2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版

2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版
2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版

第6节 对数与对数函数

最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,1

2的对数函数的图象;3.体会对数函数是一类重

要的函数模型;4.了解指数函数y =a x

(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.

知 识 梳 理

1.对数的概念

如果a x

=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.

2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log a

N

=N ;②log a a b

=b (a >0,且a ≠1).

(2)对数的运算法则

如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N

=log a M -log a N ; ③log a M n

=n log a M (n ∈R );

④log a m M n =n m

log a M (m ,n ∈R ,且m ≠0).

(3)换底公式:log b N =log a N

log a b (a ,b 均大于零且不等于1).

3.对数函数及其性质

(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).

(2)对数函数的图象与性质

a >1 0

图象

性质

定义域:(0,+∞)

值域:R

当x=1时,y=0,即过定点(1,0)

当x>1时,y>0;

当0

当x>1时,y<0;

当00

在(0,+∞)上是增函数在(0,+∞)上是减函数

4.反函数

指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.

[微点提醒]

1.换底公式的两个重要结论

(1)log a b=

1

log b a

;(2)log a m b n=

n

m

log a b.

其中a>0,且a≠1,b>0,且b≠1,m,n∈R.

2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.

3.对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),?

?

??

?

1

a

,-1,函数图象只在第一、四象限.

基础自测

1.判断下列结论正误(在括号内打“√”或“×”)

(1)log2x2=2log2x.( )

(2)函数y=log2(x+1)是对数函数.( )

(3)函数y=ln

1+x

1-x

与y=ln(1+x)-ln(1-x)的定义域相同.( )

(4)当x>1时,若log a x>log b x,则a

解析(1)log2x2=2log2|x|,故(1)错.

(2)形如y=log a x(a>0,且a≠1)为对数函数,故(2)错.

(4)当x>1时,log a x>log b x,但a与b的大小不确定,故(4)错.

答案 (1)× (2)× (3)√ (4)×

2.(必修1P73T3改编)已知a =2-

1

3,b =log 2

13,c =log 121

3

,则( )

A.a >b >c

B.a >c >b

C.c >b >a

D.c >a >b

解析 ∵0

3=log 23>1.

∴c >a >b . 答案 D

3.(

必修1P74A7改编)函数y =

log 2

3(2x -1)的定义域是________.

解析 由log 23

(2x -1)≥0,得0<2x -1≤1.

∴1

2

log 23(2x -1)的定义域是? ??

??12,1. 答案 ? ??

??12,1

4.(2018·嘉兴调研)计算log 29×log 34+2log 510+log 50.25=( ) A.0

B.2

C.4

D.6

解析 原式=2log 23×(2log 32)+log 5(102

×0.25)=4+log 525=4+2=6. 答案 D

5.(2019·武汉月考)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )

A.a >1,c >1

B.a >1,0

C.01

D.0

解析 由题图可知,函数在定义域内为减函数,所以00,即log a c >0,所以0

6.(2018·全国Ⅰ卷)已知函数f (x )=log 2(x 2

+a ).若f (3)=1,则a =________. 解析 由f (3)=1得log 2(32

+a )=1,所以9+a =2,解得a =-7. 答案 -7

考点一 对数的运算

【例1】 (1)计算:? ??

??lg 14-lg 25÷100-

1

2=________.

(2)计算:(1-log 63)2

+log 62·log 618

log 64=________.

解析 (1)原式=(lg 2-2

-lg 52

)×1001

2=lg ?

??

??122×52×10=lg 10-2×10=-2×10=-20.

(2)原式=1-2log 63+(log 63)2

+log 663

·log 6(6×3)

log 64

=1-2log 63+(log 63)2

+1-(log 63)2

log 64

=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.

答案 (1)-20 (2)1

规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.

2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.

3.a b

=N ?b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.

【训练1】 (1)若lg 2,lg(2x

+1),lg(2x

+5)成等差数列,则x 的值等于( ) A.1

B.0或1

8

C.18

D.log 23

(2)(2019·成都七中检测)已知a >b >1,若log a b +log b a =52,a b =b a

,则a =________,b =

________.

解析 (1)由题意知lg 2+lg(2x

+5)=2lg(2x

+1),

∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x

=3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =5

2,

所以t =2,则a =b 2

. 又a b =b a ,所以b 2b =b b

2

即2b =b 2

,又a >b >1,解得b =2,a =4. 答案 (1)D (2)4 2

考点二 对数函数的图象及应用

【例2】 (1)(2019·潍坊一模)若函数f (x )=a x

-a -x

(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )

(2)当x ∈(1,2)时,不等式(x -1)2

C.(1,2]

D.? ??

??0,12 解析 (1)由f (x )在R 上是减函数,知0

又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).

∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到. 因此选项D 正确. (2)由题意,易知a >1.

在同一坐标系内作出y =(x -1)2

,x ∈(1,2)及y =log a x 的图象.

若y =log a x 过点(2,1),得log a 2=1,所以a =2.

根据题意,函数y =log a x ,x ∈(1,2)的图象恒在y =(x -1)2

,x ∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 答案 (1)D (2)C

规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.

2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【训练2】 (1)已知函数f (x )=log a (2x

+b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )

A.0

<1 C.0

D.0

<1

(2)(2019·日照调研)已知函数f (x )=?

????2x

,x <1,

log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则

实数a 的取值范围是________.

解析 (1)由函数图象可知,f (x )在R 上单调递增,又y =2x

+b -1在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1

(2)作出函数y =f (x )的图象(如图所示).

方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点, 故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 答案 (1)A (2){0}∪[2,+∞) 考点三 对数函数的性质及应用 多维探究

角度1 对数函数的性质

【例3-1】 (2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增

B.f (x )在(0,2)上单调递减

C.y =f (x )的图象关于直线x =1对称

D.y =f (x )的图象关于点(1,0)对称

解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2

+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C

角度2 比较大小或解简单的不等式

【例3-2】 (1)(一题多解)(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 121

3

,则a ,b ,

c 的大小关系为( )

A.a >b >c

B.b >a >c

C.c >b >a

D.c >a >b

(2)若log a (a 2

+1)

B.? ??

??0,12 C.? ??

??12,1

D.(0,1)∪(1,+∞)

解析 (1)法一 因为a =log 2e>1,b =ln 2∈(0,1),c =log 121

3

=log 23>log 2e =a >1,所以

c >a >b .

法二 log 121

3

=log 23,如图,在同一坐标系中作出函数y =log 2x ,y =ln x 的图象,由图知

c >a >b .

(2)由题意得a >0且a ≠1,故必有a 2

+1>2a , 又log a (a 2

+1)1,∴a >12.综上,a ∈? ????12,1. 答案 (1)D (2)C

角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).

(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;

(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,

x ∈[0,2]时,t (x )的最小值为3-2a ,

当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <3

2

.

又a >0且a ≠1,∴a 的取值范围是(0,1)∪? ??

??1,32. (2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.

∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,

∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴?

????3-2a >0,

log a

(3-a )=1,即?????a <32,a =32.

故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. 2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.

3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.

【训练3】 (1)(2016·全国Ⅰ卷)若a >b >0,0

D.c a

>c b

(2)若函数f (x )=log a ? ????x 2+32x (a >0,a ≠1)在区间? ??

??12,+∞内恒有f (x )>0,则f (x )的单调

递增区间为________.

解析 (1)由y =x c

与y =c x

的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a

lg b ,∵0<c <1,∴lg c <0.

又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定.

(2)令M =x 2

+32x ,当x ∈? ????12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M

为增函数,

又M =? ????x +342

-916,因此M 的单调递增区间为? ????-34,+∞.

又x 2

+32x >0,所以x >0或x <-32

所以函数f (x )的单调递增区间为(0,+∞). 答案 (1)B (2)(0,+∞)

[思维升华]

1.对数值取正、负值的规律

当a >1且b >1或00; 当a >1且01时,log a b <0.

2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.

3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.

4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [易错防范]

1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分01两种情况讨论.

2.在运算性质log a M α

=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α

αlog a |M |(α∈N *,且α为偶数).

3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围

.

基础巩固题组 (建议用时:40分钟)

一、选择题

1.已知函数f (x )=?

????2x

,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )

A.24

B.16

C.12

D.8

解析 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 2

3

=8×2

log 2

3

=24.

答案 A

2.(2018·天津卷)已知a =log 3 72,b =? ??

??141

3

,c =log 13 15,则a ,b ,c 的大小关系为( )

A.a >b >c

B.b >a >c

C.c >b >a

D.c >a >b

解析 log 13 15=log 3-15-1

=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 3

72>log 33=1,因为函数y =? ????14x

在(-∞,+∞)上为减函数,所以? ????141

3

??140

=1,故c >a >b . 答案 D

3.(2018·张家界三模)在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为( )

解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0

a

>2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数,C ,D

均不满足;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2

a

>0,又g (x )=log a (x +2)

在(-2,+∞)上是增函数,排除B ,综上只有A 满足.

答案 A

4.(2019·肇庆二模)已知f (x )=lg(10+x )+lg(10-x ),则( ) A.f (x )是奇函数,且在(0,10)上是增函数 B.f (x )是偶函数,且在(0,10)上是增函数 C.f (x )是奇函数,且在(0,10)上是减函数 D.f (x )是偶函数,且在(0,10)上是减函数

解析 由?

????10+x >0,

10-x >0,得x ∈(-10,10),

且f (x )=lg(100-x 2

). ∴f (x )是偶函数,

又t =100-x 2

在(0,10)上单调递减,y =lg t 在(0,+∞)上单调递增,故函数f (x )在(0,10)上单调递减. 答案 D

5.已知函数f (x )=|ln x |,若f (m )=f (n )(m >n >0),则2m +1+2n +1

=( ) A.1

2

B.1

C.2

D.4

解析 由f (m )=f (n ),m >n >0,可知m >1>n >0, ∴ln m =-ln n ,则mn =1. 所以

2m +1+2n +1=2(m +n )+4mn +m +n +1=2(m +n +2)m +n +2

=2. 答案 C 二、填空题

6.lg 52+2lg 2-? ????12-1

=________. 解析 lg 52+2lg 2-? ??

??12-1

=lg 52+lg 22

-2

=lg ? ??

??52×4-2=1-2=-1. 答案 -1

7.(2019·昆明诊断)设f (x )=lg ? ??

?

?21-x +a 是奇函数,则使f (x )<0的x 的取值范围是

________.

解析 由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x

1-x ,定义域为(-1,1).

由f (x )<0,可得0<1+x

1-x <1,∴-1

答案 (-1,0)

8.(2019·武汉调研)已知函数f (x )=?

????-log 2(3-x ),x <2,

2x -2-1,x ≥2,

若f (2-a )=1,则f (a )=________.

解析 当2-a <2,即a >0时,f (2-a )=-log 2(1+a )=1. 解得a =-1

2

,不合题意.

当2-a ≥2,即a ≤0时,f (2-a )=2-a

-1=1,即2-a

=2,解得a =-1,所以f (a )=f (-1)=-log 24=-2. 答案 -2 三、解答题

9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;

(2)求f (x )在区间????

??0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.

由?

????1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )

=log 2[(1+x )(3-x )]=log 2[-(x -1)2

+4], ∴当x ∈[0,1]时,f (x )是增函数;

当x ∈? ??

??1,32时,f (x )是减函数,

故函数f (x )在????

??0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12

x .

(1)求函数f (x )的解析式;

(2)解不等式f (x 2

-1)>-2.

解 (1)当x <0时,-x >0,则f (-x )=log 12

(-x ).

因为函数

f (x )是偶函数,所以f (-x )=f (x )=lo

g 12

(-x ),

所以函数f (x )的解析式为

f (x )=?????lo

g 12x ,x >0,

0,x =0,log 12

(-x ),x <0.

(2)因为f (4)=log 12

4=-2,f (x )是偶函数,

所以不等式f (x 2-1)>-2转化为f (|x 2

-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2

-1|<4,解得-5

能力提升题组 (建议用时:20分钟)

11.(2019·商丘二模)已知a >0且a ≠1,函数f (x )=log a (x +x 2

+b )在区间(-∞, +∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )

解析 ∵函数f (x )=log a (x +x 2

+b )在区间(-∞,+∞)上是奇函数,∴f (0)=0,∴b =1,又函数f (x )=log a (x +x 2

+b )在区间(-∞,+∞)上是增函数,所以a >1.

所以g (x )=log a ||x |-1|,当x >1时,g (x )=log a (x -1)为增函数,排除B ,D ;当0

12.(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z

,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x

D.3y <2x <5z

解析 令t =2x

=3y

=5z

, ∵x ,y ,z 为正数,∴t >1.

则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t

lg 5.

∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)

lg 2×lg 3

=lg t (lg 9-lg 8)

lg 2×lg 3>0,

∴2x >3y .

又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)l g 2×lg 5=lg t (lg 25-lg 32)

lg 2×lg 5<0,

∴2x <5z ,∴3y <2x <5z . 答案 D

13.已知函数f (x )=lg(mx 2

+2mx +1),若f (x )的值域为R ,则实数m 的取值范围是________. 解析 令g (x )=mx 2

+2mx +1值域为A ,∵函数f (x )=lg(mx 2

+2mx +1)的值域为R ,∴(0,

+∞)?A ,当m =0时,g (x )=1,f (x )的值域不是R ,不满足条件;当m ≠0时,

?

????m >0,

4m 2-4m ≥0,解得m ≥1. 答案 [1,+∞) 14.已知函数f (x )=ln

x +1

x -1

. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m

(x -1)(7-x )

恒成立,求实数m 的取值范围. 解 (1)由

x +1

x -1

>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,

f (-x )=ln

-x +1-x -1=ln x -1x +1=ln ? ??

??x +1x -1-1

=-ln x +1x -1=-f (x ).

∴f (x )=ln

x +1

x -1

是奇函数.

(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln m

(x -1)(7-x )

恒成立, ∴

x +1x -1>m

(x -1)(7-x )

>0恒成立, ∵x ∈[2,6],∴0

+16,x ∈[2,6],

由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7, ∴0

故实数m 的取值范围为(0,7).

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

对数函数基础运算法则及例题_答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x = 4 9 时,不等式 log a (x 2–x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )349 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x ,解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 ,2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2)–f (x 1) = 212221log log 11x x x x ---2 1221(1)log (1)x x x x -=-=.11log 2 1 122x x x x --? ∵0<x 1<x 2<1,∴ 12x x >1,2111x x -->1. 则2 1 12211log x x x x --?>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = log a (a –a x ) (a >1). (1)求f (x )的定义域和值域;(2)判证并证明f (x )的单调性. 解:(1)由a >1,a –a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1), 而a x <a ,可知0<a –a x <a ,又a >1. 则log a (a –a x )<lg a a = 1. 取f (x )<1,故函数f (x )的值域为(–∞, 1). (2)设x 1>x 2>1,又a >1,∴1x a >2x a ,∴1x a a -<a-2x a , ∴log a (a –1x a )<log a (a –2x a ), 即f (x 1)<f (x 2),故f (x )在(1, +∞)上为减函数.

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

(完整版)对数函数练习题(有答案)

对数函数练习题(有答案) 1.函数y =log (2x -1)(3x -2)的定义域是( ) A .????12,+∞ B .????23,+∞ C .????23,1∪(1,+∞) D .??? ?12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2- x },且 x ∈A ,则有( ) A .1>x 2>x B .x 2>x >1 C .x 2>1>x D .x >1>x 2 3.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( ) A .1<a <b B .1 <b <a C .0 <a <b <1 D .0 <b <a <1 4.若log a 45 <1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45 或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是 A .增函数 B .减函数 C .先减后增 D .先增后减 6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( ) 7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 8.若函数f (x )=log 12 ()x 3-ax 上单调递减,则实数a 的取值范围是 ( ) A .[9,12] B .[4,12] C .[4,27] D .[9,27] 9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________. 10.不等式????1310-3x <3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数 f (x )=????12|x -1| ,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 . 13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________. 14.当0<x <1时,函数y =log (a 2-3) x 的图象在x 轴的上方,则a 的取值范围为________.

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

对数函数精选练习题(带答案)

对数函数精选练习题(带答案) 1.函数y = log 23 (2x -1)的定义域是( ) A .[1,2] B .[1,2) C.????12,1 D.??? ?1 2,1 答案 D 解析 要使函数解析式有意义,须有log 23 (2x -1)≥0,所以0<2x -1≤1,所以1 2

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

指数对数函数练习题

指数函数和对数函数基础练习题 姓名:_______ 一.基础知识 (一)指数与指数幂的运算 1.根式的概念:一般地,如果______,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =, 当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的正分数指数幂的意义,规定: __________= __________ 正数的负分数指数幂的意义,规定 __________= __________ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)__________= __________ (2)__________= __________ (3)__________= __________ (二)指数函数及其性质 1、指数函数的概念:一般地,函数____________________ 叫做指数函数,其中x 是自变量,函数的定义域为__________ 注意:指数函数的底数的取值范围,底数不能是负数、零和1.

注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是______或________; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当 R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二.练习题 1.64的6次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2.下列各式正确的是( ) A.(-3)2=-3 B.4 a 4=a C.22=2 D .a 0=1 3.(a - b )2 +5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 4.若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 5.根式a -a 化成分数指数幂是________. 6.( )() () [ ] 2 13 43 1 01 .0-16 2---064075 .0--308 7-+++? =________ 7.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( ) A .a m a n =a mn B .(a m )n =a m +n C .a m b n =(ab )m +n D .(b a )m =a -m b m 8.设y 1=40.9,y 2=80.48,y 3=(1 2)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 9.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( ) A .a >2 B .11 D .a ∈R 10.设13<(13)b <(1 3)a <1,则( ) A .a a

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <21-) (B) y = x 3+1(x ∈R ) (C) 1 -=x x y (x ∈R ,x ≠1) (D) ???<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ??≥=-2422x x , 得 x = 3. 由 ? ??<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ??<-≥-=).1(4)2(22x x x x y ,的图像(如图),依图更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x )的图像是 ( ) (A ((B (C

对数运算、对数函数经典例题讲义全

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______. 2.常用对数与自然对数 通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系 若a >0,且a ≠1,则a x =N ?log a N =____. 对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质 (1)1的对数为____; (2)底的对数为____; (3)零和负数__________. 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4 2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( ) A .①③ B .②④ C .①② D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值围是( ) A .a >5或a <2 B .2

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

最新高一数学必修一对数函数练习题

对数函数练习题 1、下列图像正确的是( ) A B C D 2、若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是( ) A B C D 3、函数y =)12(log 2 1-x 的定义域为( ) A .(21,+∞) B .[1,+∞) C .( 2 1,1] D .(-∞,1) 4、已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ) A .a > 1 B .0≤a < 1 C .0<a <1 D .0≤a ≤1 5、lg(53++53-)的值为( ) A.1 B. 21 C.2 D.2 6、函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为 A .[0,1] B .[1,2] C .[2,4] D .[4,16] 7、若22log ()y x ax a =---在区间(,13)-∞-上是增函数,则a 的取值范围是( )A .[23,2]- B .)223,2?-? C .(223,2?-? D .()223,2- 8、若函数f (x )=log a x (0

10、 已知函数2log ()3 x x f x ?=? ?(0)(0)x x >≤,则1[()]4f f 的值是 ( ) A .9 B .19 C .-9 D .-19 11、函数),1(,11ln +∞∈-+=x x x y 的反函数为 ( ) A.),0(,11+∞∈+-=x e e y x x B. ),0(,11+∞∈-+=x e e y x x C .)0,(,11-∞∈+-=x e e y x x D. )0,(,11-∞∈-+=x e e y x x 12、计算:log 2.56.25+lg 100 1+ln e +3log 122+= 13、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ ______ 14、若)10(15 3log ≠>--+=a a x x x f a a 且的奇偶性 17、若1)1(log )1(<-+k k ,则实数k 的取值范围是 18、函数y =(log 41x )2-log 4 1x 2+5 在 2≤x ≤4时的值域为 19、求函数213 2log (32)y x x =-+的单调区间。 20、若函数22log ()y x ax a =--- 在区间(,1-∞-上是增函数,a 的取值范围。 21 、判断函数2()log )f x x =的奇偶性。 22、已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范 围.

相关文档
最新文档