9-结构可靠度分析与计算

9-结构可靠度分析与计算
9-结构可靠度分析与计算

浅谈可靠度理论

浅谈可靠度理论

浅谈可靠度理论 工程结构的安全性历来是工程设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。 结构可靠度理论的形成始于人们对结构工程中各种不确定性的认识,人们开始较为集中的讨论结构安全度问题,将概率分析和概率设计的思想引入实际工程。如果一种理论分析的结果能指导工程实践,或者说能为工程带来巨大的经济或社会效应,那么这种理论就具有强大的生命力。可靠性科学作为一门与应用紧密相连的基础学科,其生存的立足点就在于推广其应用于工程实际。 1.结构可靠度概述 1.1结构可靠度相关概念 结构所要满足的功能要求是指结构在规定的设计使用年限内应满足下列功能要求: 1、在正常施工和正常使用时,能承受可能出现的各种作用 2、在正常使用时具有良好的工作性能 3、在正常维护下具有足够的耐久性 4、在设计规定的偶然事件发生时及发生后,仍能保持必要的整体稳定性 在以上四项功能要求中,第1、4两项通常指结构的强度、稳定,即所谓的安全性;第2项是指结构的适用性;第3项是指结构的耐久性,三者总称为结构的可靠性,即结构可靠性,是指结构在规定的时间内,在规定的条件下,完成预定功能的能力。 在工程上,一般所说的可靠度,指的就是结构可信赖或可信任的程度。工程结构中的可靠度可表示为能承受在正常施工和正常使用时,可能出现的各种作用;在正常使用时,具有良好的作用性能;在正常维修和保护下,具有足够的耐久性能:在偶然事件(如地震,爆炸,撞击等)发生实际发生后,仍能保持所需的整体稳定性。度量结构可靠性的数量指标称为结构可靠度即为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 结构的设计、施工和使用过程中存在大量的随机不确定性因素;荷载及结构

土木工程结构可靠度理论与设计

土木工程结构可靠度理论与设计 发表时间:2018-11-06T16:15:05.490Z 来源:《防护工程》2018年第18期作者:寇晖[导读] 可靠度又包括安全性、适用性、耐久性三个方面的问题,其是指在一定条件下,完成的土木工程结构功能达到预期的概率。其计算要综合各方面地质环境和其他因素共同分析。寇晖身份证号:429001198xxxx44992 摘要:在土木工程的结构设计中,首要考虑的便是可靠度的问题,可靠度又包括安全性、适用性、耐久性三个方面的问题,其是指在一定条件下,完成的土木工程结构功能达到预期的概率。其计算要综合各方面地质环境和其他因素共同分析。关键词:土木工程结构,可靠度由于土木工程施工环境复杂多样,故而影响其结构可靠性的因素也是千变万化,再加上受可能发生的地质变化、气候变化或是自然灾害的随机影响,对土木工程结构预期功能的工作效率不能直接盖棺定论,只能以概率来表示其可能拥有的工作效率,自然而然的就出现了了土木工程的可靠性问题。 一、土木工程结构可靠度概述土木工程结构可靠度,是指在规定的条件下,规定的时间内,工程结构能够达到的安全性、适用性以及耐用性。其中安全性是指在施工过程中在各种施工环境下正常施工能给予施工人员的安全保障以及土木工程自身的抗灾害能力以及对高强度气候变化的耐受性两个方面,适用性则是指土木工程结构在完成后能达到预期功能,而耐久性是指在正常的后勤保障下能够正常使用的时间。简单来讲,土木工程结构可靠度就是指在特定是时间与空间条件下,该土木工程结构完成后能够达到预期功能的概率。也就是说,可靠度问题就是一个概率问题,其主要表达的是对投入的预期收入的概率性评价。土木工程可靠度的计算需要综合原材料质量与数理、预期荷载、相关参数、函数的数理准确性等因素来共同考虑,在土木工程学界将这些因工程变化而变化的具有随机性的因素称为基本变量,并且在长期的实践与改进中,对每一个基本变量学界经过大量的统计计算得出了一个恒定定的数理函数。 二、土木工程结构可靠度的影响因素土木工程因需求而产生,其结构设计要充分考虑到雇主的需要,而后结合现场的实际情况,充分考虑到现场的地质状况与当地的气候环境等各项影响因素,才能设计出符合雇主需要且具有相当可靠性的土木工程结构。(一)土木工程结构的随机性在实际工作中,土木工程结构设计以及施工除了受地理气候环境的影响外,还受到原材料以及包括道路、机电工程等基础设施的限制。材料强度是考察结构材料可靠性的一种重要性能指标,指当材料受力时,材料每单位面积抵挡破坏的能力。可靠性要求材料具备安全稳定的性能。例如,混凝土是经过水泥、石料和水混合搅拌硬化而成的人造石材。水泥的质量和强度等级和使用的水量与使用水泥的配比是影响混凝土强度的重要因素。此外,对混凝土的养护条件和施工条件也会影响混凝土的强度性能。每一次土木工程施工,哪怕在同一地点同一时期进行的工程建设,由于施工原材料和基础设施的安装等不确定因素,同样的操作也可能出现不同的结果。例如原材料中的石料、砖瓦,不必说不同产地不同生产商的石料和砖瓦,即使是同一产地同一生产商生产的石料和砖瓦其检测出来的数据参数都有细微的差距。而其他的诸如钢材、水泥等原材料也是如此,这也就是原材料的随机性。(二)土木工程结构的模糊性模糊性,现实生活中很少有事物是完全确定的,任何事物都必定有其或大或小的模糊的地方,可能是某个概率、也可能是包含的某些因素,或者是与另一类似物品的界别中的某些因素,这些都是模糊可能存在的地方。在土木工程结构设计中,包含着大量的相对确定的客观因素和不少的相对模糊的客观因素或主观因素。例如土木工程施工过程中,设备使用是否安全,人员操作是否完全符合安全保障需要,材料是否适用于该部分建设,这些都是存在一定模糊性的,也正是这些模糊的因素,使得整个土木工程结构也具有相当的模糊性,影响着土木工程结构的可靠度。(三)土木工程结构的不完整性一项事物的功能不是该事物已经发生变完全产生的,就土木工程本身而言,其功能是随着结构的不断完善而出现的。这也就使得工作人员对其功能的评估由于结构的不完整而难以准确进行。而这种不完整性,也是影响着土木工程结构可靠性的一大重点。在实际工程施工中,这种不完整性使得工作人员难以做出准确的功能评价,在面对突发事件时很难采取最正确的应对方案。同时,由于自身的不完整,土木工程本身的功能也可能出现部分缺失,在面对诸如暴雨、强风甚至是地震等外来的具有破坏力的因素干扰时可能抵抗效果无法达到预期设计,从而影响最终建成时的工程质量,从而影响土木工程结构的功能。 三、提高土木工程结构可靠性的建议土木工程结构可靠度的存在,说明这其还无法达到完美或者接近完美的程度。那么在工程设计与施工中一定存在一些控制与改善的措施,从而提高可靠度或者使可靠度变得精准便于计算得失从而做出决策规避损失。(一)进行技术革新近几年,我国的建筑业仍处在高速发展的黄金时期,虽然其未然如何难以确定,但就现阶段而言,随着各项建设的不但进行,我仍有非常多的土木工程在进行或者计划进行。但高速发展也不是没有代价的,高速发展也就意味着很多基础建设或者基础技术有可能跟不上其发展的步伐。至少我国建筑业目前是如此。当前我国建筑行业采用的施工技术和施工手段以及原材料都有很多没有达到国际一流水准的地方,这也是当前我国急需改进的地方。也因此,此时的技术革新将带来更大的进步同时也能为建筑业的稳定发展提供更坚实的基础。(二)规范设计标准当前我国土木工程建设虽然发展迅速,但目前我国却没有一套完整的经得起考验的土木工程结构设计标准。因此,为了能够更好的规范我国的土木工程结构设计,也为了使得我国土木工程建设行业更加系统规范便于管理。我国可以适当借鉴国外的优秀标准制度,制定我国的设计标准,并在此基础上加强我国土木工程设计行业的管理,从设计管理层面进一步提高土木工程结构设计的可靠性。结束语

可靠性计算公式大全

常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

机械可靠性结构强度计算

脆断体(高、低周疲劳)的剩余寿命计 算 课程名称:机械结构强度与可靠性设计 专业:机械设计及理论 年级:2013级 完成时间:2014-05-02

文章是对脆断体(高周疲劳和低周疲劳)的剩余寿命计算的一个综述。对 于机械零件的寿命计算,尤其是对于断裂件(含裂纹体)的剩余寿命计算,正确估算裂纹体的剩余疲劳寿命估算,能够有效的保证重要零件的合理检修要求,能够很好的创造好经济条件。一般对于高周疲劳,无裂纹寿命N 1是主要的,它占了总寿命N (N=N 1+N c )中的主要部分,而裂纹扩展寿命N c 短,因此高周疲劳中往往只按初始裂纹尺寸来估算N e 值。但对于低周疲劳中总寿命中N c 占主要部分,N 1 很小。与疲劳裂纹扩展速度相关的物理量有应力强度因子幅值ΔK I 和其他量。疲劳裂纹的扩展速度:疲劳条件下的亚临界裂纹扩展速率是决定零部件疲劳破坏寿命的特性指标之一。 剩余寿命的时间是指初始裂纹a 0到临界裂纹尺寸a c 的时间。零件在变应力作用下,初始裂纹a 0会缓慢产生亚临界扩展,当它达到临界裂纹尺寸a c 时,就会发生失稳破坏。裂纹体在变应力作用下的裂纹扩展速率与应力场裂纹尺寸和材料特性的关系。ΔK I —控制疲劳裂纹扩展速度的主要力学参量,试验指出控制盘疲劳裂纹扩展速度的主要力学参量是应力强度因子幅值ΔK I 。da/dN 与ΔK I 的关系曲线表明了材料在无害环境中疲劳裂纹的扩展速度与应力强度因子幅值的关系。 ① 区间I : da/dN=0处,有ΔKth ,称为界限应力强度因子幅值。 当ΔK I ≤ΔKth 时,裂纹不扩展,稳定状态 当ΔK I ≥ΔKth 时,裂纹开始扩展,ΔKth 是判断构件是否会发生裂纹亚临界扩

多种可靠度计算方法学位论文

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 压力容器作为一种重要设备广泛应用于工程领域,其安全性和可靠性是现在研究的重要课题。压力容器在生产和使用过程中存在各种不确定性因素,如构件、缺陷尺寸参数的不确定性,工况载荷的随机波动,材料机械性能的随机性。本文将这些不确定性参数当作随机变量,考虑其概率分布形式,采用应力强度-干涉模型,利用一次二阶矩法,蒙特卡洛法和随机有限元法等可靠度计算方法对容器结构进行了可靠性分析,并讨论了各随机变量对可靠度结果的灵敏度。 本文对无缺陷压力容器的安全评定采用弹性失效判据,利用四种不同的方法计算了圆筒形和球形压力容器的可靠度,分析比较了各方法的优缺点。对于含凹坑缺陷的压力容器,文中采用基于塑性极限的塑性失效准则,其中极限荷载采用弹塑性增量法得到,通过ANSYS 软件批处理操作模拟蒙特卡洛法实现可靠性分析,并对GB/T 19624-2004《含缺陷压力容器安全评定》规范中的极限载荷安全系数进行了评估。本文最后对 GB/T 19624-2004《含缺陷压力容器安全评定》规范中给出的含凹坑缺陷压力容器安全评定方法做出了改进,提出了基于分项安全系数的含凹坑缺陷压力容器的安全评定方法。 关键字:压力容器;可靠性;应力强度-干涉模型;分项安全系数

可靠性计算公式大全

计算机系统的可靠性是制从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

结构可靠度基本理论

结构可靠度基本理论 摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。近三十年来,结构可靠性理论得到了迅速的发展。它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。 关键词:疲劳失效、可靠度、可靠性指标 长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。通常,结构的疲劳损伤和疲劳寿命采用Miner 线性累计损伤理论和S—N 曲线来计算。近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。从表面上看,可以认为是充分安全 的。但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于 设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。下面我将从以下几个方面来介绍我学到的结构可靠度基本理论: 极限状态 在工程实际中,结构受载后的响应必须满足一定的要求,例如安全性的要求、适应性的要求,或其他一些衡准。结构的极限状态定义为若超过此状态,结构就不能满足某一特定的要求。结构的极限状态主要有两类:一类是承载能力极限状态,它与结构的安全性要求有关,如屈服、失稳、疲劳、断裂等引起的结构破坏的状态;另一类是正常使用极限状态,它与结构的适应性要求有关,如过度的变形、过度的振动等导致结构不能正常使用的状态。结构超过极限状态称为“失效”,因此极限状态又称为“失效模式” 失效概率和可靠度 结构可靠性分析的任务就是要计算在规定时间内结构超过极限状态的概率,这一概率成为“失效概率”。可把在规定时间内结构不达到极限状态的概率定义为结构的“可靠度”。若用

可靠度理论及应用

建筑物改造可靠度分析及结构可靠度理论 的应用现状及发展趋势 刘宏伟,吴胜兴, 唐业清,韩宁旭 (东北大学资源与土木学院李盼 1101625) 摘要:已有建筑结构的可靠性鉴定及加固技术是综合性较强的研究领域,涉及多学科与较宽知识面,研究难度较大。但开展本课题研究具有广泛的市场应 用前景和产业化转化途径。同时简要叙述了结构可靠度设计理论的发展历史和结构设计方法的演变过程。对目前可靠度研究中的抗力随时间变化的结构可靠度;腐蚀环境下结构的可靠度:已有结构的可靠度评估和最佳维修决策:结构动力可靠度方面等方面的研究现状加以评述。提出了结构可靠度理论研究的发展趋势。 关键词:已有建筑;可靠性鉴定;加固;模糊评判法;层次分析法_;结构工程;可靠度;应用现状;发展趋势 对已有建筑结构的维修加固改造业是二十一世纪最受欢迎的九大行业之一,受维修改造需求的驱动和现代化技术的发展,已有建筑结构的可靠性鉴定与加固改造技术作为一门新的学科正在逐渐形成并迅速发展。本文在研究近十年来结构可靠性鉴定与加固技术发展的基础上,结合多项工程鉴定加固工作实际,对已有建筑结构的可靠性鉴定和加固技术进行了系统的分析和理论探讨。研究主要内容有: 1、概括论述了国内外加固改造业的发展;简要介绍了结构可靠度理论发展和研究现状;介绍了己有建筑结构可靠性鉴定和维修加固方法的发展;有针对性提出了现行建筑物鉴定、加固工作发展方向。 2、简明扼要地介绍了结构可靠性理论基本知识及用一次二阶矩分析计算结构构件可靠度计算方法;对已有建筑与拟建建筑的可靠性的不同之处进行了对比;分析了已有结构的荷载、抗力问题;建立了已有建筑结构失效概率与可靠度指标间对应关系,简要给出了己有结构可靠性判定的基本计算原则和方法。【1】 3、论述了已有建筑可靠性鉴定与拟建建筑设计区别,可靠性鉴定中结构力学分析和构件校核原则;系统介绍了现行国家可靠性鉴定标准中评定体系和评定方法【2】;对现行鉴定体系的基本原则和适用性进行了分析,并结合工程鉴定实例说明结构安全性鉴定程序及具体方法。 4、研究了模糊综合评判法及层次分析法基本理论;将模糊评估方法引入结构可靠性分析领域,并建立了结构可靠性评价的多级评价模型i 【3,4】。通过用层次分析法确定各层构件在结构体系中的权重,建立了以结构构件权重系数评价结构安全性等级的评判模型。 5、综合分析已有建筑结构加固设计的基本原则;以棍凝土结构加固为例,对加固结构中的新旧材料共同工作问题进行了研究;对加大截面加固法、外包型钢加固法、粘贴纤维复合材料加固法、粘贴钢板加固法的加固机理、计算方法进行了介绍【5】。并结合加固工程实例,对粘贴纤维复合材料及粘贴钢板加固法的设计方法进行了分析。

结构可靠性复习题及答案

结构可靠性复习题及答案

一﹑单项选择题 1.我国现行规范中一般建筑物的设计使用年限为 C A.5年 B。25年 C.50年 D。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为C A.5年 B。25年 C.50年 D。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为A A.5年 B。25年 C.50年 D。100年 4.我国现行建筑规范中设计基准期为C A.10年 B。30年 C.50年 D。100年 5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为B A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的

11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度A A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和A A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A A.正态分布 B。均匀分布 C.极值分布 D.指数分布 14. 结构的失效概率f P与结构抗力R和荷载效应S的概率密度干涉面积。D A.无关 B.相等 C.有关 D. 有关,但不相等 15. 静定结构体系可用下列逻辑模型表示。B A.并联模型 B.串联模型 C.并串联模型 D.串并联模型 16.若结构系统的任一单元失效,则该系统失效,此类结构系统可用哪个模型表示A

A.串联模型 B。并联模型 C. 并串联模型 C. 串并联模型 17.若结构系统的所有单元失效,则该系统失效,此类结构系统可用哪个模型表示B A.串联模型 B。并联模型 C. 并串联模型 C. 串并联模型18.当结构体系为哪个模型时,结构中任一元件失效,则整个结构体系失效。 A A.串联模型 B。并联模型 C. 并串联模型 C. 串并联模型 19. 具有完全延性构件的并联系统的失效概率B A. 大于其单元的失效概率 B. 小于其单元的失效概率 C. 等于其单元的失效概率 D. 与其单元的失效概率无关 20. 当组成串联系统的单元完全相关时,系统的可靠度取决于A A. 失效概率最大的那个单元。 B. 失效概率最小的那个单元。 C.D. 21. 静力荷载不具有随机性。该说法A A. 错误 B. 正确

结构可靠度理论在桥梁工程中的应用

工程管理 95 企业家天地 0结构可靠度理论在桥梁工程中的应用 杨 敏 李玉荣 摘 要:随着可靠度理论的发展与成熟,结构可靠度理论在桥梁工程中的应用也得到了长足的发展,在各个方面都有所突破。本文介绍了可靠度理论在桥梁工程中的应用,特别介绍了大跨度桥梁风振可靠度研究进展。 关键词:结构可靠度;桥梁工程;应用进展中图分类号:T B114.2 文献标识码:A 文章编号:CN 43-1027/F(2011)04-095-02 作 者:重庆市实力公路开发有限公司;重庆,401147 一、结构可靠度计算方法 结构可靠度的计算方法是可靠度理论中的一个重要研究内容,它直接关系到结构可靠度理论在工程中的应用。计算结构的可靠度,首先要获得结构的功能函数,但是,在实际问题中,结构的功能函数可能是非线性函数,且大多数基本变量不服从正态分布,在这种情况下,结构的功能函数一般也不服从正态分布,因而不能通过概率直接积分计算结构的可靠度。这时需要进行结构可靠度的近似计算。近似概率法是计算可靠度的常用方法,它通常仅用各基本变量的平均值(一阶原点矩)和方差(二阶中心矩)来描述其统计特征,而且,当功能函数为非线性时,也都按线性化处理,故亦将其称为一次二阶矩法。该法可将一个复杂的多重积分问题转化为一个简单的数值计算问题,计算效率高。当然,这些计算方法都是针对功能函数具有明确表达式的情况。而实际工程中,由于结构本身构造复杂,往往不能给出功能函数的明确表达式,若直接应用上述方法就会遇到困难。所以必须选取别的计算方法处理,如响应面法或随机有限元法。同时,在计算机高速发展的今天,也使蒙特卡罗法得以在可靠度分析中发挥作用。 二、结构可靠度理论在桥梁工程中的应用进展 现代桥梁向长、轻、柔方向发展,桥梁结构的可靠度分析就变得越来越重要。在经济与技术许可的情况下,对桥梁进行可靠度研究,可以使设计方案更加合理经济,桥梁的技术改造决策更加科学,从而提高桥梁的承载能力,延长其使用寿命及改善其安全性能。因此,对桥梁结构进行可靠度研究具有重要的社会意义、经济价值和广泛的应用前景。 公路工程结构可靠度设计统一标准 规定,桥梁结构必须满足下列功能要求: 缩钢筋网以外,还在连续段内布设预应力钢束。简支连续梁正弯矩区段及墩顶负弯矩区段按部分预应力混凝土A 类构件设计,各施工阶段和使用阶段的应力应满足规范要求,并应满足承载能力极限状态强度要求。采用桥梁博士程序计算配筋,钢束布置为:边跨边梁、中梁跨中分别布置33,30根?j15.24钢绞线;中跨边梁、中梁跨中分别采用27,24根?j15.24钢绞线;现浇段负弯矩钢束:边梁均布25根?j15.24钢绞线;中梁均布21根?j15.24钢绞线。负弯矩预应力钢索由支点分别往前后延伸10m 和14m 。 四、变形计算与验算 (一)变形计算 预应力混凝土连续T 梁的变形包括短期荷载和长期荷载作用下的挠度,其中,短期荷载作用下的挠度可采用规范规定的构件刚度用材料力学的方法计算;长期荷载作用下的挠度,可按该荷载下的初始弹性挠度乘以[1+ (t, )]求得, (t, )为徐变系数。在张拉过程随时注意上拱度的变化,张拉时弹性上拱值与计算误差按 0.5cm 控制(表1),张拉后对锚具及时作临时防护处理。 注:表中括号外值对应于钢柬张拉完成时,括号内值对应于存梁一个月时。 (二)变形验算及预拱度设置 T 梁的预制要提早进行,为了防止预制梁上拱过大、减轻桥梁建成后呈波浪形对车辆行驶的影响,要求存梁期按30d 控制;为防止预制梁与现浇桥面混凝土由于龄期的不同而产生过大的收缩差,预制梁与现浇桥面混凝土时间差控制在60d 之内。存梁期密切注意梁的累计上拱值,若超过规定值,应采取控制措施。根据计算,边板、中板在恒载与汽车荷载作用下的挠度fg +y ,+f 汽>L/1600,均需设置预拱度。同时为保证现浇桥面板和沥青铺装层厚度,各预制T 梁的跨中设置在跨长范围内按二次抛物线变化的下预拱度(表2),预制梁纵向顶面线型与底面线型一致,以保证后期桥面混凝土现浇层的厚度。 参考文献: [1]JT J023 85,公路钢筋混凝土及预应力混凝土桥涵设计规范[s]. [2]JT J021 89,公路桥涵设计通用规范[s ]. (责任编辑:谢嵩)

可靠性计算

可靠性计算 一、概率与统计 1、概率;这里用道题来说明这个数学问题(用WORD把这些烦琐的公式打出来太麻烦了,因为公司不重视品质管理,所以部门连个文员MM都没有,最后我只好使用CORELDRAW做的公式粘贴过来,如果你的电脑系统比较慢,需要耐心等待一会公式才会显示来,不过别着急,好东西往往是最后才出来的嘛!)。 题一、从含有D个不良品的N个产品中随机取出n个产品(做不放回抽样),求取出d个不良品的概率是多少? 解:典型的超几何分布例题,计算公式如下(不要烦人的问我为什么是这样的公式计算,我虽然理解了一些,解释起来非常麻烦,别怪我不够意思,是你自己上学的时候只顾早恋,没有学习造成的,骂自己吧!): 超几何分布:(最基本的了): 最精确的计算,适用比较小的数据 其中:N ——产品批量D ——N中的不合格数 d ——n中的合格数n ——抽样数 另外的概率计算的常用算法还有: 二项分布:(最常用的了,是超几何分布的极限形式。用于具备计件值特征的质量分布研究): 只是估算,当N≥10n后才比较准确 其中:n ——样本大小 d ——n中的不合格数 ρ——产品不合格率 泊松分布:(电子产品的使用还没有使用过,只是在学习的时候玩过一些题目,我也使用没有经验) 具有计点计算特征的质量特性值其中:λ——n ρn ——样本的大小 ρ——单位不合格率(缺陷率) e = 2.718281 2、分布;各种随机情况,常见的分布有:二项分布、正态分布、泊松分布等,分位数的意义和用法也需要掌握;较典型的题目为: 题三、要求电阻器的值为80+/-4欧姆;从某次生产中随机抽样发现:电阻器的阻值服从正态分布,其均值80.8欧姆、标准差1.3欧姆,求此次生产中不合格品率。 公式好麻烦的,而且还要查表计算,555555555555,我懒得写了,反正我也没有做过电阻。 3、置信区间:我们根据取得样品的参数计算出产品相应的参数,这个“计算值”到底跟产品的“真实值”有什么关系?一般这样去描述这两个量:把“计算值”扩充成“计算区间”、然后描述“真实值有多大的可能会落在这个计算区间里”,从统计学上看,就是“估计参数”的“置信区间”;较典型的题目为: 题四、设某物理量服从正态分布,从中取出四个量,测量/计算后求得四个量的平均值为8.34,四个量的标准差为0.03;求平均值在95%的置信区间。 解:因为只知道此物理量服从正态分布,不知道这个正态分布对应的标准差,所以只能用样品的标准差来代替原物理量的标准差。这时,样品的平均值的分布就服从t分布。

华中科技大学张耀庭-2013结构可靠度理论考试试题

《结构可靠度理论与应用》试题 中心点法 1.如图所示圆截面直杆,承受拉力P=120KN,已知材料的强度设计值f y的均值卩fy=310MPa , 标准差(T fy=25MPa,杆直径d的均值d=30mm,标准差(T d=3mm,在功能函数为:1) Z=(d/4)r -F;2)Z訂-4F/二d2,在这两种情况下,试用中心点法求其可靠度指标和可靠度。 (5分) 2. 粒状土承受剪切应力T =52KPa,其剪切面法向应力w服从正态分布,均值为lOOKPa , 标准差为20KPa,土的磨擦角u服从正态分布,均值为35o,标准差为5o(=0.0873弧度)。w和u相互独立,极限状态方程为:Z=wtan u - T =0,用中心点法计算3值和失效概率P f。 (5分) 1 提示:(ta nx) =seCx = cos x 验算点法 3. 某钢梁承受确定性弯矩M =138kN.m , 抗弯截面模量 W _N(七=890 10“m3,=0.05),服从正态分布;钢材强度f服从对数正态分布(片=262MPa,勺=0.1),极限状态方程为Z = fW - M =0。试用中心点法和验算点法 求可靠指标1及梁的失效概率P f,并比较其计算结果。(10分) 4?已知某钢筋混凝土受压短柱的极限状态方程为Z=g(R,G,Q) = R-G-Q=0, 抗力R服从对数正态分布:.R=0.17 ;恒载G-N(J =53kN,J =3.71kN),服从正态分 布;活载Q服从极值I型分布,=70kN,二Q二20.31kN .试用JC法求当目标可靠指标 [:]=3.7时,构件截面的抗力平均值"R二? (20 分) ?HL Q (提示:[] z

机械可靠性结构度计算

机械可靠性结构度计算

————————————————————————————————作者:————————————————————————————————日期:

成绩研究生*** 评卷人学号*** 脆断体(高、低周疲劳)的剩余寿命计 算 课程名称:机械结构强度与可靠性设计 专业:机械设计及理论 年级:2013级 完成时间:2014-05-02 注:研究生必须在规定限期内完成课程论文,并用A4的纸张 打印,加此封面装订成册后,送交评审教师。教师应及时评定 成绩,并在课程结束后十天内评卷完毕。及时填写《三峡大学 研究生考试成绩登记表》,并签名。其试卷、试卷和成绩登记 表一并送交:属研究生公共课程(含学位课和选修课),送交 研究生处培养办;属院(系)开设的专业基础课和专业课,送 交开课的所在院(系)。

文章是对脆断体(高周疲劳和低周疲劳)的剩余寿命计算的一个综述。对于机械零件的寿命计算,尤其是对于断裂件(含裂纹体)的剩余寿命计算,正确估算裂纹体的剩余疲劳寿命估算,能够有效的保证重要零件的合理检修要求,能够很好的创造好经济条件。一般对于高周疲劳,无裂纹寿命N1是主要的,它占了总寿命N(N=N1+N c)中的主要部分,而裂纹扩展寿命N c短,因此高周疲劳中往往只按初始裂纹尺寸来估算N e值。但对于低周疲劳中总寿命中N c占主要部分,N1 很小。与疲劳裂纹扩展速度相关的物理量有应力强度因子幅值ΔK I和其他量。疲劳裂纹的扩展速度:疲劳条件下的亚临界裂纹扩展速率是决定零部件疲劳破坏寿命的特性指标之一。 剩余寿命的时间是指初始裂纹a0到临界裂纹尺寸a c的时间。零件在变应力作用下,初始裂纹a0会缓慢产生亚临界扩展,当它达到临界裂纹尺寸a c时,就会发生失稳破坏。裂纹体在变应力作用下的裂纹扩展速率与应力场裂纹尺寸和材料特性的关系。ΔK I—控制疲劳裂纹扩展速度的主要力学参量,实验指出控制盘疲劳裂纹扩展速度的主要力学参量是应力强度因子幅值ΔK I。da/dN与ΔK I的关系曲线表明了材料在无害环境中疲劳裂纹的扩展速度与应力强度因子幅值的关系。 ①区间I:da/dN=0处,有ΔKth,称为界限应力强度因子幅值。 当ΔK I≤ΔKth时,裂纹不扩展,稳定状态

多种结构可靠度计算方法的快速实现

多种结构可靠度计算方法的快速实现 徐 港 1,3  王 青2 王永明 3 (1.华中科技大学土木与力学学院,武汉430074;2.广西大学土木建筑工程学院,南宁530004;3.三峡大学土木水电学院,宜昌440332) [摘 要] 本文在总结多种结构可靠度计算方法的基础上,提出了应用Matlab 快速实现这些算法的设想,并对常用的一 次二阶矩法、蒙特卡罗法以实例的形式介绍了计算过程。 [关键词] 结构可靠度;一次二阶矩法;Matlab ;蒙特卡罗法 [中图分类号] T U31112 [文献标识码] A [文章编号] 10012523X (2004)0620007203 FAST REALIZATION OF SEVERAL CALCU LATION METH ODS OF STRUCTURAL RE LIABI LITY Xu G ang Qing Wang Y ong 2ming [Abstract ] Summing up several calculation method of structural reliability ,the thesis presents the assumption that we can realize it fleetly on Matlab ,and the fast realization of s ome usually method such as first 2order second 2m oment method and M onte Carlo method. [K eyw ords ] S tructural reliability ;First 2order second 2m oment method ;Matlab ;M onte Carlo method 收稿日期:2004-02-28 作者简介:徐 港(19742),男,内蒙古包头市人,毕业于武汉水利电 力大学,现为华中科技大学在读硕士生。 1 概述 可靠度的计算方法从研究的对象来说可分为点可靠度计算方法和体系可靠度计算方法。由于可靠度研究本身的复杂性,目前对结构体系可靠度的研究还很不成熟,仍处于探索阶段。而结构点可靠度的计算方法已较成熟,主要有:一次二阶矩法、高次高阶矩法、响应面法、蒙特卡罗法及随机限元法等[1]。但这些方法在研究或应用中存在的一个共同难点,就是涉及到大量的数学运算。通常的做法是利用计算机高级语言编程求解,但这样一来无疑增大了这些计算方法应用的难度。因为它不仅要求人们要有较好的编程能力,同时还应熟练掌握各种数学算法。那么,是否有一种能快速、准确地实现多种结构可靠度计算方法的好办法呢?经笔者实践,认为充分利用Matlab 的强大数值计算功能,便可很好地实现这一设想。 2 Matlab 简介 Matlab 是由Mathw orks 公司开发的,它不仅是一个强大 的集数值计算、符号运算及图形处理等功能于一体的可跨操作系统平台的科学计算软件,同时又是一种更高级,更自由的计算机语言,几乎能满足所有的计算需求。Matlab 有20多个工具箱,如:统计工具箱、偏微分工具箱、优化工具箱、神 经网络工具箱、模糊逻辑工具箱等等,汇集了大量数学、统计、科学和工程所需的函数[2]。其中与可靠度分析最直接相关的便是统计工具箱,包含了20多种随机变量分布类型的概率分布、参数估计与假设检验、线性模型与非线性模型分析、多元统计分析、试验设计以及统计工序管理的相关函数。 下面以点可靠度分析计算中最常用的一次二阶矩法和蒙特卡罗法为例来阐述本文的观点。 3 一次二阶矩法 一次二阶矩法是实际工程中最主要的计算结构可靠度的方法,按计算精度及简化条件的不同又可分为:均值一次二阶矩法、改进一次二阶矩法、JC 法及几何法等。而其中较常用的是改进一次二阶矩法和JC 法。 改进一次二阶矩法适用于结构功能函数所含基本随机变量为独立、正态变量情况。其主要计算难点就是解方程组困难,传统的做法无论是手算还是机算都要迭代求解,故绝大多数情况也只能求得近似解,且求解过程繁杂。但在 Matlab 中则可利用其强大的符号计算功能快速的求得精确 解,如以下算例: 例:已知极限状态方程为Z =g (f ,w )=fw -1140=0,且 f 、w 均服从正态分布,方差μ,变异系数δ分别为:μf =38,δf =0110;μw =54,δw =0105。 求可靠指标β。对本题详细求解过程见参考文献[3],代入相关数据运算便可得出如下方程组: cos θf = - 3.8w 3 (2.7f 3)2+(3.8w 3)2 7 第31卷第6期2004年6月 建 筑 技 术 开 发 Building T echnique Development V ol.31,N o.6 Jun.2004

《建筑结构可靠度设计统一标准》学习要点及理解

《建筑结构可靠度设计统一标准》 (GB50068-2001)学习要点及理解 一、前言中关于修订内容的说明(相对原《建筑结构统一标准》(GBJ68-84)) 1、标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的“应遵守”本标准,改为“宜遵守”本标准; [1.0.3条] 2、根据《工程结构可靠度设计统一标准》(GB50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; [3.0.3条、3.0.4条] 3、借鉴最新国际标准JSO2394:1998《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; [1.0.5条] 4、在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; [7.0.2条(7.0.2-2)式] 5、对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; [4.0.6条、3.0.11条、7.0.3条]

6、首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; [3.0.12条] 7、取消了原标准的附件。 [原标准有五个附件:附件一荷载的统计特性、代表值及其效应组合;附件二结构抗力的统计特性;附件三结构可靠度的计算方法;附件四极限状态设计表达式及其分项系数的确定;附件五结构材料的质量要求及质量控制。此五个附件对正确理解本标准仍具有重要作用,有精力的专业技术骨干,特别是技术把关人应该一读。] 二、标准的主线 可靠度设计原则(建筑结构在规定的设计使用年限内应具有 采用以概率理论为基础的极限状态设计方 法(影响建筑结构可靠性的各种因素都是随机因素,只能用概率来度量。以极限状态为目标的设计方法为公认的合理的设计方法)变通为多系数表达式(这是为广大设计人员所熟悉和乐 于接受的形式。使概率极限状态设计方法具有实用性。) 三、条文理解 1、总则 1.0.3(原文略) [明确规定《建筑结构荷载规范》、《钢结构设计规范》、《薄壁型钢结构设计规范》、《混凝土结构设计规范》、《砌体设计规范》、

工程结构可靠度理论的研究现状与展望

工程结构可靠度理论的研究现状与展望 刘玉彬 (大连民族学院土木建筑工程学院,辽宁大连 116605) 摘 要:对结构可靠度理论及应用的国内外研究现状进行了概括性总结;简要叙述了可靠度理论在我 国工程结构设计规范的发展中所起的推动作用;提出结构可靠度理论将朝着正常使用极限状态结构的可靠度、结构的疲劳可靠度、结构的模糊可靠度、结构的动力可靠度、结构的体系可靠度等方向进行研究,以期为我国在这方面研究的进一步发展提供参考1 关键词:工程结构;可靠度;研究现状;设计标准;发展趋势中图分类号:T U3文献标识码:A 文章编号:1009-315X (2006)05-0001-03 工程结构可靠度是指结构在规定的时间内, 在规定的条件下,完成预定功能的能力1“规定的时间”,是指分析结构可靠度时考虑各项基本变量与时间关系所取用的时间参数,即设计基准期;“规定的条件”是指结构设计时所确定的正常设计、正常施工和正常使用的条件,即不考虑人为过失的影响;“预定功能”是指以下4种功能:(1)能承受在正常施工和正常使用期间可能出现的各种作用(荷载);(2)在正常使用时,结构及其组成构件具有良好的工作性能;(3)在正常维护下具有足够的耐久性;(4)在发生规定的偶然事件情况下,结构能保持必要的整体稳定性1 1 工程结构可靠度的研究现状 111 在役结构的可靠度评估和维修决策问题 对在役建筑结构的可靠度评估与维修决策已 成为建筑结构学的边缘学科1它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且与施工技术、检测手段和建筑物的 维修使用情况等有着密切的关系[1] 1对已有结构可靠度的评估采用的方法属于“实用分析法”,是在传统经验方法的基础上,结合现代检测手段和计算技术的一种评估方法1目前,对已有结构的可靠度分析方法,是以当时实测的结构材料强度和构件截面尺寸为依据,没有考虑腐蚀环境中 材料性能的变化1如何根据已有结构本身材料性能的实测结果,来推断该结构的抗力随时间的变化而变化的规律,进而计算该结构继续使用期内的可靠度或评估该结构的使用寿命,是已有结构可靠度研究的一项重要内容1 随着使用年限的增长,混凝土的老化问题日益突出1对于耐久性不足或老化的结构,存在一个最佳维修决策的问题1在目前的研究中,有些内容过于理论化,与实际工程问题相差较远1另外,对处于不同环境下建筑物使用寿命的安全性评估问题,在结构设计的工作寿命期如何通过正常使用和必要的维护保证结构应有的可靠度,超过正常使用年限后如何安全地继续服役等都应是可靠度研究的重要方面1 112 腐蚀环境下结构可靠度的分析 对于钢筋混凝土结构,其常见的腐蚀失效模式为:混凝土的碳化作用引起钢筋腐蚀、氯离子侵蚀引起钢筋局部腐蚀、硫酸盐或硫酸溶液对混凝土的腐蚀破坏1对腐蚀环境中混凝土结构的可靠度分析,目前国内外的研究多数集中在氯离子侵蚀环境中钢筋混凝土结构可靠度的变化,对硫酸盐腐蚀地下混凝土结构使混凝土体积膨胀,从而使其瓦解方面的研究还不是很多1在现今的这些研究中,有的并未考虑结构设计参数对混凝土中钢筋腐蚀起始时间和钢筋锈蚀速度的影响,有的虽做了考虑,但并没有考虑二者之间的相关性[2] 1因此,结果不尽合理1 ? 1?收稿日期:2006-06-251 作者简介:刘玉彬(1964-),男,吉林通榆人,大连民族学院土木建筑工程学院教授,博士,学校优秀学科带 头人1研究方向:工程结构广义可靠性理论、工程结构设备理论1 2006年第5期(总第34期)刘玉彬:工程结构可靠度理论的研究现状与展望 9月15日出版

相关文档
最新文档