稳态导热问题

稳态导热问题
稳态导热问题

第二章部分答案-稳态导热 2-46. 一厚度为7cm 的大平壁,一侧绝热,另一侧暴露于温度为30℃的流体中,其内热源热量为5103?W/m 3。已知该平壁材料的导热系数为18K)W/(m ?,平壁与流体间的对流表面传热系数为450)K W/(m 2?,试确定该平壁中的最高温度位置及其温度值?

解:

(1) 该题为具有内热源的一维平壁稳态导热问题,导热微分方程式为: 022=Φ+λ&dx

t d 边界条件为:0=x ,0=dx

dt ; δ=x ,∞+Φ==t t t w λ

2&(根据热平衡求得:δΦ=-∞&)(t t h w ) 解方程,并代入边界条件得温度场为: ∞+Φ+-Φ=t h

x t δδλ&&)(222

(2) 该平壁中最高温度在0=x 处(即

0=dx

dt ):

117.5 30450)107()103()107(182103225252=+???+????=+Φ+Φ=--∞t h t δδλ&&℃ 2-47 核反应堆的辐射防护壁因受γ射线的照射而发热,这相当于防护壁内有ax e -Φ=Φ0&&的内热源,其中0Φ&是X=0的表面上的发热率,a 为已知常数。已知x=0处t=t1,x=δ处t=2t ,试导出该防护壁中温度分布的表达式及最高温度的所在位置。导热系数λ为常数。

解:由题意导热微分方程

0022=Φ+-ax e dx t d &λ

又x=0处t=t1,x=δ处t=2t

积分并结合边界条件可得

λδλλλδ2012020210a t x a e a t t a e t a ax Φ++Φ-Φ+--Φ=--&&&& 令0=dx dt

可得:当()??????-+Φ--=-δδλδa e t t a a x a 1ln 1021时,t 最大。

2-48 核反应堆中一个压力容器的器壁可以按厚为δ的大平壁处理。内表面(x=0处)绝热,外表面维持在恒定温度2t 。γ射线对该容器的加热条件作用可以用一个当量热源Φ&来表示,且ax e -Φ=Φ

0&&,a 为常数,x 是从加热表面起算的距离。在稳态条件下,试:

导出器壁中温度分布的表达式。

确定x=0处的温度。

确定x=δ处的热流密度。

解: 022=Φ+λ&dx t d (1)

边界条件 r=0,0=dx dt (2)

00,t t r r == (3)

三式联立得

()()20201t x a e e a t ax a +-Φ+-Φ=--δλδλδ x=0时;()202011t a e a t a +Φ+-Φ=-λδλδ

当x=δ时,2t t =

所以 ()110-Φ-=-=-ax e a dx dt q λ 2-49 一半径为1r 的长导线具有均匀内热源Φ&,导热系数为1λ。导线外包有一层

绝缘材料,其外半径为2r ,导热系数为2λ。绝缘材料与周围环境间的表面传热系数为h ,环境温度为∞t 。过程是稳态的,试:

列出导线与绝缘层中温度分布的微分方程及边界条件。

求解导线与绝缘材料中温度分布。

提示:在导线与绝缘材料的界面上,热流密度及温度都是连续的。 解:导线中温度场的控制方程为:0111=???? ??Φ+λ&dr dt r dr d r ; 环形绝缘层中温度场的控制方程为:012=??? ??dr dt r dr d r 。

边界条件:对为有限;时,,110t r t = dr dt dr dt t t r r 2211211,λλ-=-==时,。

dr dt dr dt t t r r t 2211

2112,,λλ-=-==时,; ()12222t t h dr dt r r -=-=λ时,。 第一式的通解为:;2112

1ln c r c r r t ++Φ=λ&

第二式的通解为:'+'=212

ln c r c t 。常数''2121c c c c 、、、由边界条件确定。 据r=0时,011=c t 为有限的条件,得。其余三个条件得表达式为: ???? ??'-=???? ??Φ--'+'=+Φ-=112111*********ln 4r c r c r c c r r r λλλλ&&;,; ??????-??? ??'+'=???? ??'-=f t c r c h r c r r 2212122ln λ,,由此三式解得: ???? ??+Φ+='Φ-='22222122211ln 22r hr r t c r c f λλλ&&,, 。 所以f t r r r hr r r r t +???? ??Φ+Φ+Φ+Φ-=122212*********ln 2244λλλ&&&&;

r r r hr r t t f ln 2ln 22212222212λλλΦ-???? ??+Φ+=&&。

物理实验报告-稳态法导热系数测定实验

稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定材料的导热系数与温度之间的依变关系。 4、学习用温差热电偶测量温度的方法。 5、学习热工仪表的使用方法 二、实验原理 平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。 三、实验设备 实验设备如图2所示。 图2 平板式稳态法导热仪的总体结构图 1.调压器 2.铜板 3.主加热板 4.上均热片 5.中均热片 6.下均热片 7.热电偶 8.副加热板 9.数据采控系统10.温度仪表 11.试样装置12.循环水箱电位器13.保温材料14.电位器 键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。 数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。“RST”复位键:复位数据,重新选择。 控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。 四、实验内容 1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。 2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。 3、对实验结果进行分析与讨论。 4、分析影响制导热仪测量精度的主要因素。 5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。 五、实验步骤 1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。 2、测量加热板的内部电阻。 3、校准热工温度仪表。 4、向水箱内注入冷却水。 5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。 6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。

非稳态导热习题

第三章 非稳态导热习题 例3.1一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 3.2 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

传热学传热学--第三章 第三节 一维非稳态导热问题

传热学--第三章第三节一维非稳态导热问题 §3 — 3 一维非稳态导热的分析解 本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应用。如何理解无限大物体,如:当一块平板的长度、宽度>> 厚度时,平板的长度和宽度的边缘向四周的散热对平板内的温度分布影响很少,以至于可以把平板内各点的温度看作仅是厚度的函数时,该平板就是一块“无限大”平板。若平板的长度、宽度、厚度相差较小,但平板四周绝热良好,则热量交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题。 一、无限大平板的分析解 已知:厚度的无限大平板,初温t0,初始瞬间将其放于温度为的流体中,而且> t0,流体与板面间的表面传热系数为一常数。 试确定在非稳态过程中板内的温度分布。 解:如图3-5 所示,平板两面对称受热,所以其内温度分布以其中心截面为对称面。对 于x 0 的半块平板,其导热微分方程:(0

(边界条件) (边界条件) 对偏微分方程分离变量求解得: (3-10 ) 其中离散值是下列超越方程的根,称为特征值。 其中Bi 是以特征长度为的毕渥数。 由此可见:平板中的无量纲过余温度与三个无量纲数有关:以平板厚度一半为特 征长度的傅立叶数、毕渥数及即:(3-12) 二、非稳态导热的正规状况阶段 1 、平板中任一点的过余温度与平板中心的过余温度的关系 前述得到的分析解是一个无穷级数,计算工作量大,但对比计算表明,当Fo>0.2 时,采用该级数的第一项与采用完整的级数计算平板中心温度的误差小于1% ,因此,当Fo>0.2 时,采用以下简化结果:(3-13 ) 其中特征值之值与Bi 有关。 由上式(3-13 )可知:Fo>0.2 以后平板中任一点的过余温度(x ,τ) 与平板中心的过余温度(0 ,τ)=(τ )之比为:(3-14 ) 此式反映了非稳态导热过程中一种很重要的物理现象:即当Fo>0.2 以后,虽然(x ,τ) 与(τ )各自均与τ 有关,但其比值则与τ 无关,而仅取决于几何位置(x/ )及边界条件(Bi )。也就是说,初始条件的影响已经消失,无论初始条件分布如何,只要

实验十四 稳态法测量不良导体的导热系数

实验十四 稳态法测量不良导体的导热系数 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数的实验方法一般分为稳态法和动态法两类。在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 【实验原理】 1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在时间内通过样品的热量满足下式: t ΔQ ΔS h t Q B 21 θθλ?=ΔΔ (1) 式中λ为样品的导热系数,为样品的厚度,为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为,则由(1)式得: B h S B d

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③ 一维及二维非稳态导热问题。 2 、掌握内容: ① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍与温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。 最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若 λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参 与换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在与热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。

一维非稳态导热的数值计算

一维非稳态导热的数值计算 一、实验名称 一维非稳态导热的数值计算 二、实验内容 一块无限大平板(如图3所示),其一半厚度为L=0.1m ,初始温度T 0=1000℃,突然将其插入温度T ∞=20℃的流体介质中。平板的导热系数λ=34.89W/m ℃,密度ρ=7800 kg/m 3,比热c=0.712310 J/kg ℃,平板与介质的对流换热系数为h=233W/m 2.℃,求平板内各点的温度分布。 三、实验编程 #include #include #define S 3.14 #define L 10 #define Dx (1.0/L) #define Dy (0.5/L) int main(int argc, char* argv[]) { Int i, j, k; double a = 2/(1+sin(S/L)); double T[L+1][L+1]; for(i=0; i<=L; i++) T[0][i] = T[i][0] = 100; for(i=1; i<=L; i++) T[i][L] = 100 + 400*Dx*i; for(j=1; j<=L-1; j++) T[L][j] = 100 + 800*Dy*j; for(i=1; i<=L-1; i++) T[i][j] = 100;

for(k=0; k<=1000; k++) {for(i=1; i<=L-1; i++) for(j=1; j<=L-1; j++) {T[i][j] = T[i][j] + (a/4)*(T[i+1][j] + T[i][j+1] + T[i-1][j] + T[i][j-1] - 4*T[i][j]); } } printf(" a = %lf\n", a); printf("T[x][y] = ...\n"); for(i=0; i<=L; i++) for(j=0; j<=L; j++) {printf("%.1lf\t", T[i][j]); if(j == L) putchar(10); } return 0; } 四、运行结果

准稳态法测量比导热系数

准稳态法测量比导热系数

————————————————————————————————作者:————————————————————————————————日期:

准稳态法测量比热和导热系数 【实验目的】 1.了解利用准稳态方法测量物质的比热和导热系数的原理; 2.学习热电偶测量温度的原理和使用方法。 【实验背景】 本实验内容属于热物理学的内容,热传递的三种基本方式包括热传导,热对流和热辐射,而衡量物质热传导特性的重要参数是物质的比热和导热系数。以往对于比热和导热系数的测量大都使用稳态法,但是该方法要求温度和热流量均要稳定,因而要求实验条件较为严格,从而导致了该方法测量的重复性,稳定性及一致性差,误差大。该实验采用一种新的测量方法,即准稳态方法,实验过程中只要求被加热物质的温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到该物质的比热和导热系数。 比热定义为单位质量的某种物质,在温度升高或降低1度时所吸收或放出的热量,叫做这种物质的比热,单位为J/(kg·K),它表征了物质吸热或者放热的本领。导热系数定义为单位温度梯度下,单位时间内由单位面积传递的热量,单位为W/(m·K),即瓦/(米·开),它表征了物体导热能力的大小。 了解物质的热力学特性有很多应用,如了解土壤或岩石的热力学特性有助于人们了解该地区的大气环境特征。了解混凝土制品的比热和导热系数有助于人们了解材料的保温特性,开发更好保温或隔热材料。了解玻璃建筑材料的比热和导热系数,有助于人们研究和开发更加保温以及安全的玻璃制品。交通方面,由于道路结构处于不断变化的温度环境中,了解沥青或沥青混合料的热力学特性参数,能够使人们精确的模拟道路结构温度场,了解不同状况下道路材料对于各种交通工具的影响。了解橡胶的热力学特性参数,有助于人们开发出更加安全的交通道路和轮胎材料。 【实验仪器】 1. ZKY-BRDR型准稳态法比热、导热系数测定仪; 2. 实验样品包括橡胶和有机玻璃各一套,(每套四块),加热板两块,热电偶两只, 导线若干,保温杯一个。 【实验原理】 1. 准稳态法测量原理 考虑如图1所示的一维无限大导热模型:一无限大 不良导体平板厚度为2R,初始温度为t0,现在平板两侧 同时施加均匀的指向中心面的热流密度q c,则平板各处 的温度t(x,τ)将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表 达如下: R R x q c q c q c q c 图1理想的无限大

一维非稳态导热问题的数值解

计算传热学程序报告 题目:一维非稳态导热问题的数值解 姓名: 学号: 学院:能源与动力工程学院 专业:工程热物理 日期:2014年5月25日

一维非稳态导热问题数值解 求解下列热传导问题: ? ?? ????=====≤≤=??- ??1,10),(,1),0(0)0,()0(01T 22ααL t L T t T x T L x t T x 1.方程离散化 对方程进行控制体积分得到: dxdt t T dxdt x T t t t e w t t t e w ? ?? ??+?+??=??α 1 2 2 ? ? -=??-???+?+e w t t t w e t t t dx T T dt x T x T )(1])()([α 非稳态项:选取T 随x 阶梯式变化,有 x T T dx T T t p t t p e w t t t ?-=-?+?+? )()( 扩散项:选取一阶导数随时间做显示变化,有 t x T x T dt x T x T t w t e w e t t t ???-??=??-??? ?+])()[(])()[( 进一步取T 随x 呈分段线性变化,有 e P E e x T T x T )()( δ-=?? , w W P w x T T x T )()(δ-=?? 整理可以得到总的离散方程为: 2 21x T T T t T T t W t P t E t P t t E ?+-=?-?+α 2.计算空间和时间步长 取空间步长为:

h=L/N 网格Fourier 数为: 2 2 0x t x t F ??= ??=α(小于0.5时稳定) 时间步长为: α 2 0h F n = 3.建立温度矩阵与边界条件 T=ones(N+1,M+1) T(:,1)=Ti (初始条件温度都为0) T(1,:)=To (边界条件x=0处温度为1) T(N+1,:)=Te (边界条件x=L 处温度为0) 4.差分法求解温度 由离散方程可得到: t P t W t P t E t t E T T T T F T -+-=?+)2(0 转化为相应的温度矩阵形式: ),()],(2),1(),1([)1,(0k m T k m T k m T k m T F k m T +*--++*=+ 5.输入界面 考虑到方程的变量,采用inputdlg 函数设置5个输入变量,对这5个变量设置了默认值,如图1所示。在计算中可以改变不同的数值,得到不同的结果,特别注意稳定条件的临界值是0.5。根据设置的默认值,得到的计算结果如图2所示。

传热学 第3章-非稳态导热分析解法

第三章 非稳态导热分析解法 1、 重点内容:① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③一维及二维非稳态导热问题。 2、掌握内容:① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2、分类:根据物体内温度随时间而变化的特征不同分: 1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ 2)物体的温度随时间而作周期性变化 1)物体的温度随时间而趋于恒定值 如图3-1所示,设一平壁,初值温度t 0,令其左侧的 表面温度突然升高到1t 并保持不变,而右侧仍与温度为 0t 的空气接触,试分析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升, 而其余部分仍保持原来的t 0 。 如图中曲线HBD ,随时间的推移,由于物体导热温 度变化波及范围扩大,到某一时间后,右侧表面温度也 逐渐升高,如图中曲线HCD 、HE 、HF 。 最后,当时间达到一定值后,温度分布保持恒定, 如图中曲线HG (若λ=const ,则HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面 参与换热与不参与换热的两个不同阶段。 (1)第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。 (2)第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。

一维非稳态导热的数值计算

传热学C 程序源 二维稳态导热的数值计算 2.1物理问题 一矩形区域,其边长L=W=1,假设区域内无内热源,导热系数为常数,三个边温度为T1=0,一个边温度为T2=1,求该矩形区域内的温度分布。 2.2 数学描述 对上述问题的微分方程及其边界条件为:2222T T 0x y ??+=?? x=0,T=T 1=0 x=1,T=T 1=0 y=0,T=T 1=0 y=1,T=T 2=1 该问题的解析解:112121(1)sin n n n sh y T T n L x n T T n L sh W L ππππ∞=??? ?---????=? ?-????? ??? ∑ 2.3数值离散 2.3.1区域离散 区域离散x 方向总节点数为N ,y 方向总节点数为M ,区域内任一节点用I,j 表示。 2.3.2方程的离散 对于图中所有的内部节点方程可写为:2222,,0i j i j t t x y ??????+= ? ??????? 用I,j 节点的二阶中心差分代替上式中的二阶导数,得: +1,,-1,,+1,,-1222+2+0i j i j i j i j i j i j T T T T T T x y --+= 上式整理成迭代形式:()()22 ,1,-1,,1,-12222+2() 2()i j i j i j i j i j y x T T T T T x y x y ++=++++ (i=2,3……,N-1),(j=2,3……,M-1) 补充四个边界上的第一类边界条件得:1,1j T T = (j=1,2,3……,M) ,1N j T T = (j=1,2,3……,M) ,1i j T T = (i=1,2,3……,N)

一维非稳态导热通用程序

!*************************************************************** ! 一维非稳态导热通用程序(不变部分) ! This is a general purpose program to solve 1-D diffusion ! problem in the form of: ! ρcdt/dz=1/a(x)d/dx(a(x)Γdt/dx)+s !******************2003.7 revised******************************** !...................Define Variables......................... MODULE VARIABLES INTEGER,PARAMETER::L1=130 REAL,DIMENSION(L1):: X,XF,XM,XP,R,RF,AP REAL,DIMENSION(L1)::AE,AW,CN,T,TA REAL,DIMENSION(L1)::TG,GM,RC INTEGER:: K=1,KM=1,KP=1,OM=1 INTEGER:: JB,JE,KE,KI,KF,KN,KR,KT,LS,MD,M1,M2,NF REAL:: AEC,AI,BE,BI,DF,DS,DT,EP,EX,PW,TU,TM,XE,XI REAL:: A1,A2,T2,TC,SC,SP,RO,TE,DN,LM END !...............................................Main Program........................................... PROGRAM MAIN USE V ARIABLES IMPLICIT NONE INTEGER I OPEN(1,FILE="q.dat") OPEN(2,FILE="temp.dat") NF=1!(求解变量指标) KN=1!(非稳态问题输出局部变量,输出一次加1) TU=0!(当前时间) 150 KT=1!(非线性问题迭代次数) CALL Speci !First to specify the problem CALL Grid!Set up grid points 200 CALL Difsor!Specify the diff-coeff and source term 220 CALL InterOutput!Output intermediate results CALL Coeff!Set up coefficients of discretization equation CALL TDMA!Solve the algebraic equation by TDMA IF(LS.EQ.2.OR.LS.EQ.4) THEN !(对非线性问题) IF(DF.GT.EP) THEN!(如果最大偏差大于允许值) DO I=1,M1 TA(I)=TA(I)+OM*(T(I)-TA(I))!(采用亚松弛方式将当前解付给上一次迭代值) END DO DF=0!(最大偏差置零)

稳态法测量材料的导热系数

稳态法测量材料的导热系数 2015-04-02 导热系数是表征材料导热能力大小的量。导热系数是指在稳定传热条件下,1m厚的材料的两侧温度相差1°C时,在单位时间内,通过1m2所传导的热量。 材料结构的变化与含杂质等因素都会对导热系数产生明显的影响。由于导热性能有许多种测量方法,事先必须考虑到材料导热系数的大致范围和样品特征,以及使用温度的大致范围,以选用正确的测量方法。本文介绍了导热系数测量的基本理论与定义,热流法、保护平板法测量导热系数的原理与应用。 稳态测试方法主要适用于测量中低导热系数材料。稳态法就是当待测试样上温度分布达到稳定后,通过测量试样内的温度分布和穿过试样的热流来测出导热系数。稳态法通常要求试样质地均匀、干燥、平直、表面光滑。稳态法测导热系数的基本原理图及公式为: λ=Qd/A△T;单位:W/(m?K) 注意:稳态条件下;材料应为单一均质的干燥材料。 Q:热流稳定后,通过试样的热流量(w); d:试样厚度(m); A:试样面积(m); :温度差(℃)。

热流计法 热流计法是一种基于一维稳态导热原理的比较法。将样品插入两个平板间,在其垂直方向通入一个恒定的单向的热流,使用校正过的热流传感器测量通过样品的热流,传感器在平板与样品之间和样品接触。热流法适用于低导热材料,测试时将样品夹在两个热流传感器中间测试,在达到温度梯度稳定期后,测量样品的厚度、上下板间的温度梯度及通过样品的热流便可计算得到导热系数的绝对值。适合测试导热系数范围为0.001~50W/m?K的材料如导热胶、玻璃、陶瓷、金属、铝基板等低导热材料。 护热平板法 护热板法导热仪的工作原理和使用热板与冷板的热流法导热仪相似,保护热板法的测量原理如下图所示。热源位于同一材料的两块样品中间。热板周围的保护加热器与样品的放置方式确保从热板到辅助加热器的热流是线性的、一维的。当试样上、下两面处于不同的稳定温度下,测量通过试样有效传热面积的热流及试样上、下表面的温度及厚度,应用傅立叶导热方程计算Tm温度时的导热系数。 导热系数λ=Qd/A((t2-t1)+(t4-t3)) Q:热流稳定后,通过试样的热流量; d:试样厚度; A:试样面积; t2-t1/t4-t3:温度差。 该法误差较小且可用于测定低温导热系数材料(0.02-2.0W/m?K)如塑料、纤维、陶瓷基板、氧化铝瓷、空心玻璃、各种保温材料等匀质板状材料。试样应是均质的硬质材料,两表面应平整光滑且平行。在用该法对不良导体的导热系数测定时,不宜采用厚度较小的不良导体平板作为实验样品。

稳态法测导热系数

五、数据处理 1、在内容三所测数据中,选取稳态温度附近10组数据,用逐差法计算散热盘C在稳态T2附近的冷却速率Vc。 根据选取稳态温度附近10组数据 由逐差法计算有Vc={(44.7-42.2)+(44.3-41.6)+(44.1-41.2)+(43.3-40.8)+(42.6-40.5)}/(5*2.5)=1.048℃/min=0.0175℃/s 2、计算出待测样品B的导热系数λ: λ={mch B(R c+2h c)/2πR b2 (T1-T2)(R c+h c)}*(△T/△t) B R c=(9.960+9.958+9.980+9.956+9.942)/(2*5)=4.9796cm=4.9796*10^-2m hc=(0.984+0.986+0.982+0.986+0.982)/5=0.984cm=9.84*10^-3m R b=(9.966+9.950+9.948+9.958+9.956)/(2*5)=4.9778cm=4.9778*10^-2m T1=53.1℃T2=42.3℃ △T/△t=Vc=0.0175℃/s λ={0.669*385*8.332*10^-3*(4.9796*10^-2+2*9.84*10^-3)/2*3.14*(4.9778*10^-2)2*(53.1-42.3) ( 4.9796*10^-2+9.84*10^-3)}*0.0175=0.261 W/m*K 3、求出环氧盘λ的不确定度,给出结果表达式。(只考虑冷却速率误差) 由于比较复杂,过程见实验报告纸。 可得结果为Uλ=0.036 W/m*K∴λ=0.261±0.036 W/m*K 4、分析误差原因。 测量盘的直径与厚度时由于是人为读数,有读数误差,再有环境误差,盘的质量可能由于多次实验有磨损存在误差等等。 5、所有测量数据都要列表。

一维非稳态热传导热源反问题研究

一维非稳态热传导热源反问题研究 摘要 本文是关于热传导的正反问题的研究,即利用偏微分方程中典型热传导方程 t时刻温度分布与热源位置。 求解含有内热源的金属细杆 本文从解偏微分方程出发,由已知条件最终得出温度分布函数及热源位置函数并建立了两个数学模型。 模型一:利用偏微分方程及初始温度分布函数建立了一段时间后的温度分布与热源强度、位置之间的数学模型,最终解出一段时间后长杆上的温度分布。 模型二:通过一类抛物型偏微分方程模型,解决已知初始温度分布函数、一段时候后的温度分布函数及热源强度的确定热源位置和中间任意时刻的温度分布函数。 u x t,即t时刻的温度根据模型一建立偏微分方程组,用分离变量法求解(,) 分布函数,并通过Matlab中的PDE(偏微分方程)工具箱求解偏微分方程组,且使解可视化。 u x T,结合抛物型方程,运用根据模型二依然建立偏微分方程组,通过测得(,) 离散正则法,确定热源位置,并通过论证说明问题的唯一性和确定性,给出反问题的数值解法。最后再简单介绍差分法解决热传导在非稳态导热问题中的应用。 最后是结论部分,主要总结本文的结果并提出一些尚待进一步研究的问题,以及研究该反问题的应用前景。 相同t不同x的温度变化曲线相同x不同t的温度变化曲线

一维非稳态热传导热源反问题研究 一、问题的提出 在金属细秆的传热过程中,温度差是导致其发生必要条件,有无热源决定传导效率的高低。从一维非稳态传导问题的数学模型和初始条件出发,经过对有内热源问题的进一步分析,在初始温度分布已知的情况下,对分布函数的处理显得很关键。对热源反问题的处理中,我们的问题是如何寻找某种合理的附件条件,通过已知方程来解决方程右端的热源的具体位置并使其具有唯一性。本文利用微分方程并建立了满足温度分布的数学物理模型,从理论上导出了温度分布函数和热源位置的求解,并借助计算机软件画出了温度分布图。 二、问题的分析 对于热传导问题,为了使函数解决起来更容易,对于细秆的初始温度分布() g x我们可以设它在区间[0,L]连续,那么() g x可以展成正弦或余弦级数,对于有内热源的处理,由于细秆边界条件是齐次的,我们采用叠加原理把一根金属细秆的导热问题分解为有热源的具有其次边界条件的稳态导热问题和一个非稳态 其次问题,则原问题的解为 (,)1(,)2() u x t u x t u x =+。 对于源反问题的解决有如下3个问题: 1、反问题的唯一性:附加条件给得是否合理,也就是说,这个附加条件是否可以唯一确定热源的具体位置。 2、反问题的稳定性:反演所得到的热源的具体位置,该热源是否是连续地依赖于测量数据() h t? 3、反问题的数值解法:如何用可行的数值方法反演该热源的具体位置。用离散正则法将温度分布离散化,由已知初始温度分布再利用计算机软件得出热源位置 三、模型假设 1、金属细杆边界与外界无热量交换,即与外界绝缘

稳态法测量不良导体的导热系数(讲义)

稳态法测量不良导体的热导率 热导率(又称导热系数)是反映材料热传导性能的重要物理量。材料的导热机理在很大程度上取决于它的微观结构.热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。因此,某种材料的热导率不仅与材料的物质种类密切相关,而且还与它的微观结构、温度、压力及杂质含量相联系.在科学实验和工程设计中,所用材料的热导率都需要用实验的方法精确测定. 【实验目的】 (1)掌握用稳态法测量不良导体(橡皮样品)的热导率; (2)掌握用作图的方法求冷却速率; (3)学习温度传感器的应用方法; 【实验仪器】 FD-TC-B型导热系数测定仪(如图1所示它由电加热器、铜加热盘C,橡皮样品圆盘B,铜散热盘P、支架及调节螺丝、温度传感器以及控温与测温器组成)、分度值0.02mm游标卡尺、量程3000g,分度值为0.1g电子天平、量程30cm,分度值为1mm钢板尺、秒表等. 图1 FD-TC-B 导热系数测定仪装置图 【实验原理】 1898年C.H.Lees首先使用平板法测量不良导体的热导率,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1T 、2T ,根据傅立叶传导方程,在t ?时间内通过样品的热量Q ?满足下式: S h T T t Q B 21-=??λ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的半径为B R ,则由(1)式得: 2 21B B R h T T t Q πλ-=?? (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以 借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。 当传热达到稳定状态时,样品上下表面的温度1T 和2T 不变,这时可以认为加热盘C 通过样品传递的热量与散热盘P 向周围环境散出的热量相等。因此可以通过散热盘P 在稳定温度2T 时的散热速率来求出样品的传热速率 t Q ??。 实验时,当测得稳态时的样品上下表面温度1T 和2T 后,将样品B 抽去,让加热盘C 与散热盘P 接触,当散热盘的温度上升到高于稳态时的2T 值C 5后,移开加热盘,让散热盘在电扇作用下冷却,记录散热盘温度T 随时间t 的下降情况,用作图的方法求出散热盘在2T 时的冷却速率 2 T T t T =??,则散热盘P 在2T 时的散热速率为: 2 T T t T mc t Q =??=??散 (3) 其中m 为散热盘P 的质量,c 为其比热容。 在达到稳态的过程中,P 盘的上表面并未暴露在空气中,而物体的冷却速率与它的散热表面积成正比,为此,稳态时铜盘P 的散热速率的表达式应作面积修正: ) 22() 2(2 2 2 P P P P P p T T h R R h R R t T m c t Q ππππ++??=??=散 稳态时样品B 的传热速率等于散热盘P 的散热速率,即:

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数的实验方法一般分为稳态法和动态法两类。在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 【实验目的】 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 【实验原理】 1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ?时间内通过样品的热量Q ?满足下式: S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得: 2214B B d h t Q πθθλ-=?? (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以 借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。 当传热达到稳定状态时,样品上下表面的温度1θ和2θ不变,这时可以认为加热盘C 通过样品传递的热流量与散热盘P 向周围环境散热量相等。因此可以通过散热盘P 在稳定温度2θ时的散热速率来求出热流量 t Q ??。 实验时,当测得稳态时的样品上下表面温度1θ和2θ后,将样品B 抽去,让加热盘C 与

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热 热传导是热传递三种基本方式之一。导热系数定义为单位温度梯度下每单位时间内由单位面积传递的热量,单位为W / (m ? K)。它表征物体导热能力的大小。 比热是单位质量物质的热容量。单位质量的某种物质,在温度升高(或降低)1度时所吸收(或放出)的热量,叫做这种物质的比热,单位为J/(kg ·K )。 测量导热系数和比热通常都用稳态法,使用稳态法要求温度和热流量均要稳定,但在实际操作中要实现这样的条件比较困难,因而会导致测量的重复性、稳定性、一致性较差,误差也较大。为了克服稳态法测量的这些弊端,本实验使用了一种新的测量方法——准稳态法,使用准稳态法只要求温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到导热系数和比热。 【实验目的】 1. 了解准稳态法测量导热系数和比热的原理; 2. 学习热电偶测量温度的原理和使用方法; 3. 用准稳态法测量不良导体的导热系数和比热。 【实验仪器】 1. ZKY-BRDR 型准稳态法比热、导热系数测定仪 2. 实验装置一个,实验样品两套(橡胶和有机玻璃,每套四块),加热板两块,热电偶两只,导线若干,保温杯一个 【实验原理】 1. 准稳态法测量原理 考虑如图B2-1所示的一维无限大导热模型:一无限大不良导体平板厚度为R 2,初始温度为0t ,现在平板两侧同时施加均匀的指向中心面的热流密度c q ,则平板各处的温度),(τx t 将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表达如下: ???? ???? ?==??=????=??02 2)0,(0),0(),(),(),(t x t x t q x R t x x t a x t c τλτττ τ 式中c a ρλ/=,λ为材料的导热系数,ρ为材料的密度,c 为材料的比热。 可以给出此方程的解为(参见附录): )cos )1(2621(),(2212 1 220τ ππ πτλτR an n n c e x R n n R R x R R a q t x t - ∞ =+?∑ -+-++= (B2-1) 考察),(τx t 的解析式(B2-1)可以看到,随加热时间的增加,样品各处的温度将发生变化,而且我们注意到式中的级数求和项由于指数衰减的原因,会随加热时间的增加而逐渐变小,直至所占份额可以忽略不计。 定量分析表明,当5.02 >R a τ以后,上述级数求和项可以忽略。这时式(B2-1)可简写成: 图B2-1理想的无限大不良导体平板

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容:①非稳态导热的基本概念及特点; ②集总参数法的基本原理及使用; ③一维及二维非稳态导热问题。 2 、掌握内容:①确定瞬时温度场的方法; ②确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 )物体的温度随时间的推移逐渐趋于恒定值,即: 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍和温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体和高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。

最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参和换热和不参 和换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参和换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参和换热) 当右侧面参和换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在和热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。 原因:由于在热量传递的路径上,物体各处温度的变化要积聚或消耗能量,所以,在热流量传递的方向上。 二、非稳态导热的数学模型 1 、数学模型 非稳态导热问题的求解规定的 { 初始条件,边界条件 } 下,求解导热微分方程。 2 、讨论物体处于恒温介质中的第三类边界条件问题 在第三类边界条件下,确定非稳态导热物体中的温度变化特征和边界条件参数的关系。 已知:平板厚 2 、初温 to 、表面传热系数 h 、平板导热系数,将 其突然置于温度为的流体中冷却。 试分析在以下三种情况:<<1/h 、>>1/h 、=1/h 时,平板中温度场 的变化。 1 ) 1/h<< 因为 1/h 可忽略,当平板突然被冷却时,其表面温度就被冷却到,随着时

相关文档
最新文档