中考数学几何专题训练

中考数学几何专题训练
中考数学几何专题训练

专题八圆

8.正多边形的有关计算:

(1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例:

(1) n =

n

360

(2)有关计算在Rt ΔAOC 中进行. (2)

n

1802n ?

=

α 二 定理:

1.不在一直线上的三个点确定一个圆.

2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算:

(1)圆的周长C=2πR ;(2)弧长L=

180

R n π;(3)圆的面积S=πR 2

. (4)扇形面积S 扇形 =LR 2

1

360R n 2=π;

(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图)

圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21

=πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径)

四 常识:

1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心

两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心

两内角平分线的交点 三角形的内切圆的圆心.

A

B

C

第5

A

B C 第6

O E

4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)

直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r.

5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )

两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ;

两圆内切 d=R-r ; 两圆内含 d <R-r.

6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.

圆中考专题练习

一:选择题。

1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的

度数为( )

° ° ° °

2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53

3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( )

A 1个

B 2个

C 3个

D 4个

4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )

A .19

B .16

C .18

D .20

5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠

BAC =90°,AB =3,

BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所

得圆锥的侧面积等于

( )

第9题图

A .6π

B .9π

C .12π

D .15π

6、(2010·浙江湖州).如图,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一.定.正确的是( ) A .AE =OE B .CE =DE C .OE =1

2

CE D .∠AOC =60°

7、(上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2

的位置关系是( )

A.相交或相切

B.相切或相离

C.相交或内含

D.相切或内含

8. (莱芜)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )

A .

B .5

C .10

D .15

9、(10·绵阳).如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,则OA =( ).

A .

B .

C .

D .

10、(2010昆明)如图,在△ABC 中,AB = AC ,AB = 8AB 、AC 为直径作半圆,则图中阴影部分的面积是( A .64π- B .1632π- C .16π-

D .16π-

11、(10年兰州)9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为

A .

B .

C .

D . 二:填空

1、(11怀化)如图6,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC=______.

2、(10年安徽)如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500

,点D 是BAC 上

一点,

则∠D =______

A

B

C

D

O

E

(第15题)

3、(2011台州市)如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是 ,阴影部分面积为(结果保留π) .

4、(10株洲市)15.两圆的圆心距5d =,它们的半径分别是一元二次方程2

540x x -+=的两个根,这两圆的位置关系是 .

5、(10成都)如图,在ABC ?中,AB 为O e 的直径,60,70B C ∠=∠=o

o

,则BOD ∠的度数是_______度.

6、(苏州2011中考题18).如图,已知A 、B 两点的坐标分别为()

、(0,2),P 是△AOB 外接圆上的一点,

且∠AOP=45°,则点P 的坐标为 .

7、(2010年成都).若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 三:解答题

1、(10珠海)如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=,求PA 的长.

2、(10

镇江市).如图,已知△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,

连结OE ,CD=3,∠ACB=30°.(1)求证:DE 是⊙O 的切线;(2)分别求AB ,OE 的长;

3、(2010宁波市)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连

结EF 、EO ,若DE =23,∠DPA =45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.

4、(桂林2011)25.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,

FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.

(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.

5、(10年兰州)26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延

长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;

(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.

6、(11绵阳)如图,△ABC内接于⊙O,且∠B = 60.过点C作圆的切线l与直径AD的延长线交于点E,AF ⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF = 4,求图中阴影部分的面积.

H

B D

F

A

O G E

C l

7、(苏州11、27).(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC

长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F

(1)求证:OE∥AB;(2)求证:EH=1

2

AB;(3)若

1

4

BH

BE

,求

BH

CE

的值.

近年广州中考题

20.(本小题满分10分)

如图10,在中,,.(1)求的度数;

(2)求的周长.

图10

23、(2008广州)(12分)如图9,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且??BC DE

(1)求证:AC=AE

(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法)求证:EF平分∠CEN

24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是

?

APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B 作⊙D的切线,两条切线相交于点C.

(1)求弦AB的长;

(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若

2

S

DE =

ABC 的周长.

25. (2011广东广州市,25,14分)

如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上.

C P D

O

B

A

E

图9

(1)证明:B 、C 、E 三点共线;

(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ;

(3)将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(图8),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.

部分答案:一:选择题

1、A

2、B

3、D

4、 D

5、D

6、B

7、A

8、C

9、A 10、D 11、C

B

1

图8

图7

二:填空1、25 2、40 3、相切、-6π 4、外切 5、100 6、)13,13(++ 7、 3 三:解答题:

1、解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形

∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC ∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA ∴PA=PD 即△PAD 是以AD 为底边的等腰三角形 (2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2

过点P 作PE ⊥AD 于E ,则AE =AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB= ∴PA= 2、(1)∵AB 是直径,∴∠ADB=90°

,

)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴=ΘΘΘ分又又 ∴OD ⊥DE ,∴DE 是⊙O 的切线. (2)在ο30,3,=∠=

?ACB CD CBD Rt 中,

.

2,22

3330

cos =∴===

∴AB CD

BC ο

)6(.2

7

)23(

1,)5(.2

332121,30,3,2222分中在分中在=+=+=?=?==

∴=∠=?OE OD OE ODE Rt CD DE ACB CD CDE Rt ο

5、解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ∵AB 是⊙O 的直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC ⊥CP

∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线

(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB

∴∠CBO=∠COB ∴BC=OC ∴BC=AB

(3)连接MA,MB ∵点M 是弧AB 的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM

∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN ∽△MCB

∴∴BM2=MC·MN ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM

∵AB=4 ∴BM= ∴MC·MN=BM2=8

6:(1)如图,连结CD,OC,则∠ADC =∠B = 60.∵AC⊥CD,CG⊥AD,∴∠ACG =∠ADC = 60.

由于∠ODC = 60,OC = OD,∴△OCD为正三角形,得∠DCO = 60.由OC⊥l,得∠ECD = 30,∴∠ECG = 30 + 30 = 60.进而∠ACF = 180-2×60 = 60,∴△ACF≌△ACG.

(2)在Rt△ACF中,∠ACF = 60,AF = 4,得CF = 4.

在Rt△OCG中,∠COG = 60,CG = CF = 4,得OC =.在Rt△CEO中,OE =.

于是S阴影= S△CEO-S扇形COD==.

25、【答案】(1)∵AB为⊙O直径∴∠ACB=90°∵△DCE为等腰直角三角形

∴∠ACE=90°∴∠BCE=90°+90°=180°∴B、C、E三点共线.

(2)连接BD,AE,ON.∵∠ACB=90°,∠ABC=45°∴AB=AC∵DC=DE

∠ACB=∠ACE=90°∴△BCD≌△ACE∴AE=BD,∠DBE=∠EAC∴∠DBE+∠BEA=90°

∴BD⊥AE∵O,N为中点∴ON∥BD,ON=1 2 BD

同理OM∥AE,OM=1

2

AE ∴OM⊥ON,OM=ON ∴MN=2OM

(3)成立证明:同(2)旋转后∠BCD1=∠BCE1=90°-∠ACD1

所以仍有△BCD1≌△ACE1,所以△ACE1是由△BCD1绕点C顺时针旋转90°而得到的,故BD1⊥AE1其余证明过程与(2)完全相同.B

D

F

A

O G E

C l

中考数学几何证明经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线 EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

【中考必备】最新中考数学试题分类解析 专题35 平面几何基础

2012年全国中考数学试题分类解析汇编(159套63专题) 专题35:平面几何基础 一、选择题 1. (2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】 A.38?B.104?C.142?D.144? 【答案】C。 【考点】角平分线定义,对顶角的性质,补角的定义。 【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM平分∠AOD,根据角平分线定义,∠COM=380。 ∴∠BOM=∠COM+∠BOC=1420。故选C。 2. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】 A.60°B.50°C.40°D.30° 【答案】B。 【考点】平行线的性质,角平分线的定义。 【分析】∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°。 ∵BD平分∠ABC,∴∠ABD=1 2 ∠ABC= 1 2 ×100°=50°。故选B。 3. (2012山西省2分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于【】

A . 35° B . 40° C . 45° D . 50° 【答案】B 。 【考点】平行线的性质,平角定义。 【分析】∵∠CEF =140°,∴∠FED =180°﹣∠CEF =180°﹣140°=40°。 ∵直线AB ∥CD ,∴∠A =∠FED =40°。故选B 。 4. (2012海南省3分)一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是【 】 A .3cm B .4cm C .7cm D .11cm 【答案】C 。 【考点】三角形的构成条件。 【分析】根据三角形的两边之和大于第三边,两边之差小于第三边的构成条件,此三角形的第三边的长应在7-3=4cm 和7+3=10cm 之间。要此之间的选项只有7cm 。故选C 。 5. (2012海南省3分)小明同学把一个含有450 角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是【 】 A .450 B .550 C .650 D .750 【答案】D 。 【考点】平行线的性质,平角定义,对顶角的性质,三角形内角和定理。 【分析】∵m n ∥,∴∠ABn =0120α∠=。∴∠ABC =600 。 又∵∠ACB =β∠,∠A =450, ∴根据三角形内角和定理,得β∠=1800-600-450=750。故选D 。 6. (2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】 A . 5 B . 6 C . 11 D . 16 【答案】C 。 【考点】三角形三边关系。 【分析】设此三角形第三边的长为x ,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件。故选C 。

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学之平面几何总结经典习题

平面几何知识要点(一) 【线段、角、直线】 1.过两点有且只有一条直线。 2.两点之间线段最短。 3.过一点有且只有一条直线和已知直线垂直。 4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。 垂直平分线,简称“中垂线”。 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(中垂线)。 线段的垂直平分线可看作和线段两端点距离相等的所有点的

集合。 中垂线性质:垂直平分线垂直且平分其所在线段。 垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶 点的距离相等。 角 1.同角或等角的余角相等。

2.同角或等角的补角相等。 3.对顶角相等。 角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理1:角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边距离相等的点,在这个角的平分线上。 三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】 平行线性质1:两直线平行,同位角相等。 平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。 平行线判定1:同位角相等,两直线平行。 平行线判定2:内错角相等,两直线平行。 平行线判定3:同旁内角互补,两直线平行。 平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

初中数学平面几何建系专题讲课讲稿

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

中考数学亮点好题汇编 专题六 平面几何基础专题

平面几何基础专题 一、选择题: 1. (xx?浙江省衢州市,2,2 分)如图,直线a,b 被直线c 所截,那么∠1的同位角是() A.∠2B.∠3C.∠4 D.∠5 【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 【解答】解:由同位角的定义可知, ∠1的同位角是∠4, 故选:C. 【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解. 2.(xx?广东省广州市,5,3 分)如图,直线AD,BE 被直线BF 和AC 所截,则 ∠1的同位角和∠5的内错角分别是() A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4 【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之

间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可. 【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故 选:B. 【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.(xx?广东省深圳市,8,3 分)如图,直线a,b 被c,d 所截,且a∥b,则下列结论中正确的是() A.∠1=∠2B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180° 【分析】依据两直线平行,同位角相等,即可得到正确结论. 【解答】解:∵直线a,b 被c,d 所截,且a∥b, ∴∠3=∠4, 故选:B. 【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 4.(xx?广东省,8,3 分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是() A.30° B.40° C.50° D.60° 【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到 ∠B=∠D=40°. 【解答】解: ∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵A B∥CD, ∴∠B=∠D=40°, 故选:B. 【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

中考数学几何证明题汇编

N 几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠, 45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点 E ,交∠BCA 的外角平分线于点 F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 图3 A B C D M E A C D E F 第20题图

二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上 的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE =50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH ,求证:AEH ?≌CGF ? 三、证明两直线平行 A B C D F E 图9 A O D B H E C B F C

中考数学平面几何基础试题解析

2019年中考数学平面几何基础试题解析 以下是查字典数学网为您推荐的 2019年中考数学平面几何基础试题解析,希望本篇文章对您学习有所帮助。2019年中考数学平面几何基础试题解析 一、选择题 1. (2019福建龙岩4分)下列命题中,为真命题的是【】 A.对顶角相等 B.同位角相等 C.若,则 D.若,则 【答案】A。 【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。 【分析】根据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断: A.对顶角相等,命题正确,是真命题; B.两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题; C.若,则,命题不正确,不是真命题; D.若,则,命题不正确,不是真命题。 故选A。 2. (2019福建龙岩4分)下列几何图形中,既是轴对称图形又是中心对称图形的是【】 A.等边三角形 B.矩形 C. 平行四边形 D.等腰梯形

【答案】B。 【考点】轴对称图形和中心对称图形。 【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,只有矩形既是轴对称图形又是中心对称图形。故选B。 3. (2019福建南平4分)正多边形的一个外角等于30.则这个多边形的边数为【】 A.6 B.9 C.12 D.15 【答案】C。 【考点】多边形的外角性质。 【分析】正多边形的一个外角等于30,而多边形的外角和为360,则:多边形边数=多边形外角和一个外角度数 =36030=12。故选C。 4. (2019福建宁德4分)下列两个电子数字成中心对称的是【】 【答案】A。 【考点】中心对称图形。 【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,符合条件的只有A。故选A。 5. (2019福建宁德4分)已知正n边形的一个内角为135,

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

相关文档
最新文档