勾股定理

勾股定理
勾股定理

A

B

C

a b c

弦股

勾勾股定理(知识点)

【知识要点】 1. 勾股定理的概念:

如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2

+b 2

=c 2

. 即直角三角形两直角边的

平方和等于斜边的平方。

常用关系式

由三角形面积公式可得:AB ·CD=AC ·BC

2. 勾股定理的逆定理:

如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2

,那么这个三角形是直角三角形,其中c 为斜边。 3. 勾股数:

①满足a 2

+b 2

=c 2

的三个正整数叫做勾股数

(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。)

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);

2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)

4.判断直角三角形:

(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 (4)如果三角形的三边长a 、b 、c 满足a 2

+b 2

=c 2

,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)

用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );

(2)若c 2

=a 2

+b 2

,则△ABC 是以∠C 为直角的三角形;

若a 2

+b 2

<c 2

,则此三角形为钝角三角形(其中c 为最大边);

若a 2+b 2>c 2

,则此三角形为锐角三角形(其中c 为最大边) 5.直角三角形的性质

(1)直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°

可表示如下: ?BC =2

1AB ∠C=90°

(3)直角三角形斜边上的中线等于斜边的一半。 ∠ACB=90°

可表示如下: ?CD =2

1

AB = BD = AD D 为AB 的中点 6.数轴上表示无理数

第一步:分析所有表示二次根式中被开方数可以写成哪两个有理数的和

第二步:在数轴上画出其中一个有理数,以该有理数为垂足做垂线,在垂线上标出第二个有理数的长度。连接端点和原点,以原点为圆心,端点为半径画圆,于数轴交点即为所有无理数。

勾股定理专项练习

一、基本应用 考点1:勾股定理

1.下列是勾股数的一组是( D )

,5,6 ,7,12 ,13,15 ,28,35

2.△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( ) +b 2

=c 2

=2b 2

=2a 2

=2a 2

3.矩形ABCD,AB=5 cm,AC=13 cm,则这个矩形的面积为 60 cm 2

.

4.如图,在△ABC 中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D ,则△ABC 斜边上的高AD= 12 .

5.已知等腰三角形底边长为10cm ,腰长为13cm ,则腰上的高....为( C ) B.6013cm C.12013cm D.10

13cm

6.一个直角三角形的三边为三个连续偶数,则它的三边长分别为 6,8,10 .

7.(易错题)已知直角三角形的两边x ,y 的长满足│x-4│+

3 y =0,则第三边的长为 5或

.

8.若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) 个 个 个 个 9.已知直角三角形两边长分别为3、4,则第三边长为 .

10.已知直角三角形的两直角边之比为3:4,斜边为10,则直角三角形的两直角边的长分别为 . 11.如图,分别以Rt △ABC 三边为边向外作三个正方形,其面积分别用S 、S 、S 表示,容易得出S 、S 、S 之间有的关系式 S+S=S .

12.(易错题)如图,已知在Rt △ABC 中∠ACB=90°,AB=4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于 2π .

13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm ,则正方形A ,B ,C ,D 的面积之和为 49 cm 2

第4题第11题第12题第13题

14.在Rt△ABC,∠C=90°

(1)已知c=17,b=8, 求a。(a=15)

(2)已知a∶b=1∶2,c=5, 求a。(a=)

(3)已知b=15,∠A=30°,求a,c。(a=,c=)

15.若直角三角形的三边长分别是n+1,n+2,n+3,求n。(n=2)

16.若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。(S=96)

考点2.勾股定理逆定理

1.以下列各组线段为边长,能构成三角形的是_________,能构成直角三角形的是_________.(填序号)

①3,4,5 ② 1,3,4 ③ 4,4,6 ④ 6,8,10 ⑤ 5,7,2 ⑥ 13,5,12 ⑦ 7,25,24

2.在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是( D )

=9,b=41,c=40 =b=5,c=2

5∶b∶c=3∶4∶5 =11,b=12,c=15

3.若一个三角形三边长的平方分别为:32,42,x2,则此三角形是直角三角形的x2的值是( D )

A.42 B.52 C.7 D.52或7

4.下列说法不正确的是( B )

A.三个角的度数之比为1∶3∶4的三角形是直角三角形

B.三个角的度数之比为3∶4∶5的三角形是直角三角形

C.三边长度之比为3∶4∶5的三角形是直角三角形

D.三边长度之比为5∶12∶13的三角形是直角三角形 5.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2

+b 2

-c 2

)=0,则△ABC 是( C )

A.等腰三角形

B.直角三角形

C.等腰三角形或直角三角形

D.等腰直角三角形 6.有下列说法:①若两直角边的平方和等于斜边的平方,则此三角形是直角三角形;②在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,若a 2

+b 2

>c 2,则△ABC 是钝角三角形;③在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,若b 2

+c 2

=a 2

,则∠C=900

;④在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,∠C ≠900

,则a 2

+b 2

≠c 2

。其中正确的是( D )

A.①②③

B.②③④

C.②④

D.④ 7.下列说法中正确的有( )

①如果∠A+∠B+∠C=3:4:5,则△ABC 是直角三角形;②如果∠A+∠B=∠C ,那么△ABC 是直角三角形;③如果三角形三边之比为6:8:10,则ABC 是直角三角形;④如果三边长分别是n 2

-1,2n ,n 2

+1(n >1),则△ABC 是直角三角形。

个 个 个 个

8.若13-c +|a-12|+(b-5)2

=0,则以a 、b 、c 为三边的三角形是 直角 三角形.

9.如果△ABC 的三边a,b,c 满足关系式182-+b a +(b-18)2

+30-c =0则△ABC 是 三角形。 10.已知:a 、b 、c 为△ABC 的三边,且满足a 2c 2

-b 2c 2

=a 4

-b 4

,试判断△ABC 的形状. 解:∵a 2c 2

-b 2c 2

=a 4

-b 4

,① ∴c 2

(a 2

-b 2

)=(a 2

+b 2

)(a 2

-b 2

).② ∴c 2

=a 2

+b 2

.③

∴△ABC 是直角三角形.

问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ③

(2)错误的原因为 除数可能为零 ;

11.已知△ABC 的三边为a 、b 、c ,且2:1:1::=c b a ,求三角形三个内角度数的比(∠A :∠B :∠C=1:1:)

12.△ABC 的三边a 、b 、c 满足0)40(32|50|2

=-+--+-+c b a b a .试判断△ABC 的形状.(直角三角形)

13.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状。 (直角三角形)

14.若△ABC 的三边a ,b ,c 满足条件a 2

+b 2

+c 2

+338=10a+24b+26c ,试判定△ABC 的形状.(直角三角形)

15.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为? (6;8;10;直角三角形)

16.若△ABC 的三边长为a ,b ,c ,根据下列条件判断△ABC 的形状.

(1)a 2

+b 2

+c 2

+200=12a+16b+20c (2)a 3

-a 2

b+ab 2

-ac 2

+bc 2

-b 3

=0

考点3.数轴表示无理数(尺规作图,保留作图痕迹,不写作法) 1.用圆规与尺子在数轴上作出表示13的点,并补充完整作图方法

2.在数轴上画出表示17的点?

3.在数轴上作出表示3-2的点

考点4:勾股定理几何应用

1.如图在矩形ABCD中,M是CD中点,AB=8,AD=3.(1)求AM的长;(2)△MAB是直角三角形吗?为什么?(AM=5;不是直角三角形)

2.如图所示,在Rt△ABC中,∠ACB=90°,CD是AB边上高,若AD=8,BD=2,求CD.(CD=4)

3.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=3m,斜面坡角为30°,

求木箱端点E距地面AC的高度EF。(EF=3)

4.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.(S=234)

5.四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。(S=36)

6.如图,在四边形ABCD中,AB=12 cm,BC=3 cm,CD=4 cm,∠C=90°(1)求BD的长;(BD=5)(2)当AD为多少时,∠ABD=90°?(AD=13)

7.农民牛伯伯承包了一块四边形水稻田ABCD,他量得边长AB=90m,BC=120m,CD=130m,DA=140m,且边AB、BC正好位于两条相互垂直的公路的拐角处,请你帮牛伯伯计算一下这块水稻田的面积。(S=13800)

8.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.

(二)、实际应用:

1. 梯子滑动问题:

1.一架长m的梯子,斜立在一竖起的墙上,梯子底端距离墙底m(如图),如果梯子的顶端沿墙下滑m,那么梯子底端将向左滑动米

2.如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离-1 米

3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1 m,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为 12 米

4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 18 。

第1题第2题第4题

5.如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.

①求梯子的底端B距墙角O多少米?()②如果梯的顶端A沿墙下滑0.5米至C算一算,底端滑动的距离近似值(结果保留两位小数).()

6.如图所示,梯子AB靠在墙上,梯子的底端A到墙根O 的距离为2m,梯子的顶端B到地面的距离为7m.现

将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离为3m,同时梯子的顶端B下降到B′,那么BB′也等于1m吗?(不等于1,小于1)

2. 爬行距离最短问题:

1.如图,正方体盒子的棱长为2,AB中点为M,一只蚂蚁从点M沿正方体的表面爬到点C',蚂蚁爬行的最短距离是( B )

2+

A.13

B.17

C.5

D.5

2.如图,一块砖宽AN=5㎝,长ND=10㎝,CD上的点F距地面的高FD=8㎝,地面上A处的一只蚂蚁到F 处吃食,要爬行的最短路线是 17 cm

3.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是 25 分米?

4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是 10 .

5.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行

第1题第2题第3题第4题第5题

3.方向问题:

1.一座垂直于两岸的桥长15米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头9米,则小船实际行驶了___334___米.

2.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了分,又沿南北马路向南走了分到家,则他的家离公司距离为( D )

240m 000m

3.有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,当他到B点时,测得∠MBN=45°,AB=100米,你能算出AM的长吗?(x=50+50)

4.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(西北方向)

5.一轮船在大海中航行,它先向正北方向航行8 km,接着,它又掉头向正东方向航行15千米.

⑴此时轮船离开出发点多少km? (17km)

⑵若轮船每航行1km,需耗油升,那么在此过程中轮船共耗油多少升?()

E

C ′

A

B C

D

6.甲、乙两船上午11时同时从港口A 出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求下午1时两船之间的距离.(50海里)

4.折叠问题:

1.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长

2.如图,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且14

FB AB ,那么△DEF 是直角三角形吗?

为什么?

3.如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?(DE=5,EF=)

4.如图,矩形ABCD 中,AB =3,BC =4,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是多少?

5.利用勾股定理测量长度

1.如图,水池中离岸边D点米的C处,直立长着一根芦苇,出水部分BC的长是米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.(S=)

2.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.(门高;竿高)

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

专题勾股定理培优版(综合)

WORD格式 . 专题勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题 1.如图,在△ABC中,AB=AC, (1)若P为边BC上的中点,连结 22 AP,求证:BP×CP=AB-AP; (2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由; A B C P (3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论 A . B C P (二)最值问题 2.如图,E为正方形ABCD的边AB上一点,AE=3,BE=1,P为AC上的动点,则PB+PE的最小值是

A D E P 3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点, B C . 专业资料整理

WORD格式 . 将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1) 求证:△AMB≌△ENB; A D (2)①当M点在何处时,AM+CM的值最小; N E M C B C ②当M点在何处时,AM+BM+CM的值最小,并说明理由; A D N E M B C C (3)当AM+BM+CM的最小值为31时,求正方形的边长. A D N E M B C C

4.问题:如图①,在ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的. 专业资料整理

WORD格式 . 长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD的长为; (2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长. A A B D C B D C 图①图②

勾股定理与面积问题

解题技巧专题:勾股定理与面积问题 ——全方位求面积,一网搜罗 ◆类型一三角形中利用面积法求高 1.直角三角形的两条直角边的长分别为5cm,12cm,则斜边上的高线的长为() A. 80 13cm B.13cm C. 13 2cm D. 60 13 cm 2.(2017·乐山中考)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是________. ◆类型二结合乘法公式巧求面积或长度 3.已知Rt△ABC中,∠C=90°,若a+b=12cm,c=10cm,则Rt△ABC的面积是() A.48cm2B.24cm2C.16cm2D.11cm2 4.若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是() A.7cm B.10cm C.(5+37)cm D.12cm 5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为() A.3 B.4 C.5 D.6 ◆类型三巧妙利用割补法求面积 6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD的面积.

7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】 ◆类型四利用“勾股树”或“勾股弦图”求面积 8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2. 参考答案与解析 1.D 2. 3 55解析:如图,连接AC,BC,设点C到线段AB所在直线的距离是h.∵S△ABC =3×3- 1 2×2×1- 1 2×2×1- 1 2×3×3-1=9-1-1- 9 2-1= 3 2,AB=1 2+22=5,∴ 1 2×5h= 3 2,∴h= 35 5.故答案为 35 5.

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理与面积计算

勾股定理与面积计算 1.(1)如图①,S 1、S 2和S 3分别是以直角三角形的两直角边和斜边长为直径的半圆的面积,你能找出S 1、S 2和S 3之间的关系吗?请说明理由 (2)如图②,如果直角三角形的两直角边分别为6cm ,8cm ,你能根据(1)的结论求出阴影部分的面积吗?你能得出什么结论吗? 2.如图(2)R t ⊿ABC 中,∠ACB=900,AC=6,BC=8,S 1、S 2和S 3分 别是以直角三角形的两直角边和斜边长为边长的等边三角形。你能找出S 1、S 2和S 3之间的关系吗?请说明理由 3. 如图(3)R t ⊿ABC 中,∠ACB=900,AB=3,S 1、S 2和S 3分别是以直角三角形的三边为斜边的等腰直角三角形,则图中阴影部分的面积为 。 4. 如图(4) 以R t ⊿ABC 的三边为边长向形外画正方形,以AB 为边的正方形的 面积为100cm 2,则这三个正方形的面积共为 cm 2。 5、如图14.1.3,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形E 的面积为81cm 2,则正方形A 、B 、C 、D 的面积之和为 。 6、如图14.1.4,是一个“羊头型”的图案,其作法是:从正方形1开始以它的一边为斜边向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,依次类推。若正方 形1的面积为64cm 2,则正形7的边长为 。 7.如图所示的弦图中,大正方形的面积为13,小正方形的面积为1,直角三角形的短直角边 为a ,较长直角边为b ,求(a+b )= 。 8. 有一块土地的形状如图, ∠B=∠D=90°,AB=20m ,BC=15m ,CD=7m ,请计算这块土地面积。 (2) (3) (4) 1242334图14.1.4B 8题图

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理培优

八年级数学勾股定理培优(月日) 一、根据对称求最小值 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。1.已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN 有最小值,并求出最小值。 2.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。 3.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的 长度和最短,则此时AM+NB=() A.6B.8 C.10 D.12 4.已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值 5.如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2, M为BC上一动点,则△AMD 周长的最小值为. 6.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,则EM+BM的最小值为. 7.如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值. 8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()

A.2 B.2 6C.3 D.6 9.在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm 10.在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长. 二、几何体展开求最短路径 1.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是多少dm?2.如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 3.如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长? (建议:拿一张白纸动手操作,你一定会发现其中的奥妙) 4.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少? 5.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。 三、折叠问题 1.如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm, BC=10cm,求EF的长。 2.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处;(1)求证:B'E=BF;

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

八年级下勾股定理培优试题集锦(含解析)

初二数学勾股定理提高练习与常考难题和培优题压轴题 二. 填空题(共5小题) 11. 已知Rt A ABC 中,/ C=90 °a+b=14cm , c=10cm ,则Rt A ABC的面积等于_. 12. 观察下列勾股数 第一组:3=2 X1+1 ,4=2 X1 X(1+1 ) ,5=2 X1 X(1+1 ) +1 第二组:5=2 X2+1 , 12=2 X2 X(2+1 ) , 13=2 X2 X(2+1 ) +1 第三组:7=2 X3+1 , 24=2 X3 X(3+1 ) , 25=2 X3 X(3+1 ) +1 第四组:9=2 X4+1 , 40=2 X4 X(4+1 ) , 4仁2 X4 X(4+1 ) +1 ??观察以上各组勾股数组成特点,第7组勾股数是 _ (只填数,不填等式) 13. 观察下列一组数: 列举:3、4、5,猜想:32=4+5 ; 列举:5、12、13,猜想:52=12+13 ; 列举:7、24、25,猜想:72=24+25 ; 列举:13、b、c,猜想:132=b+c ; 请你分析上述数据的规律,结合相关知识求得b= ______ , c= ___ . 三. 解答题(共27小题) 14. a, b, c 为三角形ABC 的三边,且满足a2+b2+c2+338=10a+24b+26c ,试判别这个三角形的形状

15. 如图:四边形ABCD中,AB=CB=匚,CD=匸,DA=1 ,且AB丄CB于B. 试求:(1)ZBAD的度数; (2)四边形ABCD的面积. 16. 如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4, 5, .r的三角形,请你帮助小华作出来 17 .如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东 60方向走了100二km到达B点,然后再沿北偏西30方向走了100km到达目 的地C点,求出A、C两点之间的距离. 18. 如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心 以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

勾股定理与面积计算

图14.1.3G F E D C B A 勾股定理与面积计算 1.(1)如图①,S 1、S 2和S 3分别是以直角三角形的两直 角边和斜边长为直径的半圆的面积,你能找出S 1、S 2和S 3之间的关 系吗请说明 理由 (2)如图②,如果直角三角形的两直角边分别为6cm ,8cm ,你能根据(1)的结论求出阴影部分的面积吗你能得出什么结论吗 2.如图(2)Rt ⊿ABC 中,∠ACB=900,AC=6,BC=8,S 1、S 2和S 3分 别是以直角三角形的两直角边和斜边长为边长的等边三角形。你能找出S 1、S 2和S 3之间的关系吗请说明理由 3. 如图(3)Rt ⊿ABC 中,∠ACB=900,AB=3,S 1、S 2和S 3分别是以直角三角形的三边为斜边 的等腰直角三角形,则图中阴影部分的面积为 。 4. 如图(4) 以Rt ⊿ABC 的三边为边长向形外画正方形,以AB 为边的正方形的 面积为100cm 2,则这三个正方形的面积共为 cm 2。 (2) (3) (41 242334图14.1.4 B 8题图

5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形E的面积为81cm2,则正方形A、B、C、D的面积之和为。 6、如图14.1.4,是一个“羊头型”的图案,其作法是:从正方形1开始以它的一边为斜边向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,依次类推。若正方形1的面积为64cm2,则正形7的边长为。 7.如图所示的弦图中,大正方形的面积为13,小正方形的面积为1,直角三角形的短直角边为a,较长直角边为b,求(a+b)= 。 8. 有一块土地的形状如图,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,请计算这块土地面积。

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

勾股定理培优

考点?方法?破译 1 ?会用勾股定理解决简单问题 ? 2 ?会用勾股定理的逆定理判定直角三角形 . 3 ?勾股定理提示了直角三角形三边的关系,对于线段的计算,常可由勾股定理列方程 进行求解;对于涉及平方关系的等式证明,可根据勾股定理进行论证 . 经典?考题?赏析 【例1】(达州)如图是一株美丽的勾股树,其中所有的四边形都是 正方形,所有的三角形都是直角三角形 .若正方形A 、B 、C 、D 的边长 分别是3, 5, 2, 3,则最大正方形 E 的面积是( ) A . 13 B . 26 C. 47 D . 94 【解法指导】 观察勾股树,发现正方形 A 、B 的边长恰好是一直角三角形相邻的两直角 边.此时直角三角形两直角边的平方和等于斜边的平方,即两个较小正方形面积之和等于较 大正方形的面积,从而正方形 E 的面积等于正方形 A 、B C 、D 四个面积之和,故选 C. 【变式题组】 01.(安徽)如图,直线I 过正方形ABCD 的顶点B ,点A ,C 到直线I 的距离分别是1和2,则 02.(浙江省温州)在直线I 上的依次摆放着七个正方形 (如图所示),己知斜放置的三个正方形 的面积分别是1,2,3,正放置的四个正方形的面积依次是 S 1,S ,Ss ,S ,贝V S+ S 2 + S 3 + S 4= ______ . 03.(浙江省丽江)如图,已知△ ABC 中,/ ABC = 90°,AB = BC,三角形的顶点在相互平行 的三条直线11、|2、|3上,且|1、|2之间的距离 为 是() A . 2 17 B . 2 5 C. 4 2 D . 7 【例2】(青岛)如图,长方体的底面边长分别为 1cm 和3cm ,高为 6cm.如果用一根细线从点 A 开始经过4个侧面缠绕一圈到达点 B,那么 所用细线最短需 要 ___________________ cm ;如果从点A 开始经过4个侧面缠绕n 圈到 达点B ,那么所用细线最短需要 ________ c m. 【解法指导】细线缠绕时绕过几个面,则将这几个面展开后在同一平面内利用线段的公 理:两点之间线段最短.画出线路,然后利用勾股定理解决,应填 10,2 9 16n 2 . 【变式题组】 01.偲施)如图,长方体的长为 15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁 如果要沿 着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是( ) 第19讲勾股定理 正方形的边长是 ____________ 2,12、|3之间的距离为 A 2 B I 第1题图 第2题图 3,贝U AC 的长

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理培优练习修订版

勾股定理培优练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

勾股定理 【知识点】1、勾股定理__________________________________________________________________ 2、勾股定理逆定理_____________________________________________________________________ 【基础练习】 1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为() A.30° B.45° C.60° D.90° 2.下列四组线段中,能组成直角三角形的是() A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M,N在边OB上,PM=PN.若MN=6,则OM=() A.4 B.5 C.6 D.7 第1题第3题第5题第6题 4.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是() A.3个B.4个C.5个D.6个 5.(2015?石家庄模拟)图1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是() A.51 B.49 C.76 D.无法确定 6.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 7.下列命题中,是假命题的是( ). A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米. 第8题第9题第10题 9.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= . 10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度. 【例题讲解】 例1、)阅读以下解题过程: 已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状. 错解:∵a2c2﹣b2c2=a4﹣b4…(1), ∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)…(2), ∴c2=a2+b2 (3) 问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号. (2)错误的原因是. (3)本题正确的结论是. 例2.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 例3、我们学习了勾股定理后,都知道“勾三、股四、弦五”.

专题:勾股定理与面积问题 含答案

专题:勾股定理与面积问题 ——全方位求面积,一网搜罗 ◆类型一三角形中利用面积法求高 1.直角三角形的两条直角边的长分别为5cm,12cm,则斜边上的高线的长为() A. 80 13cm B.13cm C. 13 2cm D. 60 13 cm 2.(2017·乐山中考)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是________. ◆类型二结合乘法公式巧求面积或长度 3.已知Rt△ABC中,∠C=90°,若a+b=12cm,c=10cm,则Rt△ABC的面积是() A.48cm2B.24cm2C.16cm2D.11cm2 4.若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是() A.7cm B.10cm C.(5+37)cm D.12cm 5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为() A.3 B.4 C.5 D.6 ◆类型三巧妙利用割补法求面积 6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD的面积.

7.如图,∠B=∠D=90°,∠ A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】 ◆类型四利用“勾股树”或“勾股弦图”求面积 8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方 形的边长为9cm,则正方形A ,B,C,D的面积之和为________cm2. 9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB=3,AC=4,则D,E,F,G,H,I都在长方形KLMJ的边上,那么长方形KLMJ 的面积为________.

勾股定理典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. S 3 S 2 S 1

人教版八年级下册第17章勾股定理培优提高考试试题附答案

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 D.∠A:∠B:∠C=3:4:5A C.∠+∠B=∠C 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() 2 222cm.72cm108B.36cm D A.18cm C.3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对 =,则∠B为(=4,BC)=4.在△ABC中,∠A30°,AB C.30°或60°D.30°或90°.30A.°B90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A,则梯子底部B滑开的距离1BB是()1 A.4米B.大于4米C.小于4米D.无法计算 的大小,小亮进行了如下分析后作一个直角三角形,使其两直与.为比较 6.

为边长定理可求得长角边的分别其为斜与,则由勾股 ,可得.根据“三角形三边关系”.小)亮的这一做法体现的数学思想是( A.分类讨论思想B.方程思想.数形结合思想DC.类此思想是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个“赵爽弦图”7.,则中间小正方形与大正方形的面积差是6直角三角形的两条直角边的长分别是3和) ( 27D.34A.9B.36C..如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方8,60S=+S、S、S.若SS+ABCD形、正方形EFGH、正方形MNPQ的面积分别为311232)则S的值是(2 30D C.20.BA.12.15小题)二.填空题(共6.9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是时,这个三角a,如果a+b,﹣b是三角形较小的两条边,当第三边等于a10.设>b形为直角三角形.米处折断(未完1米高的小孩,如果大树在距地面4米高的大树,树下有一个11.有一棵9米之外才是安全的.全折断),则小孩至少离开大树 扩充为等腰三角形,将△3ABC,°,90AC=4BC==中,∠△.如图,在12Rt ABCACB.的长为CD为直角边的直角三角形,则AC,使扩充的部分是以 ABD. ,吸管放进杯里(如cm,高为1213.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm 3.6cm,为节省材料,管长acm.的取值范围是图所示),杯口外面至少要露出

相关文档
最新文档