密度转化为浓度的公式

密度转化为浓度的公式

密度转化为浓度的公式说明

在很多现场,由于现场实验室的条件有限,不能及时的进行过滤烘干等操作,给浓度计的标定工作进度带来很多不便,这样的现场多采用密度标定的方法对仪表进行标定以及精度验证工作,虽然在精度上存在的误差相对较大,但是也能够满足现场的生产的要求。

具体的标定细节如下:

需要的器具:量筒(2000mL)便携式电子秤(5Kg)

1 测量量筒的净重。

2 用量筒接取矿浆,对溅到外侧的矿浆进行擦洗,秤量量筒的总重。

3 计算量筒内矿浆的密度?浆=M

V

4 将计算的矿浆密度带入下列公式就能计算出矿浆的密度。

H(浓度) =?干矿(?浆??水)

?浆(?干矿??水)

公式说明:

?干矿------------------矿石的真比重(高点密度)

干矿的真比重即程序内的高点密度,如果采用此公式进行标定,高点密度这项参数必须要准确,这提供项参数应该有现场的实验室提供。如果实验室不能也可以采用烘干的方法计算出干矿的正比重。

公式:?干矿=

?浆?H

?浆?H?1+1

H:采用烘干法测得的浓度(建议多次测量求的平均值减小误差)?水------------------纯水的密度(1.0g/ml)

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

密度计算公式

一、密度计算公式 1. ρ表示_________,m表示________,V表示____________ 2.密度的国际单位是___________ 3. 1g/cm3=________kg/m3 7.9×103kg/m3=_______g/cm3 4. 水的密度为___________________, 它表示:________________________ 5.体积单位换算 1cm3=_________mL=_________m3 1dm3=__________L=__________m3=______cm3 例一.近年来科学家发现了宇宙中的中子星密度可达1×1014 t/m3,一个体积为33.5cm3的中子星的质量大 例2、一块冰的体积为30L,如果全部熔化成水,则体积是多少?(冰的密度为0.9×103kg/m3) 约是多少kg?

二、重力的计算公式:G=mg 1. G表示_________,m表示________,g表示____________ 2.g=___________表示_________________ 3.重力的方向为___________ 一个苹果的质量约为200g,其重力约为_________ 某同学的体重为588N,则其质量为_________ 三、压强计算公式 1. p表示_________,F表示________,S表示____________ 2.压强的国际单位是___________ 3.1Pa=________N/m2 4. 人站立时对地面的压强为______________, 它表示:________________________ 5.单位换算 1cm2=________m2 例1、质量为7.9Kg的正方体铁块,放在1m2的水平桌子中央,铁的密度是7.9×103Kg/m3,(g取10N/Kg)。 求:(1)铁块对桌面的压力和压强。 (2)加上10N水平向右的拉力后,使铜块在桌面上做匀速直线运动时,铜块对桌面的压力和压强。

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

真密度计算公式

真密度计算公式 根据测试原理,其具体计算方法如下所述: 仪器气路结构图示 关键词: P1:未进气前基准腔和测试腔联通后的压力 P2:测位阀关闭,给基准腔进气达到的压力 P3:基准腔进气后,打开测位阀,基准腔和测试腔联通后的压力 V基:基准腔体积 V样品管:样品管的空管体积 V接:接头体积 V样品:样品骨架体积 V测:测试腔体积 基准腔:指进氮阀、测位阀、排空阀、扩展腔阀和压力传感器之间的腔体。 扩展腔:指扩展腔阀后面的腔体。 测试腔:指侧位阀下面的腔体(样品管体积和接头体积,不包括样品管中样品体积)。外观体积:指用尺子等工具,测量出规则样品的相关尺寸,经过计算得出的体积。 骨架体积:指仪器测试出来的待测样品体积。

开孔体积:指样品开孔的体积。 开孔率:指样品开孔体积占样品外观体积的百分比。 闭孔率:指样品闭孔体积占样品外观体积的百分比。 8分法:指把一个规则的长方体材料,切割3次,8等分。如下图所示 打开测位阀,使测试腔和样品池联通,等压力稳定后,记录此时压力值P1。然后关闭测位阀,打开进气阀,给基准腔充气,充到指定压力后,关闭进气阀,等压力稳定后,记录此时压力P2。 此时系统内(指基准腔和测试腔)气体的摩尔量为: n1RT=P1*V测+P2*V基(1)再打开测位阀,让基准腔和样品池,等压力稳定后,记录此时压力P3。 此时系统内气体摩尔量为: n2RT=P3*(V测+V基) (2)由于在此打开测位阀前后,系统内气体总的摩尔量没有发生任何变化,所以可以得出下面的公式: n1RT= n2RT (3) 由公式(3)可得出公式(4): P1*V测+P2*V基= P3*(V测+V基) (4)公式(4)进过变化,可等处公式(5): V测=(P2-P3)*V基/(P3-P1) (5) 而V测=V样品管+V接-V样品(公式6),因此,公式(5)可变成如下公式(7):V样品= V样品管+V接-(P2-P3)*V基/(P3-P1)(7)因此,该样品的相关测试结果如下: 真密度=样品质量/样品的骨架体积=****g/ml 一般孔隙率指的是开孔率。 开孔率=开孔体积/外观体积*100% 开孔体积=外观体积-骨架体积

矿浆浓度的表示方法和测定.doc

一、矿浆浓度的表示方法和测定 矿浆浓度是指矿浆中固体矿粒的含量。 矿浆浓度通常有三种表示方法:(1)固体含量百分数(%)—表示矿浆中固体重量(或体积)所占的百分数。矿浆浓度用体积表示比用重量表示更准确些,但为了计算方便,通常采用的是重量表示法。 (2)液固比—表示矿浆中液体与固体重量(或体积)之比。液固比又称稀释度。 (3)固液比—表示矿浆中固体与液体重量(或体积)之比。固液比又称矿浆稠度。 1、重量百分浓度R 利用矿浆和固体进行计算: R = [Q/(Q+W)]×100% =( Q/G)×100% (9 — 4) 式中 Q ——矿浆中固体重量,克; W ——矿浆中液体(水)的重量,克; G ——矿浆重量,克。 此法测定浓度比较精确,适用于现场流程考查、实验室各种小型选矿试验对各作业浓度的测定。但矿浆需要进行干燥,时间长、耗电多,适应不了现场调节工艺流程的及时要求。 2、利用矿物和矿浆比重进行计算,其公式为: R = [δ(δn-1)/δn(δ-1)]×100% 式中δ——矿物比重;一般可根据不同选别作业的矿物,实验室预先测出其比重。 δn——矿浆比重。 3、浓度壶法测矿浆浓度 所谓浓度壶既是选矿过程中用来直接测定矿浆浓度的壶形器具,其目的是快捷、简便、易学可靠。 人工测定矿浆浓度,一般采用间接法,即先测矿浆比重,间接算出矿浆的浓度。具体做法是:先称量一定容积(用浓度壶)的矿浆试样,即可算出矿浆比重;矿石比重经过测定是已知的,根据公式即可算出被检查矿浆的浓度。

由于检查浓度是经常性的检验工作,为了适应调节工艺流程的及时要求,省去现场每次测定浓度的计算工作,方便操作,有利于及时调整浓度。选矿厂一般都根据选别不同过程的矿物比重,针对容积一定,重量已知的浓度壶,算出某一矿浆重量下的浓度。即将不同矿浆重量G ,换算成不同的矿浆浓度R ,然后制成一一对应的表格,通称为矿浆浓度查对表。 浓度壶通过秤出浓度及矿浆总重量来直接通过查表得到对应矿浆浓度,那么应找出总重量与矿浆之间的函数关系,这里首先来介绍一下相关参数的概念。 矿浆浓度(C):矿浆中矿物重量与矿浆总重量的百分比。 矿浆比重(y ):单位体积中矿浆的重量。 矿石比重(δ):单位体积中的矿石的重量。 浓度壶重量用W1表示,矿浆与浓度壶的总重量用W表示。浓度壶的体积用V表示(一般用1000ml ),矿石的体积用V石,矿浆中所含水的体积用V水表示。那么 c= V V δ石……………………………………………○ 1 c=W W V -δ石……………………………………………○ 2 W-W1-V 水=V石δ…………………………………………○ 3 由○1○2○3联立得:c=) δδ1()1(--y y …………………○ 4 再由○4联立W=Vy ,得: W= W C V +--) δ 1 1(11 通过以上的计算可知,只要浓度壶给定条件后,对某一种矿石来说矿浆的浓度与总重量之间存在一对应的函数关系,由此可制成总重量与矿浆浓度对应关系表。 如何编制矿浆浓度表?选矿厂常用的浓度壶容积有1000毫升、500毫升、250毫升等。为了浓度和细度的测定尽可能准确,对于粒度组成较不均匀的矿浆,如球、棒磨排矿可采用500-1000毫升的浓度壶进行测定;对于粒度组成较均匀

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

钢的密度及钢管的计算公式

钢的密度为:cm3 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位)计算公式符号意义 计算举例 圆钢盘条(kg/m) W= ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= ×1002= 螺纹钢(kg/m) W= ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量= ×12 2= 方钢(kg/m) W= ×a ×a a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= ×202= 扁钢 (kg/m) W= ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= ×40 ×5= 六角钢(kg/m) W= ×s×s s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= ×502=17kg 八角钢 (kg/m) W= ×s ×s s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= ×802= 等边角钢 (kg/m) = ×[d (2b – d )+ (R2 – 2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为,r 为,则每m 重

量= ×[4 ×(2 ×20 – 4 )+ ×(– 2 × 2 )]= 不等边角钢 (kg/m) W= ×[d (B+b – d )+ (R2 – 2 r 2 )] B= 长边宽 b= 短边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为,r 为,则每m 重量= ×[4 ×(30+20 – 4 )+ ×(– 2 × 2 )]= 槽钢 (kg/m) W= ×[hd+2t (b – d )+ (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚 R= 内弧半径 r= 端弧半径 求80 mm ×43mm ×5mm 的槽钢的每m 重量。从冶金产品目录中查出该槽钢t 为8 ,R 为8 ,r 为4 ,则每m 重量= ×[80 ×5+2 ×8 ×(43 – 5 )+ ×(82–4 2 )]= 工字钢(kg/m) W= ×[hd+2t (b – d )+ (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚 R= 内弧半径 r= 端弧半径 求250 mm ×118mm ×10mm 的工字钢每m 重量。从金属材料手册中查出该工字钢t 为13 ,R 为10 ,r 为5 ,则每m 重量= ×[250 ×10+2 ×13 ×(118 –10 )+ ×(102 –5 2 )]= 钢板(kg/m2) W= ×d d= 厚 厚度4mm 的钢板,求每m2 重量。每m2 重量= ×4= 钢管(包括无 缝钢管及焊接 钢管(kg/m) W= ×S (D – S ) D= 外径S= 壁厚外径为60 mm 壁厚4mm 的无缝钢管,求每m 重量。每m 重量= ×4 ×(60 –4 )

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

递推公式到通项公式

已知数列的递推公式求通项公式的方法 1.累加法:递推关系式为采用累加法。“累加法”实为等差数列通项公式的推导方法。 2.累乘法:递推关系式为采用累乘法。“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1),(2),都可以通过恒等变形,构造出等差或等比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。 4. 和化项法:递推关系式为或一般利用进行转化。 一. 累加法: 递推关系式必须符合的特征:1()n n a a f n +-=, 当()f n 为常数时,{}n a 即为等差数列. 例1.已知12a = , 1n a +=2132n n a -+?求数列{}n a 的通项公式. 变式训练:已知数列{}n a 满足1111,((1) n n a a a n n n -==+≥2)-.求数列{}n a 的通项公式. 变式训练:已知???-+==+)12(11 1n a a a n n ,求数列{}n a 的通项公式. 变式训练:数列{}n a 中,6112000,n n a a a n +==+,求1.a 变式训练:数列{}n a 满足12a =,12,(1)n n n a a n n +=+-≥,求{}n a 的通项公式。 二.累乘法:递推关系式必须符合的特征: 1()n n a f n a +=,当()f n 为常数时,{}n a 即为等比数列 例2.已知11,a = 11 n n n a a n +=?+,求数列{}n a 的通项公式 变式训练:已知数列{}n a ,112,2n n a a a +==,求数列{}n a 的通项公式. 变式训练:已知?????+==+n n a a a n n 1211,求数列{}n a 的通项公式. 三.构造法1: 递推关系式为特征为:1n n a pa q +=+,由此式构造出1()n n a x p a x ++=+的形式.则{}n a x +是等比数列 例3.已知11,a =123n n a a +=+,求数列{}n a 的通项公式 变式训练:已知???+==+5431 1n n a a a ,求数列{}n a 的通项公式 变式训练:已知???≥+-==-) 2(43211n a a a n n 求数列{}n a 的通项公式 四.构造法2: 取倒数法 例.(倒数法)已知数列{a n }中,a 1=5 3,a n +1=12+n n a a ,求{a n }的通项公式.

如何由递推公式求通项公式

浅谈由递推公式求数列通项公式 数列部分知识是高考必考部分,有许多学生感觉自己等差,等比数 列还学的可以但许多时候数列部分题不会求数列通项公式式。而已知 数列递推关系求通项公式是高考的热点之一,是一类考查思维能力的 题型,要求考生进行严格的逻辑推理。想找到数列的通项公式,重点 是递推的思想:从一般到特殊从特殊到一般;化归转换思想,通过适 当的变形,转化成等差数列或等比数列,将复杂的转为简单,达到化 陌生为熟悉的。那么下面我就已知递推关系求数列通项的基本类型作 一简单归纳。 分析:我们可用“累加”或“累积”的方法即 十 a n a n —1 或 a n = a n -1 a n -2 例1.(1)已知数列{a n }满足a1 = 1,an ^=a n + 2 1 ,求数列 2 n +n 式。 1 1 1 1 an — an = ------- = ----------- =—一 --- n 2 +n n(n +1) n n +1 /. a n =(a n -a n j) +(a n 丄一a n j) + ..... +(a 2- a i ) +a i 1111 1 1 1 =(―——)+(— -—)+ ……+ (:-1 )*1 -?_丄 n T n n -2 n T 1 2 2 一 2 n (2) 2s n = (n +1)a n /. 2s n -1 = na n -i (n > 2) 两式相减得: 2a n =(n+1)a n-na n-i (n >2) 类型一:a n +1 - a n = f (n)或 a"1 ⑵已知数列3满足心”管 ,求数列{屛的通项公式。 a 2 ...—a 1 a 1 {an }的通项 a n = (a n -a n -1) +(a n -1 —an -2)+ ....... +(a 2-ai)+ a i 解:(1)由题知:

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

FFT在功率谱密度计算中的应用

F F T在功率谱密度计算 中的应用 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

FFT在功率谱密度计算中的应用 一、FFT算法理论依据和编程思想 FFT算法的基本思想: 考察DFT与IDFT的运算发现,利用以下两个特性可减少运算量: Ⅰ)系数是一个周期函数,它的周期性和对称性可利用来改进运算,提高计算效率。如: 因此 利用这些周期性和对称性,DFT运算中有些项可合并; Ⅱ)利用W N nk的周期性和对称性,把长度为N点的大点数的DFT运算分解为若干个小点数的DFT。因为DFT的计算量正比于N2,N小计算量也就小。 FFT算法正是基于这样的基本思想发展起来的。它有多种形式,下面是按时间抽取的FFT(N点DFT运算的分解) 先从一个特殊情况开始,假定N是2的整数次方,N=2M,M:正整数 1.将N点的DFT分解为两个N/2点的DFT: 首先将序列x(n)分解为两组,一组为偶数项,一组为奇数项 r=0,1,…,N/2-1 将DFT运算也相应分为两组: 其中X 1(k)和X 2 (k)分别是x 1 (r)和x 2 (r)的N/2点DFT。 可见,一个N点的DFT可以分解为两个N/2点的DFT,这两个N/2点的DFT再按照上面 (1)式合成为一个N点DFT,注意到,X 1(k),X 2 (k)有N/2个点,即k=0,1,…, N/2-1,由(1)式得到X(k)只有N/2点,而实际上X(k)有N个点,即k=0, 1,…,N-1,要用X 1(k),X 2 (k)表示全部X(K)值,还必须应用系数w的周期性和 对称性。 (k)的(N/2)~N-1点表示: 由X(k)= X 1(k)+w k N X 2 (k), k=0,1,2,…,N/2-1

功率谱密度 的估计

功率谱密度的估计 原始波=余弦波+白噪声 这个实验采用了两个输入,一个是白噪声,一个是有用信号和噪声信号作为输入时,他们的功率谱密度的仿真图像,并将他们进行对比。 平稳随机信号的功率谱密度(PSD )是相关序列的离散傅里叶变换: ()()jw m XX x P w r m e ∞ --∞=∑ 采用间接法计算噪声信号的功率谱。 间接法,又称自相关法或者BT 法,在1985年由布莱克曼与图基首先开拓。间接法的理论基础是维纳-辛钦定理。他是由N 个观察值x(0),x(1),……,x(N-1),估计出自相关函数R (m ),然后再求R (m )的傅里叶变换作为功率谱密度的估计。 ()(),||1M jw jw m N m M S e R m e M N -=-=<=-∑ clear all; randn('state',0) NFFT=1024; %采样点数 Fs=1000; %取样频率(单位为Hz ) t=0:1/Fs:.2;

y1=cos(t*20*pi); %余弦序列 figure(1) plot(t,y1); ylabel('余弦序列'); grid on; %余弦序列的图像: %白噪声 m=(0:NFFT-1)/Fs; y=0.1*randn(size(m)); %产生高斯白噪声。 figure(2); plot(m,y); title('白噪声波形'); grid on;

%白噪声的自相关函数 [cory,lags]=xcorr(y,200,'unbiased'); %计算白噪声的自相关函数 figure(3) plot(lags,cory); %自相关函数(无偏差的),其中,cory为要求的自相关函数,lag为自相关函数的长度。 title('白噪声相关函数'); grid on;

递推公式转化通项公式

利用递推公式求通项公式 (1)定义法:利用等差等比的定义 (2)配凑法 (3)叠加法 (4)叠乘法 【例题】 根据下列条件求数列的通项公式. (1)a1=2,a n+1=3a n+2; (2) a1=2,a n+1=a n+n. (3)a1=1,2n-1a n=a n-1(n≥2). 【及时巩固】 根据下列条件求数列的通项公式. (1)a1=4,a n+1=4a n-3; (2)a1=2,a n+1=a n+2n+1; (3)a1=1, a n=3 n-1a n-1(n≥2).课后作业 1、数列{a n}中,a1=2,a n+1=1- 1 n a (n∈N*),则a4= ( ) A.-1 B. 1 2 C.1 D.2 2、腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A.289 B.1 024 C.1 225 D.1 378 3、列{a n}中,a1=2,a n+1=a n+ln???? 1+ 1 n,则a n=() A.2+ln n B.2+(n-1)ln n C.2+n ln n D.1+n+ln n 4、设{ n a}是首项为1的正项数列,且22 11 (1)0 n n n n n a na a a ++ +-+= (n=1,2,3,…),则它的通项公式是 . 5、在数列{a n}中,a1=1,a n+1=2a n+3(n∈N*),则a n= . 6、数列{a n}满足a1=33,a n+1-a n=2n,则a n= ; 7、数列{ n a}中, 1 a=1, 1 1 1 n n n na a a + + =(n∈N*),求 n a.

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=12,a n +1=a n +1 n 2+n ,求a n . [解] 由条件,知a n +1-a n = 1 n 2+n = 1 n n +1=1 n -1 n +1 ,则(a 2-a 1)+(a 3-a 2)+ (a 4-a 3)+…+(a n -a n -1)=? ????1-12+? ????12-13+? ????13-14+…+? ???? 1n -1-1n , 所以a n -a 1=1-1 n . 因为a 1=12,所以a n =12+1-1n =32-1 n . 2.a n +1=f (n )a n 型 把原递推公式转化为 a n +1a n =f (n ),再利用累乘法(逐商相乘 法)求解,即由a 2a 1 =f (1),a 3a 2 =f (2),…, a n a n -1 =f (n -1),累乘 可得a n a 1 =f (1)f (2)…f (n -1).

[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n . [解] 由a n +1= n n +1 ·a n ,得 a n +1a n = n n +1 , 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2 n -1×…×12×23=23n .即a n =2 3n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型 对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1 ,可令a n +1 +t =b n +1换元即可转化为等比数列来解决. [例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n . [解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则 t =-3. 故递推公式为a n +1+3=2(a n +3). 令b n =a n +3,则b 1=a 1+3=4,且 b n +1b n = a n +1+3a n +3 =2. 所以{b n }是以b 1=4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型 (1)一般地,要先在递推公式两边同除以q n +1,得 a n +1q n +1 = p q ·a n q n +1 q ,引入辅助数列{b n }? ????其中b n =a n q n ,得b n +1=p q ·b n +1 q ,

矿浆浓度及其检测

矿浆浓度现场快速检测 一、浓度的概念 矿浆浓度是指矿浆中固体矿粒的含量。矿浆浓度通常用固体含量百分数(%)——表示矿浆中固体重量所占的百分数。 重量百分数浓度R ,利用矿浆和固体进行计算 : 此法测定浓度比较精确,适用于现场流程考查、实验室各种小型选矿试验对各作业浓度的测定。 体积平衡方程式:1 QR Q R Q V -+ ?=δ 解方程得:) 1(δδδ -+= R V Q 式中 R —— 矿浆浓度,%; Q —— 矿浆重量,克; δ—— 原矿矿石真比重(现场比重为2.7g/cm 3),g/cm 3 V —— 浓度壶体积,ml ; 按如上公式计算编制矿浆浓度表。 二、矿浆浓度的测定 磨矿分级作业的产品细度与浓度有密切的关系,浓度的变化导致细度的改变。因此对磨矿分级作业浓度的检查与控制,是十分必要的,它将有助于磨矿效率和选别指标的提高。 选矿厂检查矿浆浓度,通常采用浓度壶进行测定。具体做法是: (1)先校正台秤(或粗天平)的零点; (2)检查空浓度壶的重量与体积,是否与所查浓度壶表相符; (3)按照取样规定,用取样勺采矿浆试样,小心谨慎地将所采

样品倒入浓度壶中,在倒入过程中轻轻地摇动取样勺,不使矿浆沉淀,并将勺中矿浆全部倒入壶中,直到浓度壶溢流口有矿浆流出时为止。待溢流口矿浆停止流动时用食指捂住溢流口,以防壶中矿浆流出; (4)用抹布将浓度壶外壁揩净,在秤盘上进行称重; (5)根据称得的壶加矿浆总重量,即可在浓度表上查出矿浆浓度。 五、矿浆浓度表的编制 由于检查浓度是经常性的检验工作,为了适应调节工艺及时的要求,省去现场每次测定浓度的计算工作,方便操作,有利于及时调整浓度。选矿厂一般都根据入磨的矿石比重,针对容积一定,重量已知的浓度壶,算出某一矿浆重量下的浓度。即将不同矿浆重量G,换算成不同的矿浆浓度R,然后制成一一对应的表格,通称为矿浆浓度查对表。 选矿厂常用的浓度壶容积有1000毫升、500毫升、250毫升等。为了浓度和细度的测定尽可能准确,对于粒度组成较不均匀的矿浆,如球磨排矿可采用500-1000毫升的浓度壶进行测定;对于粒度组成较均匀的矿浆,如分级机或旋流器的溢流的矿浆,可用250-500毫升的浓度壶进行测定。但为了方便,现场一般都统一采用同一种浓度壶。 根据公式可以算出在不同的矿浆浓度下,相应的矿浆重量,列成表所示的矿浆浓度查对表【原矿比重2.70 g/cm3】

求数列通项公式的十一种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333n n n n n a a +++=++, 则 111 21 3333 n n n n n a a +++-=+,故

相关文档
最新文档