冬季施工方案(内容有取暖蒸汽用量计算)

冬季施工方案(内容有取暖蒸汽用量计算)
冬季施工方案(内容有取暖蒸汽用量计算)

目录

1. 编制说明 (1)

2 .编制依据 (2)

3. 一般规定 (2)

4.冬季暖气取暖蒸汽用量计算 (5)

5.冬季焊接施工 (6)

6. 钢结构冬季施工 (7)

7.管道冬季施工 (8)

8.设备冬季施工 (8)

9.电气仪表冬季施工 (9)

10. 冬季施工施工的安全与防火 (10)

11.冬季JHA分析 (10)

12.冬季施工投入的措施用料见《项目部冬季施工内容及工程量》 (11)

1. 编制说明

1.1本方案适用于XXXXXX有限责任公司60万吨/年离子膜烧碱装置冬季施工阶

段。冬季气温低,风、雪天气增多,给安装工程的露天施工带来诸多不便,施工质量容易造成潜在的隐患。为克服寒冷气候条件给工程施工带来的不利因素,确保施工的连续性,保证工程质量、进度和安全,根据本工程施工的具体情况,编制本方案。

1.2冬季施工中除应按照本方案的要求外,还应遵照有关专业施工方案或作业指

导书中的有关要求以及项目部有关冬季施工安全措施中相关要求。

2 .编制依据

2.1《钢结构工程施工质量验收规范》GB50205-2020

2.2《工业金属管道工程施工及验收规范》GB50235-2010

2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-2011

2.4《建筑工程冬期施工规程》JGJ/T 104-2011

2.5《石油化工建设工程施工安全技术标准》GB/T

50484-2019

2.6本地气象资料

本项目位于神木市大保当镇,场地位于沙漠丘陵地带,受极地大陆冷气团控制时间长,受海洋热带气团影响时间短,加之深居内陆,地势

较高,下垫面保温、保水性不好,所以大陆性气候显著。主要特点是寒

暑剧烈,气候干燥,四季分明。冬季漫长寒冷,夏季短促,温差大;冬

季少雨雪,夏季雨水集中,年际变率大;多西北风,风沙频繁,无霜期

短,日照丰富,光能强,积温有效性大。

冬季(11 月21 日至3 月10 日,110 天),受极地冷气团控制,严寒而干燥,多西北风,降雪稀少。极端最低气温-28.1℃。本季平均

降水量8.0mm,以雪为主,仅占全年总量的2%,属于干旱期。

根据《建筑工程冬期施工规程》JGJ/T104-2011第1.0.3条冬期施工期限划分原则是:当室外日平均气温连续5d稳定低于5°C即进入冬期施工,当室外日平均气温连续5d高于5°C即解除冬期施工。

3. 一般规定

3.1项目部设专人负责气象跟踪预报,通过电视或互联网定期获取气象信息,及时接收天气预报,防止寒流突然袭击,并及时通报项目部各单位,鉴于神木市大保当镇的气候特点,我单位计划到11月21日(根据天气变化情况可延续)停止室外施工,之后全部集中到室内进行施工作业,主要集中在电解厂房、变电所、机柜间等室内进行施工,首先考虑室内所有门窗封闭,采取暖气取暖措施,如果不能保证暖气取暖则要考虑室内用炉子取暖,根据室内空间和施工位置确定炉子数量,并采取可靠地通风措施和防火措施。

3.2开展冬季施工质量知识和保障措施宣传、教育和培训,提高作业人员的操作技能。强化各管理人员及施工人员对冬季施工质量保证工作的认识,真正从自身的岗位出发,确保冬季施工质量。

3.3建立冬季施工质量保证体系

3.4项目部工程、安全、质量等部门负责冬季施工方案落实、检查、监督,设材部负责冬季施工物资材料的采购和准备。

3.5各施工队加强对本队职工冬季施工质量、安全和成品保护教育工作,切实做好冬季施工各项措施实施,工序开工前必须根据工序具体情况制定有针对性的冬季施工具体措施。

3.6工序开工前进行安全交底和技术交底时应有冬季施工具体措施内容。

3.7冬季前,各施工队应对本队施工区域的排水系统仔细检查,对排水不畅的地方进行整修,确保排水畅通。

3.8冬季前,各施工队应对本队的施工机具进行检查维修,对于易生锈的施工机具应进行防锈处理。

3.9脚手架、跳板等如有松动、下沉、腐蚀、变形现象应及时加固或更换。

3.10各施工队应加强对电器设备的检查与维护。在冬季前,应对防雷装置进行电阻测定,其冲击接地电阻值不得大于30Ω。各种用电设备接零及用电线路绝缘必须良好,发现问题及时整改。

3.11冬季施工,应采取防冻、防雨、防雪措施。焊接环境低于要求又无防冻、防雨、防雪措施,禁止焊接作业。遇到雨、雪天气时,应停止露天作业。

3.12雨、雪后要及时清理积雪,应注意采取防滑措施,对上下人梯道要有防滑措施,对于外脚手架要经常检查加固,如遇到五级以上大风是要停止高空作业。

3.13雨、雪天气不得进行设备或管道的试压。

4.冬季暖气取暖蒸汽用量计算

电解厂房长175米,宽27米,面积4725m2;302A变电所长70米,宽28米,

面积1960m2,机柜间长44米,宽20米,面积880m2,预制厂面积6217m2

室内使用蒸汽取暖,采暖负荷按照每小时70W/ m2,热源是0.4MPa饱和蒸汽,

冷侧进出口温度为50-60℃,焓值=210KJ/KG, 0.4MPa焓值为:2749KJ/KG,

提供热量=2749KJ/KG-210KJ/KG=2539KJ/KG(A);

需要热量:70W/ m2X3.6X(4725+1960+880+6217)KJ/H(B)=3473064KJ/H(B) B/A=1.368吨/H。(需用蒸汽量每小时1.368吨)

变电所需要126组暖气片,机柜间需要63组暖气片,电解厂房需要284组暖气片,每组暖气8片,预制厂4216片,共需要暖气片8000片。

根据上述计算考虑空间高度,各装置需要蒸汽量见下表:

5.冬季焊接施工

5.1焊接工艺要求

5.1.1环境要求:

①Q235B、20#、20G允许进行焊接操作的最低环境温度为-10℃;

5.1.2焊接时的风速不应超过下列规定,否则应采取防风措施;

①手工电弧焊:8m/s;

②氩弧焊:2m/s。

5.1.3焊接现场应具有防潮、防雨、防雪等措施,根据现场实际情况用架子杆和军用篷布搭设长3米、宽2米、高度2.5米现场焊接防风棚,焊接电弧1m范围内的相对湿度不得大于90%。

5.1.4焊前预热

①当焊件温度低于0℃时,所有钢材的焊缝应在始焊位置100mm范围内预热至15℃以上,要求焊前预热的焊件,其道间温度应在规定的预热温度范围内。碳钢和低合金钢的最高预热温度和道间温度不宜大于250℃,奥氏体不锈钢的道间温度不宜大于150℃;

②异种钢焊接时,预热温度应按焊接性能较差或合金成分较高的一侧选择;

③接管座与主管焊接时,应以主管规定的预热温度为准;

④非承压件与承压件焊接时,预热温度应按承压件选择;

⑤焊前预热可采取电加热或火焰加热,预热时的加热范围,以对口中心线为基准,每侧不应小于焊件厚度的3倍,且不小于100mm;

5.1.5焊口组对时点固焊应呈对称位置,如所焊管材、钢结构材料等需预热,无论是在坡口内点固焊或用桥式固定板进行组对焊口,都应采用和正式焊接工艺相同的工艺进行预热。在去除桥式固定板时,应不损伤母材,并用砂轮将母材表面打磨光。如损伤母材,应按焊接工艺规程要求进行焊接。施焊焊工应是考试合格的焊工。

5.1.6点焊和正式焊接时,起弧应在坡口内,严禁在母材上起弧,焊条应按要求进行烘干,方能使用。

5.2焊接材料必须具有质量证明书或材质合格证。焊材的采购、保管、烘干、发放、回

收,必须严格按公司《质量手册》、程序文件以及专业施工方案中有关规定执行。焊条的烘干按生产厂家说明书提供的参数进行。

5.3焊接作业场所搭设有防风、防雨(雪)和防寒设施,根据现场实际情况用架子杆和军用篷布或彩条布搭设长3米、宽2米、高度2.5米现场焊接防风棚。当环境温度低于相应钢材材质允许施焊的最低环境温度时,应停止施焊。如果为了保证工程进度确实需要施焊的,焊接区域必须做好防冻保温措施,并根据环境温度设置取暖设备,保证环境温度0℃以上。焊接完成后,用岩棉等保温材料做好焊口的保温工作,防止焊口降温速度过快而影响焊缝质量。在遇到大风、雨、雪等恶劣天气时一律停止焊接工作,恶劣天气过后,应清除施工现场的积水、积雪,降低焊接区域空气中的湿度。

6. 钢结构冬季施工

6.1钢结构现场安装时,如遇雪或风速在6m/s以上,用架子杆和篷布或彩条布搭设防护棚,尺寸为宽2米、长度6或12米、高度为2.5米。

6.2冬季运输、堆放钢结构时采取防滑措施,构件堆放场地平整坚实无水坑,地面无结冰。同一型号构件堆放时,构件应保持水平,垫铁放在同一垂直线上,并防止构件溜滑。

6.3钢结构安装前根据气温低于0℃条件下的要求,对其质量进行复验,对制作中漏检及运输堆放时产生变形的构件,在地面上进行修理矫正。

6.4使用钢索吊装钢结构构件时应加防滑隔垫,与构件同时起吊的节点板,安装人员需用的卡具等物用绳索绑扎牢固。

6.5根据气温条件编制钢构件安装顺序图表,施工时严格按规定的顺序进行安装。

6.6编制钢结构安装焊接工艺,一个构件两端不得同时进行焊接。

6.7安装前清除构件表面冰、雪、露,但不得损坏涂层。

6.8气温低于0℃时安装的柱子、主梁立即进行矫正,位置矫正正确立即永久固定,当天安装的构件要形成稳定的空间体系。

6.9高强螺栓接头安装构件摩擦面不得有积雪结冰,不得接触泥土、油污等脏物。

6.10气温低于0℃下钢结构安装质量除遵守GB50205-2020要求外,还应按设计要求进行检查验收。

7.管道冬季施工

7.1本着先高空、后地面,先大管、后小管,先直管、后连头的原则组织施工。管道安装前,应首先打开管帽,检查管道内部是否有杂物,为防止冻结物粘在管道内部。

7.2对于设备的配管原则上要加大预制深度,尽量减小高空作业,充分利用大型吊车进

行管线的吊装,减少冬季超高空的施工。

7.3对于安装标高超过20米的管线的施工,作业人员进行作业前应提前对作业环境进行检查,如果无有效的安全防护措施有权拒绝施工,并及时向班组长反映。

7.4由于天气寒冷或空气潮湿,焊口边缘会结霜或沾满水珠,焊接前用气焊将焊口边缘烤干,防止气孔产生。组对时不得强力组对,以防在低温下焊点断裂.

7.5冬季水压试验为防止水在管道滞留时间长或水排放不净造成管道设备冻裂,应在试压水中加入适当的乙二醇(添加量视当时气温而定),降低水的冰点达到防冻目的。水压试验完毕后,用压缩空气分段将管中残留水吹扫干净。

7.6不回收的疏、放水,应接入疏、放水总管或排水沟中,不得随意将疏、放水接入工业水管沟或电缆沟。

8.设备冬季施工

8.1冬季来临未配管的设备、机泵接管口应用彩条布、塑料布或其他材料封堵牢固,仔细检查设备内有无积水,如有应及时排尽,排尽后进行封堵。

8.2对于设备、机泵油箱内已有油脂的应按设备厂家的技术要求更换适合冬季使用的润滑油脂。

8.3设备、机泵安装后及时进行找正、联轴器对中等工作。

8.4设备找正后及时下达一次或二次灌浆通知单,通知单中应有对灌浆时间、冬季灌浆的特殊要求,并要求土建专业在规定的时间内按要求施工。设备二次灌浆,若必须在冬季施工时,应根据现场设备实际尺寸搭设尺寸合适的保温棚,棚内采取保暖措施,使室内温度高于+5℃。拧紧地脚螺栓时,一、二次灌浆的养护时间必须要够,可以适当延长,保证灌浆层质量。

8.5严格执行吊装方案和起重、司索操作规程,下雪天气不宜进行吊装和相关的高处作业。

8.6降雪过程中,风力超过六级时严禁高空作业。

8.7吊装作业区要设置警戒线和监护人,非作业人员不得入内。

8.8吊车在冬季施工必须采取必要的防滑、防冻措施。

8.9由于冬季钢丝绳容易损坏,起重人员要随时检查钢丝绳,钢丝绳与吊件的棱角处必须加半圆管进行保护。

8.10真空泵、滤油机等机械冬季不用时必须将油、水放净,防止泵体和管路冻裂。

9.电气仪表冬季施工

9.1 仪表仪器防护措施

(1)各种设备、仪器应有防冻、恒温设施,确保其精确度。

(2)露天的贵重设备(有保护要求),需搭设防护棚或盖专门的小间。当有防冻要求时,防护棚或小间内均应有取暖设备。。

(3)设备和精密仪器应采取特殊保护措施,防冻、防潮,防止设备和仪器的损坏。

(4)试验室要保持恒温和干燥,确保校验设备的正常使用。

(5)对各电气设备应加强巡视、防尘、防冻、防挂冰、防放电伤人。

(6)各种仪表应有防冻、恒温设施保持其精密度。

(7)电气设备到场后应有专人对其负责防止小件丢失。精密仪器应采用特殊保护的办法。

(8)电气设备存储应充分考虑到现场天气环境的影响。

(9)电气设备工作间、配电室严禁使用热光源,临时照明电源绝缘检测应合格。

9.2冬季电缆敷设施工应注意事项

敷设电缆时根据《工业自动化仪表工程施工及验收规范(标准)》GB/50093-2002 环境温度不应低于下列规定:

一、交链聚乙烯电缆0℃。

二、低压塑料电线-20℃。

三、橡皮及聚氯乙烯保护套橡皮绝缘电缆-15℃.

四、交联聚乙烯绝缘耐寒-40℃聚氯乙烯护套阻燃A 类屏蔽控制电缆

五、交联聚乙烯绝缘耐寒-40℃聚氯乙烯护套阻燃A 类电力电缆

如果在不符合以上条件时,我施工方将采取把电缆整体移到具有足够空间的房屋内(屋内温度保证在25℃左右)进行预热,待电缆温度达到并高于规定温度再进行快速敷设施工,且敷设时间不能太长,应控制在4小时之内(理想时间应该是10点至14点)。

10. 冬季施工施工的安全与防火

10.1冬季施工要严禁用明火或碘钨灯取暖,防止火灾发生。

10.2 HSE管理部应向广大职工讲解防冻伤、防煤气中毒的常识,并准备有关药品。10.3电气设备、开关箱要有防护罩,通电导线要整理架空,电线包布应进行全面检查,

务必保持良好的绝缘效果。

10.4脚手架、脚手板有冰雪积留时,施工前要清除干净,有坡度的跳板硬顶防滑条或铺草包,并随时检查架体有无松动及下沉现象,以便及时处理。

10.5高处作业必须系挂安全带,进入工地必须穿戴好劳动保护用品,预留孔洞必须用盖板盖好,以防失足坠落,冬季施工拆除外脚手架应有围护警戒措施,严禁高空向下抛掷。

10.6加强冬季施工消防安全的宣传教育工作,让施工人员熟悉掌握各种消防器材的使用。

10.7必须保证消防用水及消防设备的完好,并设置明显标志,消防通道要保证畅通。10.8现场的易燃、易爆及有毒物品应有专人保管,妥善安置。

10.9施工现场的宿舍应加强管理,注意防火、防中毒,严禁使用电炉子取暖。

10.10冬季风干物燥,容易起火,以及时清理仓库周围杂草,禁止用电加热器和明火。

实用闪蒸汽计算方法

闪蒸蒸汽(二次蒸汽) 什么是闪蒸蒸汽?当一定压力下的热凝结水或锅炉水被降压,部分水分会二次蒸发,所得到的蒸汽即为闪蒸蒸汽。 为什么闪蒸蒸汽很重要?因为它包含可以使工厂经济运行的热量,不利用它,能源就会被白白浪费。 闪蒸蒸汽是怎样形成的?当水在大气压力下被加热时,100℃是该压力下液体水所能允许的最高温度。再加热也不能提高水的温度,而只能将水转化成蒸汽。 水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。在一般场合下,热的单位用千焦表示,它是指将1 kg 水在1个大气压力下升高0.24℃所需要的热量。 然而,如果在一定压力下加热水,那么水的沸点就要比100℃高,所以就要求有更多的显热。压力越高,水的沸点就高,热含量亦越高。压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。 曲线图CG-3. 饱和凝结水减压时形成的闪蒸蒸汽百分比 如0.689 MPa的蒸汽压力温度下的凝结水的热含量是718.89 kJ/kg(参见蒸汽特性数据表第4栏)。如果这时将该凝结水排放到大气压力下(0 MPa),它的热则马上降到419.20 kJ/kg。剩下的299.69 kJ/kg热量则将部分凝结水二次蒸发或闪蒸。使用下列公式可以计算出闪蒸蒸汽的百分比 %闪蒸蒸汽= H SL SH- ×100% SH = 排放前高压下凝结水中的显热。 SL= 排放时低压下凝结水中的显热。 H = 低压下蒸汽中的潜热。 %闪蒸蒸汽= 2258.9 4 720 . 19 89 . 18- ×100%=13.3% 为方便起见,曲线图CG-3给出了不同压力下排放凝结水时所形成的二次闪蒸蒸汽的分比。其它实用图表见CG-53。 曲线图CG-4. 每m3凝结水在大气压下排放时形成的闪蒸蒸汽量

蒸汽和冷凝水估算量

一、饱和蒸汽流量估算 1.ΔP=0.4MPa,蒸汽密度ρ= 2.669kg/m3,设定管道内流速υ=20m/s DN=40(mm)时,G=241.6(kg/h) DN=50(mm)时,G=377.2(kg/h) DN=65(mm)时,G=611.7(kg/h) DN=80(mm)时,G=966.6(kg/h) 2.ΔP=0.5MPa,蒸汽密度ρ= 3.169kg/m3,设定管道内流速υ=22m/s DN=40(mm)时,G=315.5(kg/h) DN=50(mm)时,G=492.7(kg/h) DN=65(mm)时,G=798.9(kg/h) DN=80(mm)时,G=1262.4(kg/h) 3.ΔP=0.6MPa,蒸汽密度ρ=3.666kg/m3,设定管道内流速υ=24m/s DN=40(mm)时,G=398.1(kg/h) DN=50(mm)时,G=621.8(kg/h) DN=65(mm)时,G=1008.2(kg/h) DN=80(mm)时,G=1593.2(kg/h) 4.ΔP=0.7MPa,蒸汽密度ρ=4.161kg/m3,设定管道内流速υ=25m/s DN=40(mm)时,G=470.7(kg/h) DN=50(mm)时,G=735.1(kg/h) DN=65(mm)时,G=1192(kg/h) DN=80(mm)时,G=1883.7(kg/h)

二、蒸汽凝结水流量估算 1.ΔP=0.4MPa,ρ=958.38kg/m3,取υ=1m/s DN=40(mm)时,G=4.335(t/h) DN=50(mm)时,G=6.744(t/h) DN=65(mm)时,G=11.45(t/h) DN=80(mm)时,G=17.34(t/h) 2.ΔP=0.5MPa,ρ=958.38kg/m3,取υ=1.2m/s DN=40(mm)时,G=5.2(t/h) DN=50(mm)时,G=8.13(t/h) DN=65(mm)时,G=13.74(t/h) DN=80(mm)时,G=20.81(t/h) 3.ΔP=0.5MPa,ρ=958.38kg/m3,取υ=1.5m/s DN=40(mm)时,G=6.5(t/h) DN=50(mm)时,G=10.16(t/h) DN=65(mm)时,G=17.17(t/h) DN=80(mm)时,G=26(t/h) 4.ΔP=0.7MPa,ρ=958.38kg/m3,取υ=2.0m/s DN=40(mm)时,G=8.671(t/h) DN=50(mm)时,G=13.55(t/h) DN=65(mm)时,G=22.9(t/h) DN=80(mm)时,G=34.69(t/h)

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

环评中常用到的计算公式

环评中常用到的计算公式 1、起尘量计算方法 (一)建设工地起尘量计算: ()?? ? ???? ?????-???? ?????=43653653081.0T w V s P E 式中:E —单辆车引起的工地起尘量散发因子,kg/km ; P —可扬起尘粒(直径<30um)比例数;石子路面为0.62,泥土路面为0.32; s —表面粉矿成分百分比,12%; V —车辆驶过工地的平均车速,km/h ; w —一年中降水量大于0.254mm 的天数; T —每辆车的平均轮胎数,一般取6。 (二)道路起尘量计算: ?? ? ???????=4139.0823.0000501.0T U V E 式中:E —单辆车引起的道路起尘量散发因子,kg/km ; V —车辆驶过的平均车速,km/h ; U —起尘风速,一般取5m/s ; T —每辆车的平均轮胎数,一般取6。 (三)一年中单位长度道路的起尘量计算: ()()l Q Q E A l P d D C Q A c A ?=??-??-??=-61024 式中:Q A —一年中单位长度道路的起尘量,t ; C —每小时平均车流量,辆/h ; D —计算的总天数,365天; d —一年中降水量大于0.254mm 的天数; P —道路级别系数,如内环线以内可取0.4,内外环线之间取0.8; Ac —消尘系数,如内环线以内可取0.4,内外环线之间取0.2; l —道路长度,km; Q —道路年起尘量,t 。 (四)煤堆起尘量计算:

?? ? ?????????????????????????=15255905.105.0f d D V E 式中:E —单辆车引起的煤堆起尘量散发因子,kg/km ; V —车辆驶过煤堆的平均车速,km/h ; d —每年干燥天数,d ; f —风速超过19.2km/h 的百分数。 (五) 煤堆起尘量计算: Q m =11.7U 2.45·S 0.345·e -0.5ω·e -0.55(W-0.07) 式中:Qm —煤堆起尘量,mg/s ; U-临界风速,m/s ,取大于5.5m/s ; S-煤堆表面积,m 2; ω-空气相对湿度,取60%; W-煤物料湿度,原煤6%。 (六)煤炭装卸起尘 煤炭在装卸过程中更易形成起尘,其起尘量与装卸高度H 、煤流柱半径R 、煤炭含水量W 、煤流柱中煤流密度D 、风速V 等有关,其中煤流柱密度是由装卸速度V 和装卸高度H 决定的。露天堆煤场装卸过程中形成扬尘的主要为自卸车、铲车装卸,装卸煤落差1.5m 左右。 煤炭装卸起尘量采用下式计算: α????=-i i w i ij f G H V Q 28.023.16.103.0 ∑∑ ===n i ij m i Q Q 1 1 式中:Q ij —不同设备风速条件下的起尘量,kg/a ; Q —煤场年起尘量,kg/a ; H —煤炭装卸平均高度,m ; G i —某一设备年装卸煤量,t ; m —装卸设备种类; Q i —不同风速条件下的起尘量,kg/a ; G —煤场贮煤量,t ; V i —50米上空的风速,m/s ; W —煤炭含水量,%; f i —不同风速的频率;

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

估计蒸汽耗量的方法

式中: Q = 热量 (kJ);m = 物质的质量 (kg); c p = 物质的比热 (kJ /(kg·℃));?T = 物质的上升温度 (℃)。 估计蒸汽耗量的方法 蒸汽系统的优化设计很大程度上取决于是否能精确估计蒸汽的用量。这样才可以计算蒸汽的管道口径和各种附件的口径如控制阀、疏水阀等,以达到最佳的效果。确定工厂的蒸汽负荷可以有不同的方法: 计算 - 使用传热公式可以分析设备的热输出,可以估计蒸汽的耗量。虽然传热的计算不是非常精确(同时可能有很多未知的变量),但可以使用从相类似应用得出的经验数据。使用这种方法得到的数据对大多数应用来说的精度已经足够。 计量 - 蒸汽的耗量可以使用流量测试设备直接测量。这对于现有的设备可以得到足够精确的数据。但对于尚处于设计阶段或没投入使用的的设备来说,这种方法意义不大。 额定热功率 - 额定热功率(或设计额定值)通常标志在工厂各个设备的铭牌上,该数据由设备制造商提供。这些额定值通常以kW表示的热量输出,以kg/h表示的蒸汽耗量取决于使用的蒸汽压力。 任何参数的变化都会改变预期的热量输出,这意味着额定热功率或设计额定值和连接设备的负荷(蒸汽耗量)将不会相同。制造商标出的额定值是一种理想能力的表示,没必要和连接设备的负荷相等同。 计算 在大多数情况,蒸汽中的热量用来做两件事:使产品温度改变,也就是说提供“加热”部分。 来维持产品的温度(由于自然的热量损失或设计的热量损失),也就是说提供“热量损失”部分。 在任何加热制程中,由于产品温度的上升,“加热”部分将减少,并且加热盘管和产品之间的温差减小。但是,因为产品温度的上升热量损失部分将会增加,更多的热量将从容器或管道损失到环境中。任何时候需要的总热量是两部分之和。 计算加热物质所需热量的公式(公式2.1.4)可以适用于绝大多数的传热制程。 此公式的原始形式可以用来计算整个制程需要的总热量。但是,这种形式没有考虑传热率。为了确定传热量,将各种形式的换热应用分成两大类: 没有流动的应用 - 被加热的产品质量恒定、在一定的容器内单批加热。 流动形式的应用 - 被加热的流体连续地通过换热表面 。 没用流动的应用 在没有流动的应用中,被加热流体在一定的容器内单批加热。容器内的蒸汽盘管或环绕容器的蒸汽夹 套构成加热面。这种典型的应用实例如图2.6.1所示的热水储存式换热器或大型的储油罐 - 黏性的油在泵 送前必须加热降低黏度。有些制程是用来加热固体,典型的实例如轮胎压机、洗衣房烫机、硫化机和高压灭菌器。在有些非流动的应用中加热时间不重要且可以忽略,但对有些应用例如水箱和硫化机,加热时间 不仅很重要而且对制程非常关键。 w w w .b z .c o m

【VIP专享】碳排放量计算(蒸汽)

蒸汽碳排放量 关于热力的统计 1、什么是热力? 【热力】是指可提供热源的热水、蒸汽。在统计上要求外供热量作为产量统计,外购热力作为消费 统计。自产自用热力不统计。 2、热力的计算 热力的计算:蒸汽和热水的热力计算,与锅炉出口蒸汽、热水的温度和压力有关,计算方法: 第一步:确定锅炉出口蒸汽和热水的温度和压力,根据温度和压力值,在焓熵图(表)(详见本网站“热焓表(饱和蒸汽或过热蒸汽)”)查出对应的每千克蒸汽、热水的热焓; 第二步:确定锅炉给水(或回水)的温度和压力,根据温度和压力值,在焓熵图(表)查出对应的每千克 给水(或回水)的热焓; 第三步:求第一步和第二步查出的热焓之差,再乘以蒸汽或热水的数量(按流量表读数计算),所得 值即为热力的量。 如果企业不具备上述计算热力的条件,可参考下列方法估算: 第一步:确定锅炉蒸汽或热水的产量。产量=锅炉的给水量-排污等损失量; 第二步:确定蒸汽或热水的热焓。热焓的确定分以下几种情况: (1)热水:假定出口温度为90℃,回水温度为20℃的情况下,闭路循环系统每千克热水的热焓按20 千卡计算,开路供热系统每千克热水的热焓按70 千卡计算。 (2)饱和蒸汽: 压力1—2.5 千克/平方厘米,温度127℃以下,每千克蒸汽的热焓按620 千卡计算; 压力3—7 千克/平方厘米,温度135—165℃,每千克蒸汽的热焓按630 千卡计算; 压力8 千克/平方厘米,温度170℃以上,每千克蒸汽的热焓按640 千卡计算。 (3)过热蒸汽:压力150 千克/平方厘米

200℃以下,每千克蒸汽的热焓按650 千卡计算; 220—260℃,每千克蒸汽的热焓按680 千卡计算; 280—320℃,每千克蒸汽的热焓按700 千卡计算; 350—500℃,每千克蒸汽的热焓按750 千卡计算。 第三步:根据确定的热焓,乘以产量,所得值即为热力的量。 对于中小企业,若以上条件均不具备,如果锅炉的功率在0.7 兆瓦左右,1 吨/小时的热水或蒸汽按 相当于60 万千卡的热力计算。 3、热力的折标系数0.03412吨/百万千焦是怎么计算出来的? 根据《综合能耗计算通则》(GB/T 2589—2008)规定:“低(位)发热量等于29307千焦(kJ)的燃料,称为1千克标准煤(1 kgce)。1百万千焦(1000000kJ)折合为标准煤为34.12千克标准煤(即0.03412吨标准煤)。 因此,热力折算为标准煤是按照其实际热量的多少折算的(当量值计算),一般企业都能将热力按其流量、温度、压力的多少(通过计量表)换算成热值,再折算成标准煤。具体可查询本网站“热焓表(饱和蒸汽或过热蒸汽)”或“能源统计报表制度(新疆)”一文。 如果没有安装热量计的热力外购单位,吨蒸汽可按折标系数0.0948折标准煤计算(蒸汽热焓按2780kJ/kg计,即664千卡热值/kg蒸汽)。即每吨蒸汽折0.0948吨标准煤。 反应釜夹套使用循环冷冻盐水降温,已知冷冻盐水进水温度-15℃,回水温度-12℃,管道 内盐水流速选择为1米/秒,管道直径DN50,则流量为: Q=3600×V×管道的截面积 Q---单位为立方米/小时 V---单位为米/秒 管道的截面积---单位为平方米=0.785×D2 D=管道的直径---单位为米 Q=3600×V×管道的截面积=3600×1×0.785×0.052=7.065立方米/小时 二、7.065立方米/小时冷冻盐水提供的能量 Q=cm(T1-T2)=4.18KJ/Kg.℃×7065×Kg×3℃=88595 KJ=88595 KJ ÷4.18=21195Kcal=2万大卡 已知:

冬季施工方案(内容有取暖蒸汽用量计算)

目录 1. 编制说明 (1) 2 .编制依据 (2) 3. 一般规定 (2) 4.冬季暖气取暖蒸汽用量计算 (5) 5.冬季焊接施工 (6) 6. 钢结构冬季施工 (7) 7.管道冬季施工 (8) 8.设备冬季施工 (8) 9.电气仪表冬季施工 (9) 10. 冬季施工施工的安全与防火 (10) 11.冬季JHA分析 (10) 12.冬季施工投入的措施用料见《项目部冬季施工内容及工程量》 (11)

1. 编制说明 1.1本方案适用于XXXXXX有限责任公司60万吨/年离子膜烧碱装置冬季施工阶 段。冬季气温低,风、雪天气增多,给安装工程的露天施工带来诸多不便,施工质量容易造成潜在的隐患。为克服寒冷气候条件给工程施工带来的不利因素,确保施工的连续性,保证工程质量、进度和安全,根据本工程施工的具体情况,编制本方案。 1.2冬季施工中除应按照本方案的要求外,还应遵照有关专业施工方案或作业指 导书中的有关要求以及项目部有关冬季施工安全措施中相关要求。 2 .编制依据 2.1《钢结构工程施工质量验收规范》GB50205-2020 2.2《工业金属管道工程施工及验收规范》GB50235-2010 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-2011 2.4《建筑工程冬期施工规程》JGJ/T 104-2011 2.5《石油化工建设工程施工安全技术标准》GB/T 50484-2019 2.6本地气象资料 本项目位于神木市大保当镇,场地位于沙漠丘陵地带,受极地大陆冷气团控制时间长,受海洋热带气团影响时间短,加之深居内陆,地势 较高,下垫面保温、保水性不好,所以大陆性气候显著。主要特点是寒 暑剧烈,气候干燥,四季分明。冬季漫长寒冷,夏季短促,温差大;冬 季少雨雪,夏季雨水集中,年际变率大;多西北风,风沙频繁,无霜期 短,日照丰富,光能强,积温有效性大。 冬季(11 月21 日至3 月10 日,110 天),受极地冷气团控制,严寒而干燥,多西北风,降雪稀少。极端最低气温-28.1℃。本季平均 降水量8.0mm,以雪为主,仅占全年总量的2%,属于干旱期。 根据《建筑工程冬期施工规程》JGJ/T104-2011第1.0.3条冬期施工期限划分原则是:当室外日平均气温连续5d稳定低于5°C即进入冬期施工,当室外日平均气温连续5d高于5°C即解除冬期施工。

-蒸汽量换算

0.4MPa饱和蒸汽热值657Kcal/kg,1×(657-20)÷70%=910Kg标煤; 0.8MPa饱和蒸汽热值662Kcal/kg,1×(662-20)÷70%=917Kg标煤 各类能源折算标准煤的参考系数 能源名称平均低位发热量折标准煤系数 原煤20934千焦/公斤0.7143公斤标煤/公斤 洗精煤26377千焦/公斤0.9000公斤标煤/公斤 其他洗煤8374 千焦/公斤0.2850公斤标煤/公斤 焦炭28470千焦/公斤0.9714公斤标煤/公斤 原油41868千焦/公斤1.4286公斤标煤/公斤 燃料油41868千焦/公斤1.4286公斤标煤/公斤 汽油43124千焦/公斤1.4714公斤标煤/公斤 煤油43124千焦/公斤1.4714公斤标煤/公斤 柴油42705千焦/公斤1.4571公斤标煤/公斤 液化石油气47472千焦/公斤1.7143公斤标煤/公斤 炼厂干气46055千焦/ 公斤1.5714公斤标煤/公斤 天然气35588千焦/立方米12.143吨/万立方米 焦炉煤气16746千焦/立方米5.714吨/万立方米 其他煤气3.5701吨/万立方米 热力0.03412吨/百万千焦 电力3.27吨/万千瓦时 1、热力其计算方法是根据锅炉出口蒸汽和热水的温度压力在焓熵图(表)内查得每千克的热焓减去给水(或回水)热焓,乘上锅炉实际产出的蒸汽或热水数量(流量表读出)计算。如果有些企业没有配齐蒸汽或热水的流量表,如没有焓熵图(表),则可参下列方法估算: (1)报告期内锅炉的给水量减排污等损失量,作为蒸汽或热水的产量。 (2)热水在闭路循环供应的情况下,每千克热焓按20千卡计算,如在开路供应时,则每千克热焓按70千卡计算(均系考虑出口温度90℃,回水温度20℃)。 (3)饱和蒸汽,压力1-2.5千克/平方厘米,温度127℃以上的热焓按620千卡,压力3-7千克/平方厘米,温度135℃-165℃的热焓按630千卡。压力8千克/平方厘米,温度170℃以上每千克蒸汽按640千卡计算。 (4)过热蒸汽,压力150千克/平方厘米,每千克热焓:200℃以下按650千卡计算,220℃-260℃按680千卡计算,280℃-320℃按700千卡,350℃-500℃按700千卡计算。按4.1868焦耳折算成焦耳。 2.热力单位“千卡”与标准煤“吨”的折算能源折算系数中“蒸汽”和“热水”的计算单位为“千卡”,但“基本情况表”中(能源消耗量中)“蒸汽”计算单位为“蒸吨”,在其它能源消耗量(折标煤)其中的“热水”计算单位为“吨”,因此需要进一步折算,才能适合“基本情况表”的填报要求,按国家标准每吨7000千卡折1千克标准煤计算: 3.电力的热值一般有两种计算方法:一种是按理论热值计算,另一种是按火力发电煤耗计算。每种方法各有各的用途。理论热值是按每度电本身的热功当量860大卡即0.1229千克标准煤计算的。按火力发电煤耗计算,每年各不相同,为便于对比,以国家统计局每万度电折0.404千克标准煤,作为今后电力折算标准煤系数。 1KG标煤=7000大卡的热量;大卡÷860=KW;KJ÷3600=KW;1大卡=2.4KJ

蒸气压和相对湿度的计算公式

水蒸气压和相对湿度的计算公式 要求水蒸气压和相对湿度时,虽然最好用通风乾湿计,但也可采用不通风乾湿计。由乾湿计计算水 蒸气压和相对湿度的公式为: 1. 从通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e =E’w–0.5(t-t’)P/755 (2)湿球结冰时 e =E’i –0.44(t-t’)P/755 式中, t:乾球读数(oC) t’:湿球读数(oC) E’w:t’(oC)的水饱和蒸气压 E’i:t’(oC)的冰饱和蒸气压 e:所求水蒸气压 P:大气压力 2. 从不通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e=E’ w-0.0008P(t-t’) (2)湿球结冰时 e=E’ i-0.0007P(t-t’) 此处所用符号的意义同上。压力单位都统一用mmHg或mb。 3.求相对湿度: H=e/Ew×100 式中H为所求相对湿度(%),Ew为t(oC)的饱和蒸气压(即使在0oC以下时也不使用Ei)。

水的蒸气压 水和所有其它液体一样,其分子在不断运动着,其中有少数分子因为动能较大,足以冲破表面张力的影响而进入空间,成为蒸气分子,这种现象称为蒸发。液面上的蒸气分子也可能被液面分子吸引或受外界压力抵抗而回入液体中,这种现象称为凝聚。如将液体置于密闭容器内,起初,当空间没有蒸气分子时,蒸发速率比较大,随着液面上蒸气分子逐渐增多,凝聚的速率也随之加快。这样蒸发和凝聚的速率逐渐趋于相等,即在单位时间内,液体变为蒸气的分子数和蒸气变为液体的分子数相等,这时即达到平衡状态,蒸发和凝聚这一对矛盾达到暂时的相对统一。当达到平衡时,蒸发和凝聚这两个过程仍在进行,只是两个相反过程进行的速率相等而已。平衡应理解为运态的平衡,绝不意味着物质运动的停止。 与液态平衡的蒸气称为饱和蒸气。饱和蒸气所产生的压力称为饱和蒸气压。每种液体在一定温度下,其饱和蒸气压是一个常数,温度升高饱和蒸气压也增大。水的饱和蒸气压和温度的关系列于表中。 表水的蒸气压和温度的关系

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

各种物质饱和蒸汽压的算法

在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压 的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t —温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用 (2)公式进行计算 lgP=T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表 1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2- 三氯乙烷C2H3Cl3 1,1,2 一三氯乙烯C2HCl3 1,2 一丁二烯C4H6 -60 ~+80 1,3 一丁二烯C4H6 -80 ~+65 2- 甲基丙烯-1 C4H8 2- 甲基丁二烯-1,3 C5H8 -50 ~+95 α - 甲基綦C11H10 α - 萘酚C10H8O β- 甲基萘C11H10 β - 萘酚C10H8O 氨NH3 -83 ~+60 氨基甲酸乙酯C3H7O2N 钡Ba 930~1130 公式(2) 苯C6H6 苯胺C6H7N 苯酚C6H6O 苯甲醇C7H8O 20~113

苯甲醇 C7H8O 113~300 苯甲醚 C7H8O 苯甲酸C7H6O2 60~110 公式(2) 苯甲酸甲酯 C8H8O2 25~100 苯甲酸甲酯 C8H8O2 100~260 苯乙烯 C8H8 铋Bi 1210~1420 公式(2) 蓖C14H10 100~160 公式(2) 蓖 C14H10 223~342 公式(2) 蓖醌C14H3O2 224~286 公式(2) 蓖醌C14H3O2 285~370 公式(2) 丙酸C3H6O2 0~60 丙酸C3H6O2 60~185 丙酮C3H6O 丙烷C3H8 丙烯C3H6 丙烯腈C3H3N -20 ~+140 铂Pt 1425~1765 公式(2) 草酸C2H2O4 55~105 公式(2) 臭氧O3 醋酸甲酯C3H6O2 氮N2 -210 ~-180 碲化氢H2Te -46 ~0 公式(2) 碘I2 碘化钾KI 843~1028 公式(2) 碘化钾KI 1063~1333 公式(2) 碘化钠NaI 1063~1307 公式(2) 碘化氢HI -97 ~-51 公式(2) 碘化氢HI -50 ~-34 公式(2)

蒸汽耗量计算

蒸汽耗量计算 蒸汽系统的优化设计很大程度上取决于是否能精确估计蒸汽的用量。这样才可以计算蒸汽的管道口径和各种附件的口径如控制阀、疏水阀等,以达到最佳的效果。确定工厂的蒸汽负荷可以有不同的方法: 1.使用传热公式可以分析设备的热输出,可以估计蒸汽的耗量。 计算加热物质所需热量的公式,可以适用于绝大多数的传热制程------Q= m* cp*?T / t。 Q = 热量 (kJ); m = 物质的质量 (kg); cp = 物质的比热 (kJ/(kg·℃)); ?T = 物质的上升温度(℃); t = 加热的时间(s)。 计算非流动型应用的平均换热功率将一定质量的油在10min (600s)内从温度35℃加热到120℃。油的体积为35L,在该温度范围内比重为0.9,比热为1.9 kJ/(kg·℃)。确定所需的换热功率:油的质量m = 0.9×35 = 31.5 kg Q =31.5kg×1.9kJ/(kg·℃)×(120-35)℃/600s Q = 8.48 kJ/s(8.48kW) 2.蒸汽的耗量可以使用流量测试设备直接测量。这对于现有的设备可以得到足够精确的数据。

通过收集冷凝水来对一个夹套锅进行测试,在本例中使用一个空的水罐和台秤。这种方法容易操作,也能达到的精确的测量结果。 3.额定热功率(或设计额定值)通常标志在工厂各个设备的铭牌上,该数据由设备制造商提供。这些额定值通常以kW表示的热量输出,以kg/h表示的蒸汽耗量取决于使用的蒸汽压力。 如果负荷用kW表示,蒸汽压力给定,蒸汽的流率可以用公式确定: 蒸汽中的热量用来做两件事: 1.使产品温度改变,也就是说提供“加热”部分。 2.来维持产品的温度(由于自然的热量损失或设计的热量损失),也就是说提供“热量损失”部分。 罐体的能量损耗 顶部开口罐体,这些罐体的热负荷计算需要综合考虑其内的物品和材料,并计算蒸发损失。脱油脂箱-脱油脂是在产品经过机械加工之后但在最终装配之前进行的,从金属表面去掉沉积的油脂或冷却油的工艺。在脱油脂箱中,材料被浸没在被盘管加热到90℃到95℃的溶液中,去除杂质或锈。 使用加热容器的制程工业 工业制程典型温度(℃) 制糖原汁加热80~85 乳制品产生热水80 电镀金属沉淀70~85 金属/钢铁除锈/除垢90~95 制药清洗水箱70 在有些应用中,制程流体已经达到它的工作温度,这里所需要补充的热量就是从罐的固体表面和液体表面的散热损失。 1. 把制程流体加热到工作温度需要的热量。 2. 把容器材料加热到工作温度需要的热量。 3. 从容器表面散失到大气环境的热损失。 4. 从液体表面散失到大气环境的热损失。 5. 其它冷的物体浸入制程流体时吸收的热量。

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hé zhēng qì yā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水 的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理 性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程 最简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C) (1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃)A B C 1,1,2-三氯乙烷C2H3Cl3\ 6.851891262.570205.170 1,1,2一三氯乙烯C2HCl3\7.028081315.040230.000 1,2一丁二烯C4H6-60~+807.161901121.000251.000

饱和蒸汽压

饱和蒸汽压

饱和蒸气压 编辑 [b ǎo h ézh ēng q ìy ā] 饱和蒸汽压即饱和蒸气压。 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于液态的饱和蒸气压。 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100 摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态) 处于平衡状态的蒸汽所产生的压 强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1 定义编辑 饱和蒸气压( saturated vapor pressure ) 例如,在30℃时,水的饱和蒸气压为4132.982Pa, 乙醇为10532.438Pa 。而在100 ℃时,水的饱和蒸气压增大到101324.72Pa, 乙醇为222647.74Pa 。饱和蒸气压是液体的一项重要物理性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2 计算公式编辑 (1) Clausius-Claperon 方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p 为蒸气压;H(v) 为蒸发潜热;Z(v) 为饱和蒸汽压缩因子与饱和液体压缩因子之差。该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2) Clapeyron 方程: 若上式中H(v)/(R*Z(v)) 为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v)) 。 (3) Antoine 方程:lg p=A-B/(T+C) 式中,A,B,C 为Antoine 常数,可查数据表。Antoine 方程是对Clausius-Clapeyron 方程最简单的改进,在 1.333~199.98kPa 范围内误差小。 3 附录编辑 计算参数 在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压的常数A、 B 、C 。其公式如下 lgP=A-B/(t+C) ( 1) 式中:P —物质的蒸气压,毫米汞柱; t—温度,℃ 公式( 1)适用于大多数化合物;而对于另外一些只需常数 B 与 C 值的物质,则可采用( 2)公式进行计算 lgP=-52.23B/T+C ( 2 )

湿度 露点 饱和水蒸气压 计算公式

饱和水蒸气压公式 饱和是一种动态平衡态,在该状态下,气相中的水汽浓度或密度保持恒定。在整个湿度的换算过程中,对于饱和水蒸气压公式的选取显得尤为重要,因此下面介绍几种常用的。 (1)、克拉柏龙-克劳修斯方程 该方程是以理论概念为基础的,表示物质相平衡的关系式,它把饱和蒸汽压随温度的变化、容积的变化和过程的热效应三者联系起来。方程如下: T-为循环的温度;dT-为循环的温差;L-为热量,这里为汽化潜热(相变热);ν-为饱和蒸汽的比容;ν^-为液体的比容;e-为饱和蒸汽压。 这就是著名的克拉柏龙-克劳修斯方程。该方程不但适用于水的汽化,也适用于冰的升华。当用于升华时,L为升华潜热。 (2)、卡末林-昂尼斯方程 实际的蒸汽和理想气体不同,原因在于气体分子本身具有体积,分子间存在吸引力。卡末林 - 昂尼斯气体状态方程考虑了这种力的影响。卡末林-昂尼斯于1901年提出了状态方程的维里表达式(e表示水汽压)。 这些维里系数都可以通过实验测定,其中的第二和第三维里系数都已经有了普遍的计算公式。例如接近大气压力,温度在150K到400K时,第二维里系数计算公式: 一般在我们所讨论的温度范围内,第四维里系数可以不予考虑。 (3)、Goff-Grattch 饱和水汽压公式 从1947年起,世界气象组织就推荐使用 Goff-Grattch 的水汽压方程。该方程是以后多年世界公认的最准确的公式。它包括两个公式,一个用于液 - 汽平衡,另一个用于固 - 汽平衡。 对于水平面上的饱和水汽压 式中,T0为水三项点温度 273.16 K 对于冰面上的饱和水汽压 以上两式为 1966 年世界气象组织发布的国际气象用表所采用。 (4)、Wexler-Greenspan 水汽压公式 1971年,美国国家标准局的 Wexler 和 Greenspan 根据 25 ~ 100 ℃范围水面上饱和水汽压的精确测量数据,以克拉柏龙一克劳修斯方程为基础,结合卡末林 - 昂尼斯方程,经过简单的数学运算并参照试验数据作了部分修正,导出了 0 ~ 100 ℃范围内水面上的饱和水汽压的计算公式,该式的计算值与实验值基本符合。

相关文档
最新文档