什么是结构陶瓷

什么是结构陶瓷
什么是结构陶瓷

什么是结构陶瓷?

结构陶瓷

在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构材料的出现,弥补了金属材料的弱点。这类材料具有能经受高温、不怕氧化、耐酸碱腐蚀、硬度大、耐磨损、密度小等优点,作为高温结构材料,非常适合。

1、氧化铝陶瓷

氧化铝陶瓷(人造刚玉)是一种极有前途的高温结构材料。它的熔点很高,可作高级耐火材料,如坩埚、高温炉管等。利用氧化铝硬度大的优点,可以制造在实验室中使用的刚玉磨球机,用来研磨比它硬度小的材料。用高纯度的原料,使用先进工艺,还可以使氧化铝陶瓷变得透明,可制作高压钠灯的灯管。

2、氮化硅陶瓷

氮化硅陶瓷陶瓷也是一种重要的结构材料,它是一种超硬物质,密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热,也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。

3、氮化硼陶瓷、碳化硼陶瓷

4、人造宝石

红宝石和蓝宝石的主要成分都是Al2O3(刚玉)。红宝石呈现红色是由于其中混有少量含铬化合物;而蓝宝石呈蓝色则是由于其中混有少量含钛化合物。

1900年,科学家曾用氧化铝熔融后加入少量氧化铬的方法,制出了质量为2g-4g 的红宝石。现在,已经能制造出大到10g的红宝石和蓝宝石。

比较结构陶瓷与功能陶瓷的异同点

器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用

遍及现代科技的每一个领域,应用前景十分广阔。

碳化硅和增韧氧化物三类材料。

中国陶瓷发展现状及分析(内部参考)

中国陶瓷发展现状及分析 一、陶瓷的历史悠久灿烂 在我国古代,制陶业已经有辉煌、独特的成就。在黄河流域和长江流域众多的新石器时代遗址中,出土了大量的陶器和陶器碎片。其中有许多已不仅仅是生活日用品,而且具有明显的艺术倾向成为陶制艺术品,如代表制陶业突出成就的彩陶和陶塑。 随着制陶业的发展,自殷商时代早期,即已出现了以瓷土为胎料的白陶器和烧成温度达1200℃的印纹硬陶,开始了由陶向瓷的过渡。至东汉时期,浙江的越窑出产了成熟的青瓷,这是中国陶瓷史上的里程碑,标志着我国瓷器业的成熟。 魏晋南北朝在中国瓷器史上属于起步发展阶段,青瓷一统天下,烧造的地域进一步扩大,但也有少量的黑釉瓷和白瓷被发现。这个时期,社会动荡,战乱不断,民族的融合及佛教的传入,促使陶瓷艺术风格的多样化。到了北朝晚期,白瓷首先在北方出现,这说明制瓷技术发展到一定高度,胎釉中的含铁量受到控制,克服了铁的呈色干扰,为后来彩瓷的出现奠定了基础。白瓷的成功烧造,是中国瓷器史上新的里程碑。

隋唐时期,中国古代政治、经济、文化、商业贸易空前繁荣,推动了制瓷业的进步和瓷器市场的扩大,形成了“南青北白”的格局。南方以生产青瓷为主,越窑为最典型的代表,瓷胎轻薄致密,釉层晶莹细润,取得了极高的瓷艺成就。唐代邢窑白瓷为所谓“北白”的代表,瓷胎、瓷釉白度都很高,瓷胎坚实、致密,叩之发出金石之声。中晚唐时期,青、白瓷烧造进一步成熟,黑、黄、花瓷及绞胎瓷器成功烧造,以唐长沙窑为代表的彩瓷、唐代青花器的出现,打破了“南青北白”的比较简单的抗衡,从唐末五代开始,中国瓷器史上开始出现了名窑林立的局面。 宋朝是中国封建社会继汉唐之后的第三个繁荣时期,科技、文学、艺术和手工业高度发达,陶瓷业蓬勃发展,瓷窑遍布全国各地,地方风格浓郁,可以概括为“六大窑系”和“五大名窑”。 瓷都景德镇在元朝时崛起,并以青花瓷、釉里红瓷和卵白釉枢府瓷驰名天下。中国陶瓷艺术经过几千年的发展,到明清时期呈现出灿烂辉煌的景象,各类陶瓷艺术品璀璨生辉。以青花瓷为代表的彩瓷兴盛起来:五彩、斗彩、素三彩、釉下三彩、珐琅彩、粉彩等等,明清彩瓷集陶瓷艺术之大成,极富艺术魅力。颜色釉瓷的烧造进入炉火纯青的境界,单色釉品种不断创新:霁蓝釉、祭红釉、郎窑红釉、豇豆红釉、黄釉、孔雀绿釉等等。制瓷技术也有新的突破,陶车旋刀取代了竹刀旋坯,并开始运用吹釉技术,瓷器的质量与数量由此迅猛提高。

陶瓷的研究现状与发展展望分析

陶瓷的研究现状与发展展望 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料.它具有高熔点、高硬度、高耐磨性、耐氧化等优点.可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料. 分类: 普通陶瓷材料 采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟.这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等. 特种陶瓷材料 采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要.根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能.本节主要介绍特种陶瓷. 编辑本段性能特点力学性能 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上.陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差. 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料.同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性. 电性能 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件.铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等.少数陶瓷还具有半导体的特性,可作整流器. 化学性能 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力. 光学性能 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等.磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途. 编辑本段常用特种陶瓷材料 根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷. 1.结构陶瓷 氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%.氧化铝陶瓷具有各种优良的性能.耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍.其缺点是脆性大,不能接受突然的环境温度变化.用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具. 氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

陶瓷基板的现状与发展分析

陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1、塑料和陶瓷材料的比较 塑料尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2、各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

高温结构陶瓷基复合材料的研究现状与展望--...

高温结构陶瓷基复合材料的研究现状与展望 摘要概述了国外航空发动机用高温结构陶瓷基复合材料的研究与应用现状及发展趋势,分析了目前研究中存在的问题及其解决办法,确定了今后的研究目标与方向。 关键词陶瓷基复合材料高温结构材料力学性能应用 1 前言 为了提高航空发动机的推重比和降低燃料消耗,最根本的措施是提高发动机的涡轮进口温度,而涡轮进口温度与热端部件材料的最高允许工作温度直接相关。50 至60 年代,发动机热端部件材料主要是铸造高温合金,其使用温度为800~900 ℃;70 年代中期,定向凝固超合金开始推广,其使用温度提高到 接近1000 ℃; 进入80 年代以后,相继开发出了高温单晶合金、弥散强化超合金以及金属间化合物等,并且热障涂层技术得到了广泛的应用,使热端部件的使用温度提高到1200~1300 ℃,已接近这类合金 熔点的80 % ,虽然通过各种冷却技术可进一步提高涡轮进口温度,但作为代价降低了热效率,增加了结 构复杂性和制造难度,而且对小而薄型的热端部件难以进行冷却,因而再提高的潜力极其有限[1 ] 。陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构首选材料。 近20 年来,世界各工业发达国家对于发动机用高温结构陶瓷基复合材料的研究与开发一直十分重视,相继制定了各自的国家发展计划,并投入了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA 制定的先进高温热机材料计划(HITEMP) 、DOE/ NASA 的先进涡轮技术应用计划(ATTAP) 、美国国家宇航计划(NASP) 、美国国防部关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650 ℃或更高[2 ,3 ] ,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。 2 国内外应用与研究现状 由于陶瓷材料具有高的耐磨性、耐高温和抗化学侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环、阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道的有法国将CVI 法SiC/Cf 用于狂风战斗机M88 发动机的喷嘴瓣以及将SiC/ SiCf 用于幻影2000 战斗机涡轮风扇发动机的喷管内调节片[4 ] 。 此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件,美国碳化硅公司用Si3N4/ SiCW制造导弹发动机燃气喷管,杜邦公司研制出能承受1200~1300 ℃、使用寿命达2000h 的陶瓷基复合材料发动机部件等[5 ,6 ] 。目前导弹、无人驾驶飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为[7 ] ,1204~1371 ℃发动机用陶瓷基复合材料已__经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26 %提高到46 %。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加力燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21 世纪初, 陶瓷基复合材料的使用温度可提高到1650 ℃或更高。 3 研究方向与发展趋势 陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。为了克服单组分陶瓷材料缺陷敏感性高、韧性低、可靠性差的缺点,材料科学工作者进行了大量的研究以寻找切实可行的增韧方法[8 ,9 ] 。增韧的思路经历了从“消除缺陷”或减少缺陷尺寸、减少缺陷数量,发展到制备能够“容忍缺陷”,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片) 弥散增韧、晶须(短切纤维) 复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。由于连续纤

陶瓷工艺学及答案

1. 陶瓷原料按工艺特性可分为哪四类原料? 一般按原料的工艺特性分为:可塑性原料、瘠性原料、熔剂性原料和功能性原料四大类。 2. 传统陶瓷的三大类原料是什么? 答:粘土、石英、长石 3. 指出粘土、粘土矿物、高岭土、高岭石的差异 答:黏土是一类岩石的总称,这有利于区分黏土、黏土矿物、高岭土、高岭石等这些名词的不同 黏土矿物:含水铝硅酸盐,组成黏土的主体,其种类和含量是决定黏土类别、工业性质的主要因素。高岭土主要由高岭石组成的黏土称为高岭土。 4. 说明原生粘土和次生粘土的特点 答:原生粘土:一次粘土,母岩风化后在原地留下来的粘土,产生的可溶性盐被水带走,因此质地较纯,耐火度高,颗粒较粗,可塑性差; 次生粘土:二次粘土、沉积粘土,由河水或风力将风化产生的粘土迁移至低洼地带沉淀所成。颗粒较细,可塑性好,夹杂其它杂质,耐火度差。 5. 粘土按耐火度可分为哪几类,各自特点是什么?P17 6. 粘土的化学组成主要是什么?主要化学成分为SiO2、A12O3和结晶水(H2O)。 分别说明氧化铝、二氧化硅、氧化铁/二氧化钛、碱金属/碱土金

属氧化物、有机质对粘土烧结的影响 (1)SiO2 :若以游离石英状态存在的SiO2多时,黏土可塑性降低,但是干燥后烧成收缩小。 (2)Al2O3 :含量多,耐火度增高,难烧结。 (3)Fe2O3<1%,TiO2 <0.5%:瓷制品呈白色,含量过高,颜色变深,还影响电绝缘性。 (4)CaO、MgO、K2O、Na2O:降低烧结温度,缩小烧结范围。(5)H2O、有机质:可提高可塑性,但收缩大。 7. 粘土中根据矿物的性质和数量可以分为哪两类?哪些是有益杂质矿物,哪些是有害杂质? 根据性质和数量分为两大类:黏土矿物和杂质矿物 有益杂质:石英、长石 有害杂质:碳酸盐、硫酸盐、金红石、铁质矿物 8. 指出碳酸盐、硫酸盐对陶瓷烧结的影响 碳酸盐主要是方解石、菱镁矿;硫酸盐主要是石膏、明矾石等。一般影响不大,但以较粗的颗粒存在时。往往使坯体烧成后吸收空气中的水分而局部爆裂。 9. 粘土矿物主要有哪三类?各自结构上有什么特点?试用材料分析手段说明如何鉴别高岭石、蒙脱石等 粘土矿物。a.高岭石类: b.蒙脱石类: c.伊利石类:杆状以及蠕虫状。二次高岭土中粒子形状不规则,

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个- Cl ,每个- Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +-a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1 121=?+,晶体中Na +数与Cl -数之比为1:1 2. 氯化铯晶体 每个Cs +紧邻8个-Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3 ,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,- Cl 在晶胞内其数目为8, 晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 1 6818=?+? 。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=?,拥有的C-C 键数为16 1 6=?,则C 原子数与C-C 键数之比为 2:11:2 1 =。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的

新型结构陶瓷材料及其运用与发展趋势分析

新型结构陶瓷材料及其运用与发展趋势分析 新型结构陶瓷材料是一种近几年出现的材料,具有诸多优势,在节约能源、环保、提升生产效率、延长机器设备寿命等方面具有重要作用。新型结构陶瓷材料被广泛的应用在工业领域,为工业的发展提供了重要基础保障。文章对这种全新结构陶瓷材料进行了多方面的分析,首先,对新型结构陶瓷材料的概念、组成、特点进行了阐述;其次,对新型结构陶瓷材料的应用范畴进行了总结;再次,对新型结构陶瓷材料的产品开发方向进行了分析;最后,分析了新型结构陶瓷材料的发展趋势。经由文章的分析与总结,统计当前新型结构陶瓷材料的应用状况,以及其优势,为这种材料在相关领域的进一步推广应用提供理论参考。 标签:新型;陶瓷;发展趋势 前言 现代信息化时代中,高新科技在不断的发展,在这种发展趋势下,对各种材料也提出了更高的要求,尤其是对具有特殊性质的新型材料具有较高的关注。近几年,结构与性能优势较强的结构陶瓷材料成为材料应用领域的重点关注对象,其应用广泛性也随之提升。新型结构陶瓷材料的出现,对环保事业以及节能事业的开展具有重要意义,为此,也引起了政府方面的关注,经由政策、科技等众多领域的支持下,在理论基础以及产品开发等方面均取得了显著的成效。为进一步对结构陶瓷材料进行开发与推广,开展其性能以及应用范畴的研究具有必要性,而在下文中也将从这几个方向展开论述。 1 新型结构陶瓷概述 1.1 结构陶瓷概念 结构陶瓷是一种发挥机械、热、化学等性能的全新材料,能够在诸多较为恶劣的环境下应用,成为现代高新科技实现的关键因素。结构陶瓷与其他金属材料进行对比,陶瓷材料的优势主要表现为,优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损等,也正是由于这些性能优势,在多种领域中逐渐取代了昂贵金属资源的地位,对节约稀缺资源事业的开展具有重要价值[1]。结构陶瓷在工业材料中属于刚度与硬度最为适合的材料之一。常规结构陶瓷材料具有较高的熔点,在高温下能够维持较好的化学稳定性,而陶瓷材料的导热性又低于其他金属材料,为此也是一种较好的隔热材料。同时,多数结构陶瓷都具有较为良好的电绝缘性,为此,多被作为各种电压下的绝缘电器件使用。另外,陶瓷材料具有着较为特殊的化学性能,能够作为固体激光器材料、光导纤维材料、光储存器等应用,而在录音次磁带、唱片、计算机记忆元件等众多方面也具有着较高的应用价值。 1.2 结构陶瓷组成

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

浅谈陶瓷工业的现状与发展趋势

2013届毕业论文 浅谈陶瓷工业的现状与发展趋势 系部:材料与化学工程系 学生姓名:唐前锋 指导教师:谢和平 职称:副教授 专业:材料工程技术 班级:材料1001班 学号: 10700930115 2013年5月

摘要 本文介绍了陶瓷材料的发展历史,并根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。并从陶瓷的晶体结构、陶瓷的成型与烧结、陶瓷的韧化等几个方面详细的介绍了陶瓷材料。通过对陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 This paper introduces the history and development of ceramic materials, and according to the different characteristics and application of ceramic materials were more accurate classifications of its, and application of various kinds of ceramics were summarized. And from several forming crystal structure, ceramic and ceramic sintering, toughening, detailed introduction of the ceramic materials. The ceramic characteristics and application of summary, made a new prospect for the development of ceramic materials in the future, reveals the application direction of ceramic materials and the development trend. 关键字:陶瓷材料结构成型烧结前景

陶瓷现状和发展趋势

2017年,陶瓷行业承接了2016年的压力,行业局势也愈发明朗。在原材料涨价、环保督查、跨界竞争、出口下滑等压力下,陶瓷行业经历了去产能、大洗牌的结构调整。建陶行业的发展模式逐渐从靠规模取胜和价格促销的模式中,转向品质化、品牌化的公平竞争态势。现代仿古、互联网+等产品和风潮,成为陶瓷行业发展新竞争力的关键词。 成本涨价 2017年,受煤炭、化工原料和物流等方面的成本涨价压力影响,山东淄博、四川夹江、西北产区和广东部分产区陆续经历了几波环保涨价。部分企业表示,相比往年,企业利润跌幅高达60-70%。 2016年下半年,陶瓷行业生产相关的煤炭、化工原料、纸箱等方面的生产原料价格出现不同幅度的涨价。包括广东在内的全国各陶瓷产区在2016年年底掀起不同程度的瓷砖涨价浪潮。2017年上半年,来自生产原料的成本压力依然没有松缓。总体来说,生产成本中来自煤炭和纸箱的涨价对陶瓷企业影响最大。 环保督查 全国环保一盘棋,在保障经济效益与生态环境协调发展的同时,给最终朝向产业结构优化升级的陶瓷行业带来了公平的竞争环境和创新为导向的发展方向。

传统制造方式的转型升级和绿色发展成为必然。如何全面实行绿色生产,构建绿色制造体系,创建绿色工厂、打造绿色供应链才是企业需要考虑的核心问题。 现代仿古 自2015年起,主打现代简约风格的现代仿古砖开始在陶瓷行业逐渐兴起,业内新涌现出一大批以极简、轻奢、简约、工业风等为主题的品牌,无论是展厅还是产品,均奉行简约主义设计。在最近几届的“陶瓷行业风向标”博洛尼亚展上,白色的大理石瓷砖和灰色的水泥砖成为被应用最多的产品,时尚、简约成为展会的关键词。此情此景下,不少瓷砖品牌纷纷顺势推出切合现代简约风格的瓷砖产品。 2015年前后,马可波罗、东鹏等广东品牌逐渐调整战略,抢占现代仿古品类新风口。2017年,“黑白灰”为代表的现代风格也成为春季佛山陶博会期间的主流趋势。 此外,现代仿古砖的流行,带动了各产区抛釉线的“改线风潮”。据不完全统计,2016年年底到2017年初,仅肇庆产区仿古砖生产线已有十多条。截至目前为止,仿古砖生产线产能已达到全国总产能的10%。 陶瓷电商

陶瓷材料复习题

1、分别以Al2O3、ZrO 2、Si3N4为例,从结合键的角度分析这上述陶材料的切削加工性。 2、分别根据鲍林第一、第二、第三规则,分析CsCl、NaCl、CaF2、TiO2晶体结构的稳定性。 3、分别分析纤锌矿结构(wurtzite型,ZnS型)、β-方石英结构的特点。 4、分析刚玉型结构的特点。 5、硅酸盐晶体结构有哪些特点 6、分析绿宝石Be3A12(Si6O18)结构的归类、结构特点,标出六节环结构。 7、分析透辉石的结构特点,标出链状结构。 8分析蒙脱石的结构特点,讨论其插层原理。 9根据XRD原理,解释晶态、非晶态XRD谱线的区别。 10根据TEM原理,分析非晶、晶态结构衍射花样差异的原因。 11非晶态材料有何结构特点可采用哪些方法进行表征论述其表征机理。 12 (1) 绘出典型非晶材料的示差扫描量热(DSC)曲线, 标出玻璃转变温度(Tg)、晶化温度(Tx)及过冷液态区(ΔTx)。(2) 阐述非晶材料在Tg,Tx温度点所发生的物理性质变化规律。(3) 非晶态材料在过冷液态区有哪些特殊性质,利用该性质可以作哪些应用,举例说明。 13 根据下图,选择适于制备耐火材料的成分,并据此成分,分析其冷却析晶过程。

14 根据上图,分析30% Al2O3含量组分的冷却析晶过程。 15 分析下图中,M1,M2,M3的冷却析晶过程。 16 根据下图: 1)分析图中不同成分熔体冷却时的析晶图。 2)为什么水泥烧成后总是采用急速冷却的办法

CS—CaO·SiO2(偏硅酸钙或硅灰石) C3S2—3CaO·2SiO2(二硅酸三钙) C2S—2CaO·SiO2(硅酸二钙) C3S—3CaO·SiO2(硅酸三钙) 17 分别分析以下系列相图中,M点的冷却析晶过程。

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP C)。(单位已设为

先进陶瓷材料研究现状及发展趋势

先进陶瓷材料研究现状及发展趋势 概述:结构陶瓷和功能陶瓷,结构陶瓷是指能作为工程结构材料使用的陶瓷,它具有高强度、高硬度、高弹性模量、耐高温、耐磨损、抗热震等特性;结构陶瓷大致分为氧化物系、非氧化物系和结构用陶瓷基复合材料。功能陶瓷是指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。功能陶瓷在先进陶瓷中约占70%的市场份额,其余为 结构陶瓷。 粉体特性: 粉体的特性对先进陶瓷后续成型和烧结有着显著的影响,特别是显著影响陶瓷的显微结构和机械性能。通常情况下,活性高、纯度高、粒径小的粉体有利于制备结构均匀、性能优良的陶瓷材料。同时,粉体的高效分散技术也存在较大差距。 粉体制备方法:陶瓷粉体的制备主要包含固相反应法、液相反应法和气相反应法3大类, 固相反应法:其中固相反应法特点是成本较低、便于批量化生产,但杂质较多, 主要包括碳热还原法〔碳化硅(Si C)粉体、氧氮化铝(Al ON)粉体)〕、高温 固相合成法(镁铝尖晶石粉体、钛酸钡粉体等)、自蔓延合成法氮化硅〔(Si3N4) 粉体等300余种〕和盐类分解法〔三氧化二铝(Al2O3)粉体〕等。 液相法:液相反应法生产的粉料粒径小、活性高、化学组成便于控制,化学掺杂 方便,能够合成复合粉体,主要包括化学沉淀法、溶胶——凝胶法、醇盐水解法、 水热法、溶剂蒸发法。 气相法:气相反应法包括物理气相沉积和化学气相沉积2种。与液相反应法相 比,气相反应制备的粉体纯度高、粉料分散性好、粒度均匀,但是投资较大、成 本高 先进陶瓷的成型技术:(4种) 干法压制成型:干压成型、冷等静压成型; 塑性成型:挤压成型、注射成型、热蜡铸成型、扎膜成型; 浆料成型:注浆成型、流延成型、凝胶注模成型和原位凝固成型; 固体无模成型:熔融沉积成型、

相关文档
最新文档