学习了几种判定三角形相似的方法?(1)平行于三角形一边直线定理 ∵DE ∥BC ,∴△ADE ∽△ABC (2 ∠A ′,∠B=∠B ′,∴△ABC ∽△A ′B ′C ′(3 ∵∠ACB=Rt ∠,CD ⊥AB ,∴△ABC ∽△ACD ∽△CDB 二、新课 1、合作学习 A B C A ′ B ′ C ′ 4-3-14

九年级数学上册相似三角形的判定-讲义

编号:76854125658544289374459234 学校:麻阳市青水河镇刚强学校* 教师:国敏* 班级:云云伍班* 学科:数学 专题:相似三角形的判定 重难点易错点解析 判断三角形是否相似,要注意思维的完整性. 题一 题面:如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对. 金题精讲 题一 题面:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想, (1)求证:AC2=AD·AB;BC2=BD·BA; (2)求证:CD2=AD·AD; (3)求证:AC·BC=AB·CD. 三角形相似

题二 题面:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC. 圆周角定理、相似三角形 满分冲刺 题一 题面:如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少? 相似多边形、二次函数 题二 题面:已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.

利用平行线构造相似三角形 题三 题面:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值. 图13-2 相似三角形的判定

讲义参考答案 重难点易错点解析 题一 答案:6对. 金题精讲 题一 答案:利用三角形相似证明. 题二 答案:提示:连结AE 、ED ,证△ABE ∽△ECD . 满分冲刺 题一 答案:25= x 时,S 的最大值为252. 题二 答案:12 AF FB =. 题三 答案:如图13-3. 图13-3 ∵AB ⊥BC ,PB ⊥BF , ∴∠ABP =∠CBF .

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

北师大版-数学-九年级上册-4.5 相似三角形判定定理的证明 教案

相似三角形判定定理的证明 预习导学: 1.相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似. 2.证明相似三角形判定定理时,先作辅助线,再根据条件选择适当的判定定理。 教学目标: 1.了解相似三角形判定定理,会证明相似三角形判定定理 2.掌握推理证明的方法,发展演绎推理能力 教学重点:会证明相似三角形判定定理 教学难点:掌握推理证明的方法,并提供应用能力 教学过程: 判定定理的证明: 定理1:两角分别相等的两个三角形相似 如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△A′B′C′. 证明:在△ABC 的边AB (或延长线)上截取AD=A’B’,过点D 作BC 的平行线, 交AC 于点E,则∠ADE=∠B, ∠AED=∠C, AD AE AB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). 过点D 作AC 的平行线,交BC 于点F,则 AD CF AB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴ AE CF AC CB =

∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是平行四边形. ∴DE=CF ∴AE DE AC CB = ∴AD AE DE AB AC BC == 而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴△ADE ∽△ABC. ∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’, ∴△ADE ≌△A’B’C’ ∴△ABC ∽△A’B’C’. 定理2:两边对应成比例且夹角相等,两三角形相似. 探究2 如果∠B =∠B1, 那么,△ABC ∽△A1B1C1. 自己思考,与同学交流 定理3:三边对应成比例,两三角形相似. 如果 1111 ,AB BC k A B B C ==, AB BC AC A B B C A C ==''''''

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形的判定一

2.相似三角形的识别 第一课时相似三角形的识别(一) 教学目标: 1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。 2.会用这种方法判断两个三角形是否相似。 教学过程: 一、复习 1.两个矩形一定会相似吗?为什么? 2.如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例。 3.如图△ABC与△′B′C′会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。 二、新课讲解 同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样。这些三角形是相似的,我们就从平常所用的三角尺入手探索。 (1)是45°角的三角尺,是等腰直角三角形会相似。 (2)是30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢? 这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。是这样吗?请同学们动手试一试: 1.画两个三角形,使它们的三个角分别相等。 画△ABC与△DEF,使∠A=∠D、∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么? 实际画图中,只画∠A=∠D,∠B=∠E,则第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的。 2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否

有相同结果。 3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。 4.两个矩形的四个角也都分别相等,它们为什么不会相似呢? 这是由于三角形具有它特殊的性质。三角形有稳定性,而四边形有不稳定性。 于是我们得到识别两个三角形相似的一个较为简便的方法: 如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。 同学们思考,能否再简便一些,仅有一对角对应相等的两个 三角形,是否一定会相似呢? 例题: 1.如图两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似。 2.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗? 3.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC。 三、练习 1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形。 2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由。和你的同伴交流作法是否一样? 四、小结 本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似。 五、作业

完整版相似三角形的判定方法

(一)相似三角形 1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1 ?所以全等三角形是相似三角形的特例?其 区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0 △ ABC的相似比「当它们全等时,才有k=k' =1 ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小 的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ?/ DE // BC ,???△ ABC ADE ; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的 应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”; ③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似 (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角 形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADE A (双A型)

相似三角形的判定及证明技巧讲义

- 1 - / 4 相似三角形(三) 知识点(一):相似三角形的证明技巧 1.相似三角形的基本图形 2.相似三角形判定定理(3条) 3.相似三角形的具体解题方法 1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE?AB=AC?AF.(判断“横定”还是“竖定”?) 例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF。

A D E F B C

2.过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. (1)等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的 延长线于E.求证:DE2=BE·CE. - 2 - / 4 (2)等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代

相似三角形的判定讲义全

相似三角形的判定 一、知识点讲解 判定定理1:如果一个三角形的两个角与另外一个三角形的两个角对应相等,那么这两个三角形相似。 判定定理2:两边对应相等且夹角对应相等的两个三角形相似。 判定定理3:三边对应成比例的两个三角形相似。 理解:(1)当给出的条件上角为主时,应考虑“两角对应相等”;当给出的条件有边有角时,应考虑“两边对应成比例,夹角相等”;当给出的条件全是边时应考虑“三边对应成比例”。 (2)在利用判定定理2时,一是两边的夹角相等,如果不是夹角则不成立。 二、典例分析 (一)运用判定定理判定三角形相似 例1 在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F 。 (1)求证:△ABE ∽△DFA ;(2)若AB=6,AD=12,AE=10,求DF 的长。 变式练习: 1、如图,DE ∥BC ,EF ∥AB ,则图中相似的三角形一共有( ) A 、1对 B 、2对 C 、3对 D 、4对 2、具备下列各组条件的两个三角形中,不一定相似的是( ) A 、有一个角是40°两个等腰三角形 B 、两个等腰直角三角形 C 、有一个角为100°的两个等腰三角形 D 、两个等边三角形 例2 已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217 ,求AD 的长。

变式练习: 1、如图,在△ABC 中,点D 、E 分别在AB 、AC 上,下列条件中不能判定△ABC ∽△AED 的是( ) A 、∠AED=∠ B B 、∠ADE=∠ C C 、AB AC AE A D = D 、AC AE AB AD = 2、已知,P 是正方形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,求证: △ADM ∽△MCP 。 例3 如图,小正方形的边长为1,则下列选项中的三角形(阴影部分)与△ABC 相似的是( ) 变式练习: 1、在△ABC 和△A 'B 'C '中,AB=3cm ,BC=6cm ,CA=5cm ,A 'B '=3cm ,B 'C '=2.5cm ,A 'C '=1.5cm ,则下列说法中,错误的是( ) A 、△ABC 与△A ' B ' C '相似 B 、AB 与A 'B '是对应边 C 、相似比为2:1 D 、AB 与A 'C '是对应边 2、网格图中每个方格都是边长为1的小正方形,若A 、B 、C 、D 、E 、F 都是格点,试证明:△ABC ∽△DEF 。

(完整版)初三数学相似三角形的判定

【本讲教育信息】 一. 教学内容:相似三角形的判定 二. 重点、难点怎样选择适当的定理判定三角形的相似是学习中的重点和难点。 三. 知识回顾 (一)定义:对应角相等,对应边成比例的两个三角形叫相似三角形。 相似三角形的对应边的比叫做相似比(也叫相似系数)。 (二)判定: ①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 ②两边对应成比例且夹角相等的两个三角形相似。 ③有两个角对应相等的两个三角形相似。 ④三条边对应成比例的两个三角形相似。 ⑤一条直角边和斜边对应成比例的两个直角三角形相似。 ⑥直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似。 【典型例题】 60,BD⊥AC于D,CE⊥AB于E,求证:△ADE∽△ABC。 例1. 如图,△ABC中,∠A= 例2. 如图,过△ABC的顶点B和C,分别作AB、AC的垂线BD、CD,使交于点D,过C作CE⊥AD交AB 于E,交AD于F 求证:△ACE∽△ABC 例3. 如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,求证:△AEF∽△ACB 例4. 如图,点E是正方形ABCD的边AB上一点,且AE:AB=1:4,F为边AD上一点,问:当F在AD上的什么位置时,△AEF∽△CDF。

【模拟试题】(答题时间:30分钟) 1. 判断下列各命题的真假(真命题打“T ”,否则打“F ”) (1)若一条直线截三角形的两边所得的三角形与原三角形相似,则这条直线平行于三角形的第三边( ) (2)有一个锐角相等的两个等腰三角形必定相似( ) (3)三组边分别平行的两个三角形必定相似( ) (4)有一个锐角相等的两个直角三角形必定相似( ) (5)一个顶角为?40的等腰三角形和一个底角为?70的等腰三角形相似( ) (6)四个角对应相等的两个梯形必定相似( ) (7)所有的菱形均相似( ) (8)所有的正方形均相似( ) 2. △ABC 中,∠ACB=?90,CD ⊥AB 于D ,DE ⊥AC 于E ,则与△ABC 相似而不全等的三角形的个数是( ) A. 2 B. 3 C. 4 D. 5 3. 已知△ABC ∽△'''C B A ,相似比为4,△'''C B A ∽△''''''C B A ,相似比为3,试问:△''''''C B A 与△ABC 是否相似?若它们相似,则相似比为多少? 4. 如图,若∠EBC=∠ABD ,∠ECB=∠DAB 求证:△ABC ∽△DBE 。 5. 过△ABC 三条角平分线的交点I ,作AI 的垂线与AB 、AC 分别交于D 、E , 求证:△BID ∽△IEC 。 6. 如图,平行四边形ABCD 中,AD=10,DC=6,E 为AB 中点,F 有BC 上,则BF 长为多少时,使得△DCF ∽△DAE ?

相似三角形的判定(二)

3.3 相似三角形的判定(二) 一、教学目标 1.掌握“三组对应边的比相等的两个三角形相似”、“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定定理. 2.经历探索两个三角形相似条件的过程,体验画图操作、类比猜想、分析归纳得出数学结论的过程; 3.能够运用三角形相似的条件解决简单的问题; 4.通过问题的探索过程,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。 二、重点、难点 1.重点:掌握两种判定定理,会运用两种判定方法判定两个三角形相似. 2.难点:(1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 三、教学过程 (一)复习已学过的知识 问题:(1) 判断两个三角形相似,你有哪些方法? 方法1:通过定义(不常用) 方法2:通过平行线(条件特殊,使用起来有局限性) (2) 思考:有没有其它简单的办法判断两个三角形相似? (3) 全等三角形与相似三角形有怎样的关系? 设计意图: 引导学生复习学过的知识,承前启后,激发学生学习新知的欲望。 (二)类比联想、猜想相似三角形的判定方法。 (1)问题:判定一般三角形全等有哪些判定方法? (2)由全等三角形是相似三角形的特例,启发我们类比全等三角形的判定方法猜想相 设计意图: 回顾三角形全等条件,用类比展开思维,按顺序展开探究。三、证明猜想,形成定理 1.猜想一:类比三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条对应边的比相等,那么能否判定这两个三角形相似呢? 2.带领学生画图探究: (1)任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗? (2)教师借助几何画板对两个三角形三组对应角进行度量,对猜想结论得到数据准确的验证,初步形成结论。 (3)学生口述命题:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。3.怎样证明这个命题是正确的呢? (命题是否正确,需要理论严谨的证明,教师带领学生探求证明方法) 如图,在ABC ?和' ' 'C B A ?中, ' ' ' ' ' 'C A AC C B BC B A AB = =, 求证:ABC ?∽' ' 'C B A ? 分析:(1)要证两个三角形相似,目前只有两个途径。一个是三角形相似的定义(显然条件不具备);二个是上节课学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢? (2)学生会想到把小的三角形移动到大的三角形上,然而如何实现平移呢? (3)引导学生整理证明思路,教师板书证明过程。 证明:在线段' 'B A(或它的延长线)上截取AB D A= ',过点D作DE∥' 'C B,交' 'C A 于点E,根据前面的定理可得DE A' ?∽' ' 'C B A ?. ' ' ' ' ' ' ' ' C A E A C B DE B A D A = = ∴. , ' ' ' ' ' ' ' AB D A C A AC C B BC B A AB = = =, 又 . ' ' ' ' ' C A AC C A E A = ∴ . 'AC E A= ∴ 同理 DE=BC. DE A' ? ∴≌ABC ?. ABC ? ∴∽' ''C B A ?. 4.命题改成定理 三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.

15相似三角形判定定理的证明知识讲解基础

相似三角形判定定理的证明(基础) 【学习目标】 1.熟记三个判定定理的内容. 2.三个判定定理的证明过程. 3.学选会用适当的方法证明结论的成立性. 【要点梳理】 要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′. 证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则 ∠ADE=∠B,∠AED=∠C, ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABAC过点D作AC的平行线,交BC与点F,则 ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC, ∴四边形DFCE是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE∽△ABC. ∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE∽△A′B′C′. ∴△ABC∽△A′B′C′. 要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.

【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D, CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为 断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思 ,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC= ∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE. CD=AC?证求:BD? 【答案】证明:∵△ABC是等边三角形, ∴∠B=∠C=60°,AB=AC, ∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°, ∴∠BAD=∠CDE, ,DCE△∽ABD△∴.ABBDCC BCD=AC BCD=AC 2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延

相似三角形分类整理(超全)上课讲义

相似三角形分类整理 (超全)

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=b c 。如果ad=bc (a ,b ,c , d 都不等于0),那么 d c b a =。

浙教版-数学-九年级上册-4.4 两个相似三角形的判定(2) 教案

两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′ =A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠ B =∠A ′,但两个三角形不相似. A B C A ′ B ′ C ′

相似三角形完整讲义(教师版)

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形的判定

相似三角形的判定 中考要求 重难点 1.相似定义,性质,判定,应用和位似 2.相似的判定和证明 3.相似比的转化 课前预习 相似三角形的由来 两千六百多年前,埃及有个国王,想知道已经给他盖好了的大金字塔的实际高度,于是,命令祭司们去丈量.可是,没有一个祭司知道该怎样测量,往这个问题面前,祭司们个个束手无策.既然,人是不可能爬到那么高大的塔顶上去的;即使爬上去了,由于塔身是斜的,又怎样来量呢?一时,金字塔的高度成了一个难题.国王一气之下,杀死了几个祭司,同时悬赏求解答. 有一个叫法涅斯的学者,看到国王的招字后,决心解決这个难题.他想了好几个解题的方案,但都行不通.失败并没使他灰心.法涅斯索性来到外面,一边踱步,一边思索著解決的辦法,以致撞到树上.于是,他转了个圈,又走下去.太阳把他的影子投到地上,他走到那里,影子也跟到那里.这时,他突然看到自己的影子,于是想:是不是可以请太阳来帮忙呢?在古埃及人的眼里,太阳是万能的,太阳能给人温暖,能帮助人们确定方向,法涅斯眼前一亮,他清楚记得,早上和傍晚每个物体都拖著一个长长的影子,而中午每个物体的影子都很短…那么,是不是有一个时刻,物体的影子就等于物体的高度怩?﹁他自言自

语起来. 想到这里,法涅斯就找了一根竿子,竖在太阳底下,认真观察、测量起來.经过几天的观察、测量,法涅斯终于证实了自己的想法一有一个时候,物体的影子等于物体的高度.于是,他去测量好金字塔底边的长度,并把数据记下来.然后,他毫不犹豫地揭下了悬挂的招字.国王得到“有人揭下招字”的报告后,高兴万分,派人把法涅斯召进王官,盛情款待,一切准备停当后,国王选择了一个风和日丽的日子,举行测塔仪式.测塔这天,国王在祭司们的陪同下,和法捏斯一起来到金字塔旁.看热闹的人黑压压一片,喧闹着,拥挤著,他们等待着壮观的一刻到来,法涅斯站在测塔指挥台上,俨然像个天使,一动也不动地注视着自己的影子.看看时间快到了,太阳光给每一个在旁的人和巨大的金字塔都投下了黑黑的影子.当法涅斯确定他自己的影子已等于他的身高时,便发出了测塔的命令。这时,助手们立即测出了金字塔的阴影CD 的长.接着,法涅斯十分准确地算出了金字塔的高度,最后,他还把测量金字塔高度的秘密告訴大家.场上,发出一阵热烈的观呼声.当然,法涅斯利用了相似三角形的原理测得了塔高.在法捏斯以前,还沒有人知道这个原理呢!法捏斯第一次发现、利用这个原理.在那个时代,这是一个伟大的创举! 在这个基础上,法涅斯进一步研究,得出一个法则:在任意两個对应角相等的三角形中,对应边的比率也相等.从而,找到了在任何季节里,在任何时候都能测塔高的方法. 例题精讲 模块一 相似三角形的判定 ?角对应相等、边对应成比例,三角形相似 对应角相等,对应边成比例的三角形叫做相似三角形. 如图,在ABC △与A B C '''△中,',','A A B B C C ∠=∠∠=∠∠=∠, ''''''AB BC AC A B B C A C == ,则ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于” . A ' B ' C ' C B A 相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”. 【例1】 如图,已知四边形ABCD 是平行四边形.求证:MEF MBA △∽△. M F E D C B A

相关文档
最新文档