上海2020初三数学一模各区几何证明23题集合(供参考)

上海2020初三数学一模各区几何证明23题集合(供参考)
上海2020初三数学一模各区几何证明23题集合(供参考)

2018各区一模几何证明

普陀23.(本题满分12分)

已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE·DB . 求证:(1)△BCE ∽△ADE ;

(2)AB·BC=BD·BE .

静安23. 已知:如图,梯形ABCD 中,AB DC //,BD AD =,DB AD ⊥,点E 是腰AD 上一点,作?=∠45EBC ,联结CE ,交DB 于点F .

(1)求证:ABE ?∽DBC ?;

(2)如果65=BD BC ,求BDA BCE S S ??的值. 奉贤23.已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BD AB BC =?

(1)求证:BD 平分∠ABC ;

(2)求证:BE CF BC EF ?=?.

虹口23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)

如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ?=?.

(1)求证AD AB AE AC ?=?;

(2)当AB =12,AC =9,AE =8时,求BD 的长

与△△ADE ECF

S S 的值. 宝山23.(本题满分12分,每小题各6分)

如图,△ABC 中,AB =AC ,过点C 作CF

∥AB 交△ABC 的中位线DE 的延长线于F ,联

结BF ,交AC 于点G .

(1)求证:G

AE AC EG C =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.

嘉定23.(本题满分12分,每小题6分)

如图,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.

(1)求证:BC DE AE CD ?=?;

(2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF .

求证:CA CE AF ?=2

.

闵行23.(本题共2小题,每小题6分,满分12分)

如图,已知在△ABC 中,∠BAC =2∠B ,AD 平分∠BAC ,

DF //BE ,点E 在线段BA 的延长线上,联结DE ,交AC 于点G ,且

∠E =∠C .

(1)求证:2AD AF AB =?;

(2)求证:AD BE DE AB ?=?.

杨浦23.(本题满分12分,第(1)小题5分,第(2)小题7分)

已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF =∠BAC .

(1)求证:△AED ∽△CFE ;

(2)当EF //DC 时,求证:AE =DE .

松江23.(本题满分12分,每小题6分)

已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =?.

(1)求证:AD ∥BC ;

(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =?.

浦东23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)

如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC 上,

联结BD 交CE 于点F ,且DF FB FC EF ?=?.

(1)求证:BD ⊥AC ;

(2)联结AF ,求证:AF BE BC EF ?=?.

徐汇23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)

如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD 于点G .

(1)求证:AE =AF ;

(2)若DF CF DE AE

=,求证:四边形EBDF 是平行四边形. 崇明23.(本题满分12分,每小题各6分)

如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .

(1)求证:GD AB DF BG ?=?;

(2)联结CF ,求证:45CFB ∠=?.

黄浦23.(本题满分12分)

如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.

(1)求证:∠CDE =12

∠ABC ; (2)求证:AD ?CD =AB ?CE .

青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)

如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD CA CE CB ?=?.

(1)求证:∠CAE =∠CBD ;

(2)若

BE AB EC AC =,求证:AB AD AF AE ?=?. 长宁23.(本题满分12分,第(1)小题6分,第(2)小题6分)

如图,在?ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,

DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ?=2.

(1)求证:BFD ?∽CAD ?;

(2)求证:AD AB DE BF ?=?.

金山23.(本题满分12分,每小题6分)

如图,已知在Rt △ABC 中,∠ACB=90°,AC > BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .

(1)求证:DF 是BF 和CF 的比例中项;

(2)在AB 上取一点G ,如果AE ·AC=AG ·AD ,

求证:EG ·CF=ED ·DF .

专题三 几何证明

专题三 几何证明 【专题分析】 几何证明题重在训练学生运用数学语言合情推理的能力,在数学学习中占有非常 重要的地位。此类题目经常出现在解答题的第二题,属于中低难度的题,比较基础;最后两题中也有涉及,属于中高难度的综合题. 【考点解析】 考点一:证明线段相等 例1.如图,E 、F 是□ABCD 对角线AC 上的两点,BE ∥DF . 求证:BE =DF . 考点二:证明线段平行或垂直 例2. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE , ∠A=∠D ,AF=DC . 求证:BC ∥EF . 例3. 如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . 求证:CA 是圆的切线. A B C D E F

A E B C F D 考点三:证明角相等 例4.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,过点A 作AE ∥DB 交CB 的延长线于点E . (1)求证:∠ABD =∠CBD ; (2)若∠C =2∠E ,求证:AB =DC . 考点四:证明三角形全等或特殊四边形 例5.在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE . (1)求证:△BEC ≌△DF A ; (2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. 【基础演练】 1.如图,Rt △ABC 中,∠ACB=-90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F 求证:CE=CF . 2.如图,一张矩形纸片ABCD ,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折, 点C 落在点C ′的位置,BC ′交AD 于点G 。 求证:AG =C ′G . (第21题)C

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

青岛版初中数学八年级上册5.6几何证明举例

§5.6 几何证明举例(2) 教学目标: 1. 学生能够证明等腰三角形的性质定理和判定定理。 2. 会运用等腰三角形的性质和判定进行有关的证明和计算。 3. 应用等腰三角形的性质和判定进一步认识等边三角形。 4. 培养学生分析问题和逻辑推理的能力。 教学重、难点: 重点:会证明等腰三角形的性质定理和判定定理。 难点:等腰三角形的性质定理和判定定理的应用。 教学准备: 电子白板、直尺、圆规、直角三角板 教学过程 一、情境导入、复习回顾 1、等腰三角形的性质是什么,这个命题的逆命题是什么? 二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步) (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。 证明:等腰三角形的两个底角相等。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C 法1 证明:过点A作∠BAC的角平分线交BC于点D ∴∠BAD = ∠CAD (角平分线定义) 在△BAD与△CAD中 ∵AB = AC (已知) ∠BAD = ∠CAD (已证) AD = AD (公共边) ∴△BAD≌△CAD(SAS) ∴∠ B = ∠ C (全等三角形对应角相等) 法2 证明:作BC边上的中线 AD ∴ BD = CD (中线定义) 在△BAD与△CAD中 ∵AB = AC (已知) BD = CD (已证) AD = AD (公共边) ∴△BAD≌△CAD( SSS )

∴∠B = ∠ C (全等三角形对应角相等) (2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性? 证明:有两个角相等的三角形是等腰三角形。 已知:如图,在如图,在△ABC中,∠B=∠C 求证:AB=AC 证明:作AD⊥BC,垂足为D 则∠ADB=∠ADC=90°(垂直的定义), 在△ABD和△ACD中, ∵∠B=∠C (已知), ∠ADB=∠ADC=90°(已证) AD=AD (公共边) ∴△ABD≌△ACD (AAS) ∴AB=AC(全等三角形的对应边相等) (3) 利用等腰三角形的性质定理和判定定理证明: (鼓励学生当老师讲给其他同学听) ①等边三角形的每个内角都是60° ②三个角都相等的三角形是等边三角形。 三、精讲点拨: 1、等腰三角形的性质: 性质1: 性质2: 2、数学语言表达: 性质1:性质2: 在△ABC ∵ AB=AC ∵ AB=AC ∴∠B= ∠C ① AD平分∠BAC (等边对等角) ②AD⊥BC ③ BD=DC ( ①,② ,③均可作为一个条件,推出其他两项 ) (三线合一) 四、典例精析 例1 已知,D是△ABC内的一点,且DE=DC,BD平分∠ABC,CD平分∠ACB 求证:AB=AC

几何证明专题1

几何证明专题 1、如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD =DC,连结AC,AE,DE . 2、如图,O和e O'相交于A, B两点,过A作两圆的切线分别交两圆于点,连结DB并延长交eO于点E. 证明:(I)ACeBD二ADUB ; (II)AC=AE C,D两 B

3、选修4 —1几何证明选讲 如图,MBC的角平分线AD的延长线交它的外接圆于点E. (I)证明:MBE sA ADC ; ")若MBC的面积S^AD^AE,求Z BAC的大小. 4、如图,D, E分别为MBC的边AB , AC上的点,且不与心ABC的顶点重合.已 知AE的长为m, AC的长为n, AD , AB的长是关于x的方程Mx + mn-o的 两个根. (I)证明:C, B, D , E四点共圆; (II )若N A=9O。,且m=4, n=6,求C B , D , 所在圆的半径. B

全国名校高中数学优质学案、专题汇编(附详解) 参考答案 1 .【答案】证明:连接AD。 ??? AB是圆O的直径,??? NADB=9O0(直径所对的圆周角是直角)。 ? ?? AD丄BD (垂直的定义)。 又??? BD =DC,二AD是线段BC的中垂线(线段 的中垂线定义)。 AB =AC (线段中垂线上的点到线段两端的距 离相等)。 ? Z B=N C (等腰三角形等边对等角的性质)。 又??? D,E为圆上位于AB异侧的两点, ? ?? N B=N E (同弧所对圆周角相等)。 ? ?? N E =N C (等量代换)。 2.【命题意图】本题主要考查几何选讲的基础知识,是简单题. 证明:(1)由AC与eO相切于A,得N CAB二NADB,同理土ACB^DAB ,

几何证明举例教学设计

几何证明举例——等腰三角形教学设计 教学目标 1、初步掌握等腰三角形的性质及简单应用。 2、理解等腰三角形和等边三角形的性质定理之间的关系。 3、培养分类讨论、方程的思想和添加辅助线解决问题的能力。 教学重点和难点 重点是等腰三角形性质的应用; 难点是等腰三角形的“三线合一”性质的灵活运用。 教学过程设计 一、探索并证明等腰三角形的三条性质复习引入新课: 动手操作 你还记得八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程吗?(学生事先准备好纸剪的等腰三角形操作)。展示等腰三角形折叠动画。 二、新课探索新课探索一:等腰三角形的性质定理和判定定理 1、回答下面的问题,并与同学交流: (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明? (2)说出命题“等腰三角形的两个底角相等”的逆命题; (3)这个逆命题是真命题吗?怎样证明它的正确性? 2、知识点1:等腰三角形的性质定理1 等腰三角形的两个底角相等。(等边对等角) (1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”) (2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C 温馨提示一: 回顾八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程。由当时的操作,如何添加辅助线,然后给出证明。注意作辅助线的方法可有多种,如作底边上的高、底边上的中线、顶角的平分线,相应地,在判定两个三角形全等时的依据也不同。 例4如果一个三角形有两个角相等,那么这个三角形是等腰三角形。 3、方法点拨 (3)证明一:取BC的中点D,连接AD 在△ABD和△ACD中 ∴△ABD≌△ACD(SSS) ∴∠B=∠C(全等三角形的对应角相等)

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

专题十一—几何证明.docx

辅导讲义 基础概念回顾( 一) 全等三角形的判定定理: “SAS": ________________________________________________________ “ASA":________________________________________________________ “AAS":________________________________________________________ “SSS":________________________________________________________ “HL":_______________________________________________________ 通过观察和探索发现全等的三角形和全等成立的相关要素 1.(2015?常州)如图,在0ABCD中,ZBCD=120°,分别延长DC、BC到点E, F,使得△ BCE和厶CDF都是正三角形. (1)求证:AE=AF; (2)求ZEAF的度数. 技巧:挖掘隐含条件,构造全等三角形证明线段等几何关系成立

2.(2014*重庆)如图,AABC 中,ZBAC=90°, AB=AC, AD±BC,垂足是D, AE 平分ZBAD,交BC 于点E.在AABC 外有一点F,使FA丄AE, FC丄BC. (1)求证:BE=CF; (2)在AB±.取一点M,使BM=2DE,连接MC,交AD于点N,连接ME. 求证:①ME丄BC;②DE=DN. 3.(2015*重庆)如图1,在Z^ABC中,ZACB=90°, ZBAC=60°,点E是ZBAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF. (1)如图1,若点H是AC的屮点,AC=2>/E,求AB, BD的长; (2)如图1,求证:HF=EF; (3)如图2,连接CF, CE.猜想:ACEF是否是等边三角形?若是,请证明;若不是,说明理由. 对全等判定的进一步探究 4 (南京2015)【问题提出】

中考几何证明专题

一、中考几何证明题的解法 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF; (2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形 (3)如图3,若AB= ,过点M作 MG⊥EF交线段BC的延长线于点G. ①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由. 2、(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程); (2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果).

3、已知梯形ABCD ,AD ∥BC , AB ⊥BC ,AD=1,AB=2,BC=3, 问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么? 问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 4、如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°.点D 是直线BC 上的一个动点,连接AD ,并以AD 为边在AD 的右侧作等边△ADE . (1)如图①,当点E 恰好在线段BC 上时,请判断线段DE 和BE 的数量关系,并结合图①证明你的结论; (2)当点E 不在直线BC 上时,连接BE ,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论; (3)若AC =3,点D 在直线BC 上移动的过程中,是否存在以A 、C 、D 、E 为顶点的四边形是梯形?如果存在,直接写出线段CD 的长度;如果不存在,请说明理由. B D A C E 图① B D A C E 图② B A C 备用图

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

培优专题几何证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。求证:DE =DF C F B A E D 图1 例 2. 已知:如图 2 所示,AB =CD ,AD =BC ,AE =CF 。求证:∠E =∠ F D B C F E A 图2 2、证明直线平行或垂直:在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,

几何证明举例学案

几何证明举例——有关全等三角形的证明 第一课时 教学目标: 1、会证明“AAS”定理,并会应用三角形全等的判定方法证明 三角形全等。 2、根据判定两个三角形是否全等,进而推证有关线段和角相等。 3、知道证明的过程有不同的表达形式,学会综合法证明的书写 格式。 4、在证明过程中体会数学的转化思想。 学习过程 一、复习引入 1、同学们还记得有关全等三角形的几个基本事实吗? 2、全等三角形的判定方法有哪些?它有什么性质? 其中哪些是基本事实? 3、几何证明的步骤是什么? 二、探究证明 1、求证:如果一个三角形的两角及其中一角的对边与另一个三角形的两角及其中一角的对边对应相等,那么这两个三角形全等。

2、 例 已知:如图,AB =AC ,DB =DC . 求证:∠B =∠C . 3、变式1、 已知:如上图,AB =AC ,∠B =∠C . 求证: DB =DC . 练习、已知:如图,PB =PC ,CE 、BD 相交于点P ,∠BDA =∠CEA. 求证:AB =AC. A C B D

5、合作与探究 两个全等三角形的对应边上的高线、对应边上的中线、对应角的平分线有什么性质呢? 三、课堂小结 1、判定三角形全等的方法有:————————————————————————————。 2、证明全等的思路: 3、利用三角形全等可以得到线段相等或角相等. 4、证明两条线段(或角)相等的方法: C A B D P E

四、当堂达标 1、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙 2.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是() A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN 3.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去B.带②去 c . 带③去 D.带①和②去 4:如图,AC和BD相交于点O,OA=OC,OB=OD

立体几何证明题专题(教师版)

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; , ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________. 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. 在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错. 【答案】④ , 2.若P是两条异面直线l、m外的任意一点,则() A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 答案B 解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾. 对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线.! 对于选项C,过点P与l、m都相交的直线有一条或零条.

2017年中考数学专题复习八:几何证明题

专题八:几何证明题 【问题解析】 几何证明题重在训练学生应用数学语言合情推理能力,几何证明题和计算题在中考中 占有重要地位?根据新的课程标准,对几何证明题证明的方法技巧上要降低,繁琐性、难度方面要降低?但是注重考查学生的基础把握推理能力,所以几何证明题是目前常考的题型. 【热点探究】 类型一:关于三角形的综合证明题 【例题11(2016 ?四川南充)已知△ ABN和厶ACM位置如图所示,AB=ACAD=AE /仁/ 2. (1) 求证:BD=CE (2) 求证:/ M=/ N. 【分析】(1)由SAS证明△ ABD^A ACE得出对应边相等即可 (2)证出/BAN/ CAM由全等三角形的性质得出/ B=/ C,由AAS证明△ ACI WA ABN 得出对应角相等即可. 【解答】(1)证明:在厶ABD和厶ACE中,’IL* ???△ABD^A ACE( SAS, ??? BD=CE (2)证明:T/ 1=/ 2, ? / 1+/ DAE/ 2+/ DAE 即/ BAN/ CAM 由(1)得:△ ABD^A ACE ? / B=/ C, r zc=z& ?AC=AB 在厶ACM^n^ ABN 中,| Z CM=Z BAN,

???△ ACMmABN( ASA, ???/ M= N. 【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键. 【同步练】 (2016 ?山东省荷泽市?3 分)如图,△ ACB和厶DCE均为等腰三角形,点A,D, E在同一直线上,连接BE (1)如图1,若/ CAB M CBA M CDE M CED=50 ①求证:AD=BE ②求/ AEB的度数. (2)如图2,若/ ACB M DCE=120 , CM^^ DCE中DE边上的高,BN%A ABE 中AE边 类型二:关于四边形的综合证明题 【例题2] (2016 ?山东省滨州市?10分)如图,BD是△ ABC的角平分线,它的垂直平 分线分别交AB, BD BC于点E,F,G,连接ED DG (1)请判断四边形EBGD勺形状,并说明理由; (2)若/ ABC=30,/ C=45, , 点H是BD上的一个动点,求HG+HC勺最小值.

青岛版-数学-八年级上册-《几何证明举例》专项练习

C A B C D E P 图 ⑴ 5.6 几何证明举例 1、已知:在△ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:△RDQ 是等腰直角三角形. C B 2、已知:在△ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC. 3、已知:在△ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA. 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点. (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论. 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC 且BC=10,求△DCE的周长. A B C O M N

几何证明习题答案 1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且 AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR 由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△. 2. 作AG平分∠BAC交BD于G ∵∠BAC=90°∴∠CAG= ∠BAG=45° ∵∠BAC=90°AC=AB ∴∠C=∠ABC=45° ∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90° ∵∠CAF+∠BAE=90°∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB 3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90° 4. 略 5.(1)因为直角三角形的斜边中点是三角形的外心, 所以O到△ABC的三个顶点A、B、C距离相等; (2)△OMN是等腰直角三角形. 证明:连接OA,如图, ∵AC=AB,∠BAC=90°,∴OA=OB,OA平分∠BAC,∠B=45°, ∴∠NAO=45°,∴∠NAO=∠B, 在△NAO和△MBO 中,

中考数学几何证明专题训练.doc

中考数学几何证明专题 1、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 2、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 3、在菱形ABCD 中,GE ⊥CD 、HF ⊥AD ,求证:GE=HF C C D B

4、 图,平行四边形ABCD 中,AE=CF , 求证:∠EBF=∠FDE 5、在菱形ABCD 中,对角线AC 、BD 交于点O ,OE ⊥AB 、OF ⊥BC 、 OG ⊥CD 、OH ⊥AD ,求证:E 、F 、G 、H 共圆 6、在矩形ABCD 中,∠ABC 、∠CDA 的平分线交AD 、BC 于F 、E ,求证:BE=DF 、DE=BF D B D A C

7、如图,点E 是正方形ABCD 内一点 ,△BEC 绕点C 顺 时针方向旋转90°到△DFC 的位置,求证:BE ⊥DF 8.如图,E 、F 是□ABCD 的对角线AC 上两点,AE=CF. 求证:(1)△ABE ≌△CDF.(2)BE ∥DF. F E D C B A F A

9.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE=CF, 请你以F 为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可). (1)连结_________, (2)猜想______=________. (3)证明: 附加1.如图,已知正方形ABCD 中,E 为BC 上一点, 将正方形折叠起来,使点A 和点E 重合,折痕为MN,若tan ∠AEN=13 ,DC+CE=10. (1)求△ANE 的面积.(2)求sin ∠ENB 的值. K M E N D C B A

(完整word版)几何证明题的技巧

几何证明题的技巧 1)证明线段相等,角相等的题,通常找到线段所在图形,证明全等 2)隐藏条件:比如特殊图形的性质自己要清楚,有些时候几何题做不出来就是因为没有利用好隐藏条件 3)辅助线起到关键作用 4)几何证明步骤:依据—结论—定理切记勿忽略细微条件 5)遇到面积问题,辅助线通常做高,遇到圆,多为做半径,切线 6)个别题型做辅助线: 1 通过连结,延长,作垂直,作平行线等添加辅助线的方法,构造全等三角形。 2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中心,使分散的条件汇集起来。 3遇到求边之间的和,差,倍数关系时,通常采用截长补短的方法,求角度之间的关系时,也一样。 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 *7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。 10.等于同一角的两个角相等。 三、证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 *10.在圆中平分弦(或弧)的直径垂直于弦。 *11.利用半圆上的圆周角是直角。 四、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。

八年级几何证明专题训练题

F O E D C B A 八年级几何证明专题训练 1. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°, ∠DEB=10°,求∠AEC的度数. 2. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C= ∠D 3.如图,OP平分∠AOB,且OA=OB. (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E, 求证:BE=EC。 5. 如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC中,∠ACB=90o, D是AC上的一点,且AD=BC,DE AC于D,∠ EAB=90o.求证:AB=AE. 9. 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP= ∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论. 10. 如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD 的周长为多少? 11.如图所示,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,求证:CE=DF. 12. 如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D. (1)判断直线BE与AD的位置关系是____;BE与AD之间的距离是线段____的长; (2)若AD=6 cm,BE=2 cm,求BE与AD之间的距离及AB的长. 13. 如图,已知△ABC、△ADE均为等边三角形,点D是BC延长线上一点,连结CE, 求证:BD=CE 14. 如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC?于点D,求证:?BC=3AD. 15. 如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证: MN⊥AC. 16、已知:如图所示,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE ⊥AC于点E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=A C;????? (2)求证:DG=DF. 6. 如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。 B A E D C

八年级数学下册 11.5 几何证明举例(3)导学案 青岛版

几何的证明举例 导学案(三) 课本内容:P132——134 例四、例五 课前准备:三角板 学习目标: 1、进一步学习几何证明的思路和步骤; 2、牢固掌握等腰三角形的性质,并能够熟练地应用它们。 一、自主预习课本P132——133内容,独立完成课后练习1、2后,与小组同学交流 二、通过预习等腰三角形的性质,请思考以下问题: 1、等腰三角形的顶角是45゜,则底角是( )。 2、三角形的一个外角平分线平行于三角形的一边,则这个三角形一定是( )。 3、如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥AB ,则图中有等腰三角形 个. 三、巩固练习 1.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) (A )60° (B )120° (C )60°或150° (D )60°或120 2.已知等腰三角形的两边长分别为2和5,则它的周长为( ) (第3题)

(A )12或9 (B )12 (C )9 (D )7 3.如图,等腰三角形ABC 中,AB =AC ,∠A =44°,CD ⊥AB 于D ,则∠DCB 等于( ) (A )44° (B )68° (C )46° (D )22° 4.如图(1),已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD = BC ,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角 形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( ) (A )1 (B )2 (C )3 (D )4 5、如图,在△ABC 中,∠ABC =2∠ACB ,BD 平分∠ABC ,AD ∥BC ,则图中等腰三角形共有 个. 6、如图所示,AB =AC ,AC 上一点D 在AB 的垂直平分线上,若△ABC 的周长为16cm ,△BCD 的周长为10cm ,则AB 的长为 . 7、如图,已知AB =AC ,∠A =40°,AB 的垂直平分线交AC 于D ,求∠DBC 的度数. 四、学习小结:通过本节课的学习,你都有哪些收获? 五、达标检测 1、如图,△ABC 是等边三角形,AD 是高,并且AB 恰好是DE 的垂直 (第5题) C D

平面几何证明常用方法

目录 1.引言??????????????????????? 2.利用平行四边形性质添加平行线证题???????? 3.利用圆中的等量关系巧作辅助圆证题????????? 4.利用平移、旋转, 翻折,几何证明中的三种基本变换证题 5.反证法证题??????????????????? 6.巧用面积法解几何题???????????????? 结论??????????????????????? 参考文献????????????????????? 致谢???????????????

平面几何证明题的常用技巧 数学计算机科学学院 摘要灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题 ,都要应用这样或那样的方法 , 而选择哪一种方法 , 就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路技巧 The plane geometry proving the commonly used skill College of Mathematics and Computer Science Abstract: Flexible, properly choose the problem solving method is a good way of solving plane geometry. Any solve a plane geometry proving, one way or the other method, and the choice of which method, it depends on what kind of way we use. This article try to plane geometry proving that is commonly used in several problem-solving ideas and methods are analyzed. Key words:Plane geometry To prove the topic Train of thought skills 1 引言平面几何难学 , 是很多初中生在学习中的共识 , 这里面包含了很多主观和客观因 素 , 而学习不得法 ,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过 ,“解 题的成功要靠正确 思路的选择 , 要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确 , 哪一个方 向可接近它 ,就要试探各种方向和思路。”由此可见 , 掌握证明题的一般思路、探索证题 过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。 2利用平行四边形性质添加平行线证题 在同一平面内, 不相交的两条直线叫平行线. 平行线是初中平面几何最基 本的, 也是非常重要的图形.在证明某些平面几何问题时, 若能依据证题的需要,添加恰当的平行线, 则能使证明顺畅、简洁. 添加平行线证题, 一般有如下四种情况.

几何证明试题及答案

几何证明一 1. 如图,点E 是BC 中点,∠BAE=∠CDE , 求证:AB=CD 2.如图,在△ABC 中,CD=AB ,∠BAD=∠BDA ,AE 是BD 边的中线. 求证:AC=2AE 3. 如图,在△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,且BD=CE ,DE 交BC 于点P.探究PE 与PD 的数量关系. 4.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠ B

5. 如图,在△ABC 中,AD 平分∠BAC ,G 为BC 的中点,EG ∥AD 交CA 延长线于E.求证:BF=CE= 1/2(AB+AC) 6. 如图,两个正方形ABDE 和ACGF ,点P 为BC 的中点,连接PA 交EF 于点Q.探究AP 与EF 的关系 7. 已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. A P C D B

参考答案: 5.延长FG到H,使GH=FG连接CH。 则△BGF≌△HGC ∴BF=CH..........① ∠BFG=∠BAD=∠DAC=∠E ∴在△HEC中EC=CH......② 由①②得BF=EC 6.延长AP到点M。使PM=AM。连接BM、CM 则四边形ABMC是平行四边形 ∴BM=AC=AF,∠BAC+∠ABM=180° ∵∠BAE=∠CAF=90° ∴∠EAF+∠BAC=180° ∴∠EAF=∠ABM ∵AB=AE ∴△AEF≌△BAM(SAS) ∴EF=AM=2AP ∴∠AOE=180o-﹙∠FEA+∠EAQ﹚=180o-﹙∠ABM+∠EAQ﹚∵∠EAB=90°∴∠ABM+∠EAQ=90° ∴∠AQE=180°-90°=90° ∴∠AQE=90o, ∴CD⊥EF 7.以AD为边在正方形上方做一个等边三角形ADE,连接PE ∵∠PAD=∠PDA=15° ∴AP=DP ∵AE=DE,PE=PE ∴△APE≌△DPE ∴∠AEP=∠DEP=1/2∠AED=30° ∠EAP=∠EDP=60°+15°=75° ∴∠APE=∠DPE=75° ∴∠EAP=∠EPA=75° ∴AE=PE=AB=BC 在△AEP和△ABP中 ∠EAP=∠BAP=75°(∠BAP=90°-∠DAP=75°) AP=AP,AB=AE ∴△AEP≌△ABP

相关文档
最新文档