光电化学综述

光电化学综述
光电化学综述

光电化学传感器的应用研究进展

摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。

关键词:光电化学;传感器

一、引言

20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。

待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。由于采用电化学检测,同光学检测相比,其设备价廉。

二、光电化学的概述

1、光电化学的工作机理

要了解光电化学的工作原理,首先得研究光催化技术。光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。这里以半导体二氧化钛(TiO

)为例介绍一下光电化

2

学的工作原理。

半导体TiO

具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构

2

成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面区在受到能量

大于其带隙能量的光辐射时,价带中电子会受到激发跃迁到导带。由于在半导体中存在着带隙,所激发的电子的驰豫过程比金属中的激发电子要慢得多,高能量的光激发可在半导体中产生电子-空穴对,拥有纳秒(ns)大小的足够寿命。其中电子居于较高的能量状态,并可作为一个还原剂,而价带中的空穴则具有较高的氧化电势,只要这些电荷载流子具有足够长的寿命,即它们能够被吸附的反应物所捕获,分别进行氧化和还原反应,而不会复合,就有可能被用来作为催化反

应的催化剂(图1)。吸附在TiO

2表面的O

2

会捕获电子,形成超氧离子,从而

阻止光生电子与空穴的复合[1],生成的超氧离子在溶液中通过一定的反应形成

H 2O

2

,进而转化为羟基自由基。

Fig.1 The charge reaction of TiO2 under the illumination

由于光生电子和空穴是相伴而生,且数量相等,两者接触时必然会发生复合,

为了解决这一问题,通过采用外加电压迫使光生电子向对电极方向移动,电子就可能与光生空穴发生分离,减少或避免了发生简单复合的机会,从而发展出了一种新型的技术——光电化学。

目前,光电化学主要是以半导体纳米微粒为研究对象(图2)[2],在光照射作用下,半导体微粒会产生电子-空穴对,并且流向粒子表面,与溶液中的氧化剂或还原剂反应,生成相应的产物,使得光生电子和空穴得到有效的分离。当

Fig.2 Photoelectrochemical progress of semiconductor nanoparticles.

极化电势大于E

redox 时,则发生氧化反应,产生阳极光电流(I

a

);当极化电势小

于E

redox 时,则发生还原反应,产生阴极光电流(I

c

);当极化电势既不利于氧化

反应也不利于还原反应时,电极附近的光生电子或空穴会直接进入到电极里,产生微弱的光电流。同时,由于半导体微粒的尺寸在纳米范围内,粒子尺寸小于载流子的自由程,因此可以降低光生载流子的复合,提高光能利用效率。

2、光工作电极的制备

光电化学反应体系是在传统的光催化反应体系基础上发展而来的,一般有光源系统和三电极体系构成,其中对电极是金属电极,参比电极可以是饱和甘汞电极或氯化银电极,至于工作电极目前应用最多的是TiO

2

电极。光电极即工作电极

是光电化学体系中最为关键的部件,且需要制备。半导体TiO

2

材料的常用制备方法有溶胶凝胶法、水热法、热溶剂法、直接氧化法等。

实验中,我们常用的方法是直接氧化法。直接氧化法也是制备TiO

2

纳米材料的一种通用方法,可以采用阳极氧化法或者通过氧化剂氧化钛片制得。在制备

的过程中,通过加入无机盐可以控制TiO

2纳米棒的晶相,如:F

-

和SO

4

2-

可以形

成锐钛矿型TiO

2,Cl

-

可以形成金红石型TiO

2

。目前,阳极氧化法被广泛应用于

TiO

2

纳米管的制备,且随着外加电压的变化,可以得到不同长度的纳米管。

Fig.3 SEM and TEM images of TiO2 nanoparticles (A, B); nanorods (C, D);

nanowires (E, F); and nanotubes (G, H).

3、光工作电极的修饰

一个具有实际应用价值的光电化学体系必须具有光照稳定性,选择性,高效和宽的光谱响应。而一般的半导体还不能全部满足以上要求,如金属硫化物由于其禁带宽度比较窄,对可见光非常敏感,但不稳定,易被光降解。而金属氧化物

TiO

2相当稳定,但是禁带宽度(E

g

= 3.2 eV)比较宽,只能在紫外区显示光化学

活性。然而,若对半导体材料TiO

2

表面进行修饰,如贵金属表面沉积、半导体偶合、表面敏化和金属离子掺杂等方法可以扩展光响应范围至可见区,有效阻止

电荷在转移过程的复合,从而改善TiO

2

光电化学性质。

4、光电化学反应的影响因素

(1)外加电压

在光电化学反应中,通过恒电位仪施加的电压对光电化学有着重要的作用。

大量的研究结果表明,在没有外加电压仅有光照或无光照仅加电压时,TiO

2

光电

化学体系中所产生的电流非常微弱,说明光电化学反应必须用大于TiO

2

禁带宽度

能量(E

g

= 3.2 eV)的光源激发产生电子和空穴,然后利用外加的电压使电子和

空穴分离,才能达到光电催化的目的。

一般来说,在光电降解有机物的反应中,存在一个最佳电压值,不同的实验

条件下得到的最佳电压值是不同的。比如,在采用TiO

2

颗粒膜电极[3],250 W 氙灯或1000 W 卤素灯对4-氯苯酚进行光电催化降解时,选择的外加电压为600 mV

(SCE)。采用TiO

2

/Pt/玻璃薄膜电极[4],30 W紫外灯对可溶性染料进行光电降

解时,采用的最佳电压为800 mV(SCE)。而Kim等用TiO

2

薄膜电极和15 W 紫外灯对甲酸进行光电降解时,外加电压达到了2.0 V(SCE)。

(2)pH值的影响

在光催化反应中,溶液的pH值对反应动力学的影响较为复杂。一般认为,

改变pH值将改变溶液中TiO

2界面电荷性质,因而影响电解质在TiO

2

表面上的吸

附行为。但在光电化学反应体系中,由于存在外加阳极偏压,溶液初始pH值对有机物降解动力学的影响更为复杂。有研究表明[5],在不同的pH值条件下,TiO

2电极有不同的伏安特性:当光照射时,极限光电流是溶液pH值的函数,pH值为5时极限光电流最大,在pH值为8时要小一些,pH值为3时最小。然而,不同pH值条件下光电化学反应的速率常数的大小顺序为:pH8 > pH5 > pH3,原因是由不同的机理造成的。

(3)光强的影响

由于TiO

2

的禁带宽度为3.2 eV,所用的激发光波长必须小于387 nm。目前用的最多的是人工光源,如:中压汞灯、高压汞灯、紫外线杀菌灯等,而太阳光利用率比较低,一般均小于5%。研究表明[6],低辐射时,反应速率常数k与光辐射度I存在线性关系,高辐射时,k与I的平方根之间存在线性关系。一般来说,高强度的灯或集中的太阳光源,其光子效率较差。这是由于光强过大时,存在中间氧化物在催化剂表面的竞争复合;同时,随着光强的增加,电子与空穴增加,电子与空穴的复合也会增加。

(4)氧气的影响

氧气对有机物光电降解的影响主要来自两个方面,第一,氧气是有机物降解反应发生的必要条件,在反应过程中有机物和氧气分别被氧化和还原。第二,氧

气直接影响TiO 2

半导体电极的开路电位光电压响应[7],如当半导体电极存在于氧气饱和的0.05 mol L -1

的NaOH 溶液中时,光电流响应值比在用N 2饱和的溶液中要小12.5%左右,这是因为当没有氧气存在时,光生电子不会被猝灭,而是向对电极运动,形成较大的光电流;但是当有氧气存在时,绝大部分光生电子被猝灭,流向对电极的相对来说比较少,所以电流也要小得多。可见,氧气会影响光电化学反应中外电路中电流的大小。

(5)电子接受剂

在光催化反应中,电子接受剂是氧,但是对于光电化学反应来说在无氧的条件下也可以有效进行,这说明光电化学反应中的电子接受剂不一定是氧,而可能是H +。如果是H +充当了光电化学反应中的电子接受剂,阴极上应该有氢气产生。同时,有研究[8]发现溶液pH 值随时间不断升高,这也证明光电化学反应中有氢气产生。因为在对电极上发生析氢后,溶液中H +减少,pH 值增加。当光电化学反应在氧气饱和的溶液中进行时,溶液pH 值也会随时间不断升高,但与N 2饱和的溶液相比较,pH 值的增加要小一些,说明氧气和H +

都是电子接受剂。

根据上面的分析我们可以知道,在光电化学反应降解有机物过程中,留在阳极上的空穴具有强的氧化能力,与水分子反应生成羟基游离基等氧化能力极强的氧化剂,使有机物氧化。而在无氧条件下时,具有很强还原能力的光生电子在阴极上同H +反应放出氢气。因此,光电化学方法不仅能消除有机污染物,同时还能产生大量洁净的氢能源,目前在这方面的研究还不多。

二、光电化学的应用研究

光电化学分析是在电化学方法基础上发展起来的一种新型的检测方法,该方法利用光和电两种方式作为信号的产生和检测,由于两者不会相互干扰,背景低,因此与电化学分析方法相比光电化学具有更高的灵敏度。近年来,随着新型半导体材料以及相关技术的不断涌现,光电化学半导体生物传感器得到了迅猛的发展,已经在微型化、集成化等方面显现出其独特的优越性,在生命科学、药物动力学、环境监测和食品等领域具有广阔的应用前景[9,10]。下面主要介绍了基于半导体生物传感器的光电分析方法应用研究。

目前,光电化学分析方法已经在DNA杂交(图4)[11,12]、免疫检测[13]、配体受体结合[14]等方面得到了广泛的应用。Liang等[15]通过光电化学分析方法成功检测了溶液中化学损伤的DNA,并利用光电化学生物传感器研究了Fenton 试剂对DNA的氧化损伤,以及氧化苯乙烯与DNA的加合物[16]。随后,他们[17]将葡萄糖氧化酶组装到传感器表面,模拟生物体内Fenton反应对DNA的损伤。郭良宏小组[18]采用光电化学生物传感器有效地检测了苯乙烯对DNA的损伤效应,为有机化合物潜在基因毒性的风险评估提供一个快速筛查工具。

Fig.4 Schematic illustration of the measurement of a photocurrent using a gold electrode modified with an anthraquinone-modified DNA duplex.

近年来,由于半导体纳米颗粒不仅能提高光化学反应效率,而且能与生物分子有效结合并能保持生物分子的活性,因此在光电化学检测中占有越来越重要的地位。半导体纳米粒子作为生物识别的发光标记物已被应用于DNA定量和杂交的检测。Willner小组[19-21]将CdS纳米粒子与乙酰胆碱酯酶相结合,利用CdS粒子的光电化学性质,实现了乙酰胆碱酯酶(AChE)抑制剂的检测(图5)。他们将CdS纳米粒子与AChE以共价结合的方式固定在金电极表面,在光照情况下,CdS纳米粒子会产生电子和空穴,但电荷之间的快速复合使得体系中并没有产生明显的光电流。当AChE底物硫代乙酰胆碱加入后,则会观察到明显的光电流,其原因是AChE将硫代乙酰胆碱催化水解为醋酸盐和硫代胆碱,硫代胆碱通过捕捉CdS纳米粒子所产生的空穴,抑制电子-空穴对的复合,使导带电子能够迁移

至电极表面从而产生稳定的光电流。当乙酰胆碱酯酶活性受到抑制时,光电流会下降,根据输出光电流的大小便可得到AChE抑制剂的浓度。Vastarella等[22]将CdS纳米簇与甲醛脱氢酶结合在金电极表面,对甲醛进行光电化学检测,该

方法的检测限达到1.37×10-6

mol L

-1

,且具有很好的稳定性。尽管基于半导体生

物传感器的光电分析研究还处在起步阶段,但是半导体纳米粒子与生物分子的结合构建了一种新型的光电化学体系,经生物分子修饰的半导体量子点的引入使得生物传感器微型化成为可能[23]。

Fig.5 Assembly of the CdS nanoparticle/AChE hybrid system used for the photoelectrochemical detection of the enzyme inhibitor.

光电化学半导体生物传感器是通过半导体光敏材料将光学系统与生物传感器结合在一起,使得生物传感器的检测灵敏度和稳定性得到了很大的提高,同时

也扩大了生物传感器的应用范围。Chee小组[24]设计了TiO

2

催化生物传感器,基于有机化合物易被光催化氧化降解,实现了河水BOD的测定,并且可以对水

样进行连续监控。金利通等[25]利用溶胶-凝胶浸渍-提拉法制备了TiO

2

光催化传感器,与流动注射法相结合,分析测定了D-葡萄糖溶液中化学需氧量(COD)。

在外加电压(0.4 V)及紫外光照射下,TiO

2

传感器表面会发生电荷转移并形成光电流,通过电流变化量与溶液中COD值的线性关系,可以得到待测样品的COD。Zen等[26]利用丝网印刷镀铜的碳电极(CuSPE)制成光催化电流型传感

器,用于磷酸盐缓冲溶液中溶解氧的检测,该光电化学方法具有良好的重现性。

三、展望

尽管基于半导体生物传感器的光电分析研究还处在起步阶段,但是半导体纳米粒子与生物分子的结合构建了一种新型的光电化学体系,经生物分子修饰的半导体量子点的引入使得生物传感器微型化成为可能。随着研究的不断深入,光电化学半导体生物传感器有望应用于食品分析、环境监测、生物检测和医学研究等领域,尤其在传感器领域中其应用前景非常广阔。

参考文献

[1] I. Izumi, W.W. Dunn, K.O. Wollboum, J. Phys. Chem. 84(1980)3207.

[2] W.W. Dunn, J. Am. Chem. Soc. 103(1981)3456.

[3] K. Vinodgopal, S. Hotchandani, P.V. kamat, J. Phys. Chem. 97(1993)9040.

[4] 符小荣,张校刚,宋世庚,应用化学,14(1997)77.

[5] J.M. Kesselman, N.S. Lewis, M.R. Hoffmann, Environ. Sci. Technol.

31(1997)2298.

[6] D.Y. Goswami, J. Solar Energy Engineering 119(1997)101.

[7] K. Vinodgopal, U. Stafford, K.A. Gray, P.V. Kamat, J. Phys. Chem.

98(1994)6797.

[8] 刘守新,刘鸿,光催化及光电催化基础与应用,北京,化学工业出版社,2006.

[9] A. Ikeda, M. Nakasu, S. Ogasawara, H. Nakanishi, M. Nakamura, J. Kikuchi, Org.

Lett. 11(2009)1163.

[10] C.B. Cohen, S.G. Weber, Anal. Chem. 65(1993)169.

[11] A. Okamoto, T. Kamei, K. Tanaka, I. Saito, J. Am. Chem. Soc. 126(2004)14732.

[12] I. Willner, F. Patolsky, J. Wasserman, Angew. Chem., Int. Ed. 40(2001)1861.

[13] N. Haddour, J. Chauvin, C. Gondran, S. Cosnier, J. Am. Chem. Soc.

128(2006)9693.

[14] D. Dong, D. Zheng, F.Q. Wang, X.Q. Yang, N. Wang, Y.G. Li, L.H. Guo, J.

Cheng, Anal. Chem. 76(2004)499.

[15] M.M. Liang, S.L. Liu, M.Y. Wei, L.H. Guo, Anal. Chem. 78(2006)621.

[16] M.M. Liang, L.H. Guo, Environ. Sci. Technol. 41(2007)658.

[17] M.M. Liang, S.P. Jia, S.C. Zhu, L.H. Guo, Environ. Sci. Technol. 42(2008)635.

[18] 贾素萍,梁敏敏,郭良宏,生态毒理学报,3(2008)350.

[19] I. Willner, B. Willner, E. Katz, Bioelectrochemistry, 71(2007)2.

[20] E. Katz, J. Wasserman, I. Willner, J. Am. Chem. Soc. 125(2003)622.

[21] R. Gill, F. Patolsky, I. Willner, Angew. Chem. Int . Ed. 44(2005)4554.

[22] W. Vastarella, R. Nicatri, Talanta 66(2005)627.

[23] M.L. Curri, P. Cosma, M.M. Della, Mat. Sci. Eng. C 22(2002)449.

[24] G.J. Chee, Y. Nomura, K. Ikebukuro, Biosens. Bioelectron. 21(2005)67.

[25] 金利通,陈俊水,张继东,Water Research 39(2005)1340.

[26] J.M. Zen, Y.S. Song, A.S. Kumar, Anal. Chem. 74(2002)6126.

精细化学品的概述

十二烷基苯磺酸钠的综述 --种精细化学品的概述 【摘要】精细化学品化学合成始于1856年,由Perkin第一次合成出精细化学品苯胺紫。目前世界上人工合成化合物约1000万种以上。专用化学品是化工产品精细化后的最终产品,专用化技术是精细化工最重要的标志,专用化学品的附加值要比精细化学品高得多,可以通过多种多样的专用化技术,如:分离纯化、复配增效和剂型改造等技术。现代精细化工是生产精细化学品和专用化学品工业的总称;随着现代工业的发展及人们越来越大的需求,精细化学品变得越来越重要。本文通过对一种精细化学品--十二烷基苯磺酸钠的结构、合成方法及用途进行综述,让人们更具体的了解精细化工的重要作用。 【关键词】精细化学品十二烷基苯磺酸钠合成发展趋势 近年来,随着科学技术的发展,人们越来越注重精细化学品的应用。表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。因此,表面活性剂在精细化学品中扮演者越来越重要的角色。十二烷基苯磺酸钠属于表面活性剂的一种,主要应用于洗涤方面,对人们的生活起着不可忽视的作用。 一、精细化学品的定义及分类 1.1 国内外许多学者的专著对“精细化工”( Fine Chemical Indust ry ) 和“精细化学品”( Fine Chemicals) 的定义都有论述, 并且不断地补充新的内涵, 它是发展的, 逐步趋于完善的。兹把各家论述的要点综述如下: (1)多品种、小批量; (2)采取分批方式间歇生产; (3)产品具有特定功能和特殊指标; 高纯度; 配方技术可以规定产品性能; 大量采用复配技术; (4)生产规模小, 适宜柔性生产线; (5)高附加值, 商品性能强; (6)多数为终端产品, 直接用于生产、生活和消费; (7)投资小, 见效快, 利润大; (8)技术密集度高, 竞争激烈。生产精细化学品的行业, 通称精细化工工业, 简称精细化工。凡能增进或赋予一种产品以特定功能, 或本身拥有特定功能的小批量、高纯度的化学品, 称为精细化学品, 这是国内较为一致的意见 1.2 中国精细化工产品包括11个产品类别: 1.农药; 2.染料; 3.涂料(包括油漆和油墨); 4.颜料; 5.试剂和高纯物质; 6.信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品); 7.食品和饲料添加剂; 8.粘合剂; 9.催化剂和各种助剂;10.(化工系统生产的)化学药品(原料药)和日用化学品;11.高分子聚合物中的功能高分子材料(包

绿色化学中的化学合成及垃圾处理

【摘要】绿色化学是20世纪末崛起的一门新兴学科,相对于传统化学,它是未来化学化工发展的主要方向之一。本文主要通过个别实例对绿色有机合成化学的概念,及有机合成中的绿色化学进展作了综述。 【关键词】绿色化学;有机合成;进展 ;垃圾;处理;技术 1引言 按照美国《绿色化学》(GreenChemistry)杂志的定义,绿色化学是指:在制造和应用化学产品时应有效利用(最好可再生)原料,消除废物和避免使用有毒的和危险的试剂和溶剂。 今天的绿色化学是指能够保护环境的化学技术。它可通过使用自然能源,避免给环境造成负担、避免排放有害物质。利用太阳能为目的的光触媒和氢能源的制造和储藏技术的开发,并考虑节能、节省资源、减少废弃物排放量。 传统的化学工业给环境带来的污染已十分严重,目前全世界每年产生的有害废物达3亿吨~4亿吨,给环境造成危害,并威胁着人类的生存。化学工业能否生产出对环境无害的化学品?甚至开发出不产生废物的工艺?有识之士提出了绿色化学的号召,并立即得到了全世界的积极响应。 2 绿色化学的进展 绿色化学是依靠科技进步,创造出单位产品产污系数最低,资源消耗最小的先进工艺技术;从化学反应的根本上减少污染。而不是对“三废”等进行处理的环保局部性终端治理技术。 2.1 开发原子经济性反应 1991年,美国斯坦福大学化学教授Trost首次提出了原子经济性(Atomeconomy)概念。即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,而不产生副产物或废物,实现废物的“零排放”(Zero emission)。原子经济性反应有利于资源利用和环境保护。对于大宗基本有机原料的生产而言,选择原子经济反应十分重要。目前,在基本有机原料的生产中,有的已采用原子经济反应,如丙烯氢甲酰化制丁醛、甲醇羰基化制乙酸、乙烯或丙烯的聚合、丁二烯和氢氰酸合成己二腈等。

化学类开题报告范文

化学类开题报告范文 篇一:开题报告化工类 山东科技大学 本科毕业设计(论文)开题报告 题目:年产10万吨煤气化制二甲醚工艺设计 学院名称化学与环境工程学院 专业班级化学工程与工艺10定单 学生姓名郭龙年 学号 201001111311 指导教师李敏 填表时间:2014年 2 月 27 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一 同存档。 篇二:化学毕业论文开题报告 07级化学专业开题报告小组成员组成及安排 本学期07级化学专业开题报告小组成员组成及安排见下表:

注意: 1.作(包括实验方案及可行性、参考资料、仪器及药品)后,确认具备开题资格方可以开题; 2.各小组开题时间或地点如有变动,请及时通知所负责学生; 3.开题报告在教务处网站下载,开题记录部分由开题报告小组秘书负责,开题结束后由学生整理手写誊好; 4.每位学生开题时间控制在8 min以内,可准备ppt,ppt报告记入总成绩; 5.开题结束后,开题报告及毕业论文任务书(见附件)材料(含电子文档)请由秘书收齐后及时交与系部周曾老师处统一保管存档。 湖南科技学院化生系2011.2.21 附件: 湖南科技学院本科毕业论文(设计)开题报告书 注:此表由学生本人填写,一式三份,一份留系里存档,指导老师和本人各保 存一份 篇三:应用化学专业毕业论文开题报告 兰州 本科毕业生论文开题报告 题目:CTAB/正丙醇/环己烷/水微乳液体系参数的测定以及相行为的研究 学院名称: 专业:应用化学 班级: 姓名: 学号: 指导老师:

中远红外探测器发展动态

中远红外探测器发展动态 1 红外光电探测器的的历史 红外探测成像具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点在军用和民用领域都得到了极为广泛的应用按照探测过程的物理机理,红外探测器可分为两类即热探测器和光电探测器。光电探测器的工作原理是目标红外辐射的光子流与探测器材料相互作用,并在灵敏区域产生内光电效应。因具有灵敏度高、响应速度快的优点,光电探测器在预警、精确制导、火控和侦察等红外探测系统中得到广泛应用。 红外焦平面阵列可探测目标的红外辐射,通过光电转换、电信号处理等手段,可将目标物体的温度分布图像转换成视频图像,是集光、机、电等尖端技术于一体的红外光电探测器H。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。红外光电探测器研究从第一代开始至今已有40余年历史,按照其特点可分为三代。第一代(1970s~1980s)主要是以单元、多元器件进行光机串/并扫描成像,以及以4×288为代表的时间延迟积分(TDI,time delay integration)类扫描型(scanning)红外焦平面列阵。单元、多元探测器扫描成像需要复杂笨重的二维、一维扫描系统结构,且灵敏度低。第二代红外光电探测器是小、中规格的凝视型(staring)红外焦平面列阵。M×N凝视型红外焦平面探测元数从1元、N元变成M×N元,灵敏度也分别从l与N1/2增长M×N1/2倍和M1/2。而且,大规模凝视焦平面阵列,不再需要光机扫描,大大简化整机系统。 目前,正在发展第三代红外光电探测器。探测器具有大面阵、小型化、低成本、双色(two-color)与多色(multi-color)、智能型系统级灵巧芯片等特点,并集成有高性能数字信号处理功能,可实现单片多波段融合高分辨率探测与识别。因此,本文将重点综述三代红外光电探测器的材料体系及其研究现状,并分析未来红外光电探测器的材料选择及发展趋势。 2 三代探测器的材料体系与发展现状 红外光电探测器的材料很多,但真正适于发展三代红外光电探测器,即响应波段灵活可调的双色与多色红外焦平面列阵器件的材料则很少。目前,主要有传统的HgCdTe和QWIPs,以及新型的二类SLs和QDIPs,共四个材料体系。作为

光电化学生物传感器的研究与应用

光电化学生物传感器的研究与应用 陈洪渊* 南京大学,南京,210093 *Email: hychen@https://www.360docs.net/doc/3614090640.html, 光电化学过程是指分子、离子以及固体物质在光的作用下,因吸收光子而使电子处于激发态继而产生电荷传递的过程。光电化学传感是基于物质的光电转化特性而建立起来的一种新兴的检测技术。待测物与光电化学活性物质之间的直接/间接相互作用,或者生物识别过程前后所产生的光电流(或光电压)的变化与待测物浓度之间的关系, 是光电化学传感定量的基础。在光电化学检测中,与电化学发光检测恰好相反,光被用作激发源来激发光活性物质,通过光激发所产生的电信号作为检测信号。由于采用不同能量形式的激发与检测信号,和电化学发光检测相同的是,光电化学传感的背景信号要比传统的电化学方法低。研究表明,在采用相同或类似的流程对同一种物质进行检测时,光电化学方法获得的检测限通常要比电化学方法低一个数量级。此外,由于利用电信号响应, 同传统的光学方法相比, 光电化学检测仪器设备简单、价格低廉且易于微型化。因此,这种方法在生物分析领域具有广阔的应用前景,近年发展十分迅速。随着研究的不断深入,可以预期,光电化学传感将在生物分子测定、环境监测、食品安全、新药研究和医学卫生等诸多领域发挥重要作用。目前,光电化学应用于生物传感器的各个主要研究方向,如DNA传感器、免疫传感器以及酶催化型传感器等方面都取得了迅速的发展。 本文将以本研究组现有相关工作为例,对光电化学生物传感的基本概念、原理与应用及当前的发展趋势作一扼要的评述,以期为光电化学生物传感器的进一步发展提供一定的启示。 参考文献 [1] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13, 495—497 [2] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47, 10990—10992 [3] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, 895—897 [4] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, doi: 10.1039/C2CC17942C [5] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84, 917—923

最新(新)有机氟中间体及含氟精细化学品综述和发展前景汇编

有机氟中间体及含氟精细化学品综述和发展前景 沈阳化工研究院有限公司孟明扬 有机氟化工中间体生产已经成长为我国化工行业发展最为迅速、最具优势技术与良好前景的产业之一,在全球范围更是被赞誉为“新兴黄金产业”。随着有机氟化工合成技术的进步,有机氟化工中间体产品应用范围向更新更高端的领域不断延伸。很多含氟医药、农药和活性染料产品大量涌现而出,其性能上相对具有用量少、毒性低、药效高、代谢能力强等特点,这使它在新医药、农药和染料品种中所占比重越来越大。另外氟碳涂料、含氟织物助剂、含氟表面活性剂、等发展成为精细化工各领域高附加值、有发展前景的主导产品。 2010年~2012年由于氟化工产业链产品价格大幅上涨,2011年全行业产值增长到302亿元,同比增幅为40%以上,2012年增幅达到76%。随着我国国民经济的长期高速发展,氟化物产品的需求量年增长率一直维持在30%左右,特别是石油化工、建筑、电子信息和汽车行业的迅猛发展更为氟化工行业提供了广阔的市场空间。氟化工产业不用石油天然气作为主要原料,与石油价格的变化关联度不大,全球能源的日益紧张,却为氟硅材料的发展提供了巨大空间。有机氟化工中间体产品可以用来合成高性能化工新材料,生产技术复杂,整体价格比以石油天然气为原料的材料高。随着国际石油价格的上涨,两者之间价格差距越来越小,这为氟化工产品拓展应用市场提供了广阔的空间。全球含氟聚合物总产能约22万吨/年,我国产能约为4万吨/年,占世界总产能的18%,已经是世界第二大氟化合物生产国。随着经济实力的增强和人民生活水平的提高,我国对氟化工产品的需求增长率将会高于全球平均水平。未来的10年期间,全球对氟聚合物的需求仍将保持较大的增长幅度,氟产品的全球平均需求增长率将在3%以上。预计“十三、五”时期,我国氟聚合物产能仍可保持15%的年增速。 按照新发布的2016年全国氟化工发展趋势分析报告和市场现状调研情况显示,各类氟产品的前景依次是:氟氯烷进入衰退期,其替代品将因此而出现广阔的市场;氟树脂进入成熟期,主要产品聚四氟乙烯竞争加剧;氟橡胶进入增长期,随着我国汽车产业的发展,氟橡胶将出现明显的增长;氟涂料则将随着建筑、化

绿色化学

绿色化学综述:绿色化学未来发展趋势 【摘要】绿色化学是一门从源头上阻止污染的化学,作为一种新兴的策略方针引人瞩目。【关键词】绿色化学简介和主要观点、研究方向(发展趋势)、研究原因、应用,我国在绿色化学方面 的成就 【引言】绿色化学又称环境无害化学Environmentally Benign Chemistry、环境友好 化学Environmentally Friendly Chemistry、清洁化学Clean Chemistry。绿色化学 即是用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用和产生。本文主要介绍绿色化学的概念和研究方向即未来发展趋势以及研究绿色化学的原因和我国在绿色化学方面的成就。 【正文】当今时代,人类的生活与化学息息相关。无论是衣、食、住、行都离不开化学。在20 世纪发现和人工合成的化合物的种类是2285 万多种是此之前发现的所有化合物总数 的41 倍强。同时,对资源的开发利用成为了当今社会面临的制约经济发展、影响环境的重要 因素。因此,可循环利用、、可持续发展、绿色化学生产被人们提上了议事议程。 1.绿色化学简介和主要观点 绿色化学又称环境无害化学Environmentally Benign Chemistry、环境友好化学Environmentally Friendly Chemistry、清洁化学Clean Chemistry。绿色化学即是 用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用和产生。绿色化学的理想在于不再使用有毒、有害的物质,不再产生废物,不再处理废物。它是一门从源头上阻止污染的化学。“绿色化学”由美国化学会ACS提出目前得到世界广泛的响应。其核心是利用化学原理从源头上减 少和消除工业生产对环境的污染。反应物的原子全部转化为期望的最终产物。绿色化学也是指能够保护环境的化学技术.它可通过使用自然能源,避免给环境造成负担、避免排放有害 物质.利用太阳能为目的的光触媒和氢能源的制造和储藏技术的开发,并考虑节能、节省资源、减少废弃物排放量。绿色化学的最大特点就是在始端就采用预防污染的科学手段,因而过程和终端均为零排放或零污染。世界上很多国家已把“化学的绿色化”作为新世纪化学进展的主要方向之一。 为了简述了绿色化学的主要观点P.T.Anastas和J.C.Waner曾提出绿色化学的12项原则 这12项原则对我们今后从事绿色化学的研究具有一定的指导作用。 Ⅰ防止——防止产生废弃物要比产生后再去处理和净化好得多。 Ⅱ讲原子经济——应该设计这样的合成程序,使反应过程中所用的物料能最大限度地进到终极产物中。 Ⅲ较少有危害性的合成反应出现——无论如何要使用可以行得通的方法,使得设计合成程序只选用或产出对人体或环境毒性很小最好无毒的物质。 Ⅳ设计要使所生成的化学产品是安全的——设计化学反应的生成物不仅具有所需的性能,还应具有最小的毒性。 Ⅴ溶剂和辅料是较安全的——尽量不同辅料,如溶剂或析出剂,当不得已使用时,尽可能应是无害的。 Ⅵ设计中能量的使用要讲效率——尽可能降低化学过程所需能量,还应考虑对环境和经济的效益。合成程序尽可能在大气环境的温度和压强下进行。 Ⅶ用可以回收的原料——只要技术上、经济上是可行的,原料应能回收而不是使之变坏。

化学药品临床试验资料综述撰写格式与内容

化学药品申报资料撰写格式与内容 技术指导原则 ——临床试验资料综述撰写格式和内容 (第二稿草稿) 二OO 五年三月 1 目录 一、概述 (3) 二、临床试验资料综述撰写的格式与内容 (4) (一)临床文献与试验总结 (4) 1、临床文献总结 (4) 2、临床试验总结 (5) 2.1 生物药剂学研究总结 (5) 2.2 临床药理学研究总结 (5) 2.3 临床有效性总结 (6) 2.3.1 受试人群 (7) 2.3.2 有效性研究结果及比较 (7) 2.3.3 不同受试人群间结果比较 (7) 2.3.4 与推荐剂量相关的临床信息 (8) 2.3.5 长期疗效与耐受性问题 (8) 2.4 临床安全性总结 (8)

2.4.1 用药/暴露情况 (8) 2.4.2 不良事件 (9) 2.4.3 实验室检查指标评价 (11) 2 2.4.4 与安全性相关的症状体征和其他发现 (11) 2.4.5 特殊人群的安全性 (12) 2.4.6 上市后数据 (12) 2.5 生物等效性研究总结 (13) (二)临床试验总体评价 (13) 1、立题分析 (13) 2、生物药剂学总体评价 (14) 3、临床药理学总体评价 (14) 4、有效性总体评价 (14) 5、安全性总体评价 (15) 6、获益与风险评估 (16) 三、名词解释 (17) 四、参考文献 (18) 五、起草说明 (19) 六、著者 (21) 3 一、概述 按照《药品注册管理办法》(试行)附件二的要求,化学药品申报注册时

应提供的第28 项申报资料为“国内外相关的临床试验资料综述”。该综述由注 册申请人撰写。 为指导和规范注册申请人撰写该综述,现参考国际协调会议(ICH)申报 资料中通用技术文件(CTD)临床部分的相关技术要求,在充分考虑国内药品 注册现状的基础上,制定“临床试验资料综述撰写的格式与内容”指导原则(以 下简称本指导原则),其内容和形式与“化学药品申报资料的撰写格式和要求” 系列指导原则中“对主要研究结果的总结及评价撰写格式和要求”指导原则和 “临床试验报告的撰写的格式与内容”指导原则相衔接。 临床试验资料综述,是药品注册所必需的临床信息总结与评价,包括临床 试验与文献总结和临床试验总体评价两部分。 临床试验与文献总结,是指与研究药物有关的临床试验与文献信息的详尽 的事实性总结。根据国内注册实际,将临床试验与文献总结分为两部分:(1) 研究药物的临床文献总结;(2)临床试验总结。

探测器暗电流综述报告

暗电流形成及其稳定性分析 综述报告 目录 光电探测器基本原理 (2) 1.1 PIN光探测器的工作原理 (2) 1.2雪崩光电二极管工作原理 (3) 暗电流的形成及其影响因素 (4) 2.1暗电流掺杂浓度的影响 (4) 2.1.2复合电流特性 (5) 2.1.3表面复合电流特性 (5) 2.1.4欧姆电流特性 (5) 2.1.5隧道电流特性 (6) 2.2结面积和压焊区尺寸对探测器暗电流的影响 (8) 2.3腐蚀速率和表面钝化工艺对探测器暗电流的影响 (10) 2.4温度特性对暗电流影响 (11) 暗电流稳定性分析小结 (12) 参考文献 (13)

光探测器芯片处于反向偏置时,在没有光照的条件下也会有微弱的光电流,被称为暗电流,产生暗电流的机制有很多,主要包括表面漏电流、反向扩散电流、产生复合电流、隧穿电流和欧姆电流。。本文就将介绍光电探测器暗电流形成及其稳定性分析,并介绍了一些提高稳定性的方案,讨论它们的优势与存在的问题。 光电探测器基本原理 光电检测是将检测的物理信息用光辐射信号承载,检测光信号的变化,通过信号处理变换,得到检测信息。光学检测主要应用在高分辨率测量、非破坏性分析、高速检测、精密分析等领域,在非接触式、非破坏、高速、精密检测方面具有其他方法无比拟的。因此,光电检测技术是现代检测技术最重要的手段和方法之一,是计量检测技术的一个重要发展方向。 1.1 PIN光探测器的工作原理 在PD的PN结间加入一层本征(或轻掺杂)半导体材料(I区),就可增大耗尽区的宽度,减小扩散作用的影响,提高响应速度。由于I区的材料近似为本征半导体,因此这种结构称为PIN光探测器。图(a)给出了PIN光探测器的结构和反向偏压时的场分布图。I区的材料具有高阻抗特性,使电压基本落在该区,从而在PIN 光探测器内部存在一个高电场区,即将耗尽层扩展到了整个I区控制 I 区的宽度可以控制耗尽层的宽度。 PIN光探测器通过加入中间层,减小了扩散分量对其响应速度的影响,但过大的耗尽区宽度将使载流子通过耗尽区的漂移时间过长,导致响应速度变慢,因此要根据实际情况折中选取I层的材料厚度。

三氯甲烷的概述[文献综述]

文献综述 环境工程 三氯甲烷的概述 一、前言部分 甲烷氯化物包括一氯甲烷、二氯甲烷、三氯甲烷和四氯化碳。目前国内销售的甲烷氯化物主要是二氯甲烷和三氯甲烷。三氯甲烷是四种甲烷氯化物的一种,是重要的有机氯产品,在工业上主要用于制造氟里昂(F—22)的原料。三氯甲烷是优良的有机氯溶剂,能迅速溶解脂肪、油脂和蜡,常用于干洗和工业品的脱脂溶剂的配制。在粘结剂、食品包装塑料和树脂的调和中用作溶剂。三氯甲烷在染料、杀蠕虫药、杀真菌剂和烟草苗防霉剂生产中用作中间体。三氯甲烷作为麻醉剂的应用已停止,但在一些兽药品中仍用作麻醉剂。在医药工业上的应用有:青霉素,生物碱,淄族化合物,维生素,调味品及葡萄糖等的萃取和提纯中用作溶剂。它亦可用于痛软膏、祛痰剂、牙膏和排除肠胃剂的配制。还可用于配制熏蒸清毒剂。[1]为了保护大气臭氧层,国际上签署了《蒙特利尔议定书》,我国是签约国之一,四氯化碳及其衍生物F-11和F-12均被列为受控物质,行将被禁止使用和生产,美国等发达国家对二氯甲烷和某些领域(如气雾剂,发泡剂)的应用已进行了限制,使世界上甲烷氯化物的生产和消费总量受到一定影响,以三氯甲烷为主要原料的F-22是不受《蒙特利尔议定书》限制的少数品种之一,在我国,F-22作为制冷剂被禁止比发达国家晚十年,随着有机氟材料应用领域的扩大,其消费仍然呈现增长的势头,三氯甲烷的市场需求仍然强劲。 甲烷氯化物中的一氯甲烷主要用作甲基氯硅烷的生产原料,其他用途的市场消费量很小,它的物化性质决定了它的包装特殊性和物流成本。国内没有单独的一氯甲烷生产装置,一氯甲烷基本上是有机硅生产厂家利用生产甲基氯硅烷副产的氯化氢配套生产的产品和甲烷氯化物生产装置的副产品。 甲烷氯化物的二氯甲烷是优良的有机溶剂,具有很高的溶解能力,沸点低,不燃和毒性很低等特点。广泛用作溶剂,大量二氯甲烷在安全胶片制造中用作醋

综述pvp

聚维酮的药用 【摘要】聚乙烯基吡咯烷酮,英文名:Polyvinyl Pyrrolidone,简称PVP,是性能优异、用途广泛的非离子型水溶性高分子精细化学品,由N- 乙烯基吡咯烷酮(N- vinylpyrrolidione,简称NVP)经自由基聚合而成。PVP 具有许多优良的物理化学性能,如优异的溶解性、低毒性、成膜性、增溶性、络合性、生理相容性、表面活性和化学稳定性等。 【关键词】聚维酮,药用 随着药物制剂工艺的不断发展,聚维酮作为非离子型水溶性高分子化合物药用辅料得到越来越广泛的应用。 聚维酮系列药用辅料的优异生理相容性是其固有而独特的产品性质,发展到如今,它已与纤维素类衍生物、丙烯酸类化合物一起成为当今三大主要合成药用辅料。 聚维酮系列根据K 值的不同可分为多种型号,其中应用最广泛的品种为K15、K30 及K90。中国药典仅收载K30 的质量标准,而英美药典是将所有聚维酮K 系列作为一个整体标准来收载的。目前,聚维酮作为药用辅料,具有多方面的制剂用途。 一.PVP在片剂中的应用 1.1 粘合剂 在片剂制造上,通常使用K25或K30。PVP广泛用作片剂、颗粒剂等的粘舍剂,用量一般为3~5% (W/W),粘合剂溶液浓度为0.5~5% (W/W)。所用PVP量的多少可直接影响片子的抗拉强度,

一般PVP用量越多,片子抗拉强度越大。粘台剂PVP采用不同的加入方法即内加法或外加法会影响片剂的崩解时间,内加法即PVP以干粉状态与药物粉末混合,然后以水或有机溶媒湿润制粒,外加法即PVP以有机溶媒或水溶解后再加入混好的药物粉末中。Wan LSC等研究表明,采用内加粘合剂制得片子较外加法崩解时间延长,溶解速度变慢。内加法特别适用于脏器浸膏和吸湿性大的药物。采用流化床喷雾干燥制粒(简称一步法制粒)是 当前片剂制粒工艺方面的一项新技术,在以PVP为粘合剂用流化床制粒时,所用PVP浓度、体积、喷雾速度、装料量等都会影响制得粒子的性质,采用低浓度、小体积、小喷雾速度、大装料量时可制得高质量的颗粒,该方法适用于许多品种。 国外以PVP作片剂粘台剂的品种较多,一般与淀粉、羟丙基甲基纤维素、微粉硅胶等制成混合浆,压片时可改善可压性,提高溶出性能。 对于湿热敏感的药物,可用PVP的有机溶液(一般用乙醇溶液)制粒。这样既避免了水分的影响,叉可在较低的温度下快速干燥。 对于疏水性药物,则适宜用PVP的水溶漉作粘合剂,这样布但易于均匀湿润,并且能使琉水性药物表面变为亲水性,有利于药物的溶出和片剂的崩解。 用于泡腾片。一般泡腾片内含有碳酸氢钠和枸橼酸的混合物,用PVP的无水乙醇溶液制粒时,不会发生酸碱反应.用5% PVP无水乙醇溶液作为含维生索C泡腾片的粘台剂,制得的颗粒可压性好,片

综述写作范文

蔬菜病虫害防治的研究进展 司机阿 (喳喳师范学院生命科学学院,四川内江742200) 摘要:综述了蔬菜病虫害防治技术,根据蔬菜发生病虫害的情况和常见类型,优先采用农业防治技术、物理防治技术和生物防治技术,主要包括:利用农业生产过程中各种技术措施和蔬菜生产发育的各个环节;病虫对温度、湿度或光谱、颜色、声音等得反应能力,以及利用生物之间的相克性进行防治。有目的的创造有利于蔬菜生长发育的特定生态条件和农田小气候、不利于病虫生长繁殖的条件,来防止和控制蔬菜病虫害的发生。在病虫害泛滥时刻适当采用化学防治技术,使用一些低毒、低残留的农药。以期为生产安全、优质无公害的蔬菜提供参考。 关键词:蔬菜病虫害;物理防治;农业防治;化学防治;生物防治 0 引言 近年来蔬菜病虫危害越来越严重,蔬菜品质也越来越不及无公害蔬菜的标准。随着社会的发展,人们的生活水平也不断提高,而对蔬菜的要求也从外观是否完美转向内在是否安全,因此人们对生产无公害蔬菜的呼声越来越高。蔬菜的健康却受蔬菜的病虫害的威胁,从当前的蔬菜病虫害危害情况来看,种类繁多,规律复杂,严重影响蔬菜品质和产量。而要生产无公害蔬菜的关键技术就是对蔬菜病虫害的绿色防控[1]。 长期以来,蔬菜病虫害的防治方法各式各样。杨仁彪等[2]在研究中表示,坚持综合防治,贯彻“预防为主、综合防治”的植保方针是蔬菜病虫害防治遵循的主要准则。王婷婷[3]在蔬菜病虫害防治技术中表明,应该优先采用农业防治、物理防治和生物防治,禁止使用高毒、高残毒的农药,科学合理地选用一些低毒、高效、低残毒农药,降低化学农药的使用量,并低于国家规定的标准,达到生产安全、优质绿色无公害蔬菜的目的。 1 蔬菜病虫害的发生情况 1.1 病害的发生情况 病害主要是指传染性病害,有几百种之多,这类病害主要特点是传播迅速,面积大,难以防治,毁坏严重。高温干旱条件下一般只发生病毒病;高温高湿条件下可发生枯萎病、炭疽病、立枯病、疫病等;低温低湿条件下易发生灰霉病、

雪崩光电探测器

雪崩光电探测器 雪崩光电探测器光电探测器是将光信号转变为电信号的器件,雪崩光电探测器采用的即是雪崩光电二极管(APD) ,能够具有更大的响应度。APD将主要应用于长距离或接收光功率受到其它限制而较小的光纤通信系统。目前很多光器件专家对APD 的前景十分看好,认为APD 的研究对于增强相关领域的国际竞争力,是十分必要的。雪崩光电探测器的材料1)Si Si 材料技术是一种成熟技术,广泛应用于微电子领域,但并不适合制备目前光通信领域普遍接受的 1.31mm,1.55mm 波长范围的器件。 2)Ge Ge APD 虽然光谱响应适合光纤传输低损耗、低色散的要求,但在制备工艺中存在很大的困难。而且,Ge的电子和空穴的 离化率比率( )接近1,因此很难制备出高性能的APD 器件。 3)In0.53Ga0.47As/InP 选择In0.53Ga0.47As 作为APD 的光吸收层,InP 作为倍增层,是一种比较有效的方法[2] 。In0.53Ga0.47As 材料的吸收峰值在 1.65mm, 在 1.31mm,1.55mm 波长有约为104cm-1 高吸收系数,是目前光探测器吸收层首选材料。In0.53Ga0.47As 光电二极管比起Ge 光电二极管,有如下优点:(1) In0.53Ga0.47As 是直接带隙半导体,吸收系数高;(2) In0.53Ga0.47As 介电常数比Ge 小,要得到与Ge 光电二极管相

同的量子效率和电容,可以减少In0.53Ga0.47As 耗尽层的厚度,因此可以预期In0.53Ga0.47As/InP 光二极管具有高的效应和响应;(3)电子和空穴的离化率比率()不是1,也就是说In0.53Ga0.47As/InP APD 噪声较低;(4) In0.53Ga0.47As 与InP 晶格完全匹配,用MOCVD 方法在InP 衬底上可以生长出高质量的In0.53Ga0.47As 外延层,可以显着的降低通过p-n 结的暗电流。(5)In0.53Ga0.47As/InP 异质结构外延技术,很容易在吸收区生长较高带隙的窗口层,由此可以消除表面复合对量子效率的影响。 4)InGaAsP/InP 选择InGaAsP 作为光吸收层,InP 作为倍增层,可以制备响应波长在1-1.4mm ,高量子效率,低暗电流,高雪崩增益得的APD 。通过选择不同的合金组分,满足对特定波长的最佳性能。 )InGaAs/InAlAs ln0.52AI0.48As 材料带隙宽(1.47 eV),在 1.55 mm 波长范围不吸收,有证据显示,薄In0.52Al0.48As 外延层在纯电子注入的条件下,作为倍增层材料,可以获得比lnP 更好的增益特性。 6)InGaAs/InGaAs(P)/InAlAs 和InGaAs/In(Al )GaAs/InAlAs 材料的碰撞离化率是影响APD 性能的重要因素。研究表明[6] ,可以通过引入InGaAs(P)/InAlAs 和In(Al )GaAs/InAlAs 超晶格结构提高倍增层的碰撞离化率。应用超晶格结构这一能带工程可以人为控制导带和价带值间的非对称性带边不连续性,并保证

精细化工工艺学课程论文

《精细化工工艺学》课程论文 题目:聚苯胺合成及掺杂机理的研究进展院系:化工与能源学院 班级:化学工程与工艺三班 姓名:刘生 学号:20080300513 任课教师:苏媛

聚苯胺合成及掺杂机理的研究进展 (刘生化学工程与工艺三班 20080300513) 【摘要】:近年来聚苯胺因其优良的性能而备受关注,其合成方法和复合材料的性能一直是聚苯胺研究的重要内容。本文主要介绍聚苯胺的合成方法以及对聚苯胺的掺杂机理研究现状进行综述 【关键词】:聚苯胺,合成,掺杂机理 Development of synthesis and doped mechanism of polyaniline (liu sheng ; Chemical engineering and technology class 3; 20080300513) 【Abstract】:In recent years, polyaniline has attracted much attention because of its excellent properties. The study on its synthesis and doped mechanism is always one of the major research contents of polyanline.In this paper, the chemical and electrochemical synthesis methods and doped mechanism of polyanline are reviewed 【Keywords】:polyanline, synthesisi, doped mechanism 引言 半导体金属氧化物传感器是目前主要的商业化的气体传感器,但在应用中存在选择性差、操作温度高、稳定性也不令人满意等问题。而以聚苯胺(PANI)为代表的导电高分子气敏材料由于价廉易得、合成和制膜工艺简单且可在常温下工作等优点,已成为研究的热点。但是纯的聚苯胺气敏材料存在选择性性差、灵敏度低以及稳定性欠佳等缺点,并且聚苯胺为共轭的刚性链结构,在有机溶剂中溶解度低、成膜性能差,不易加工成型从而阻碍了它作为气敏材料在实际中的应用。所以,为了克服纯聚苯胺的缺点,通过选择合适的通用高分子材料与聚苯胺复合,提高其灵敏度和选择性;改善材料的加工成膜性能;同时使之具有很好的稳定性,从而能够更广泛地应用于气体传感器中。 1、聚苯胺的结构 聚苯胺早在1834年即被Runge[1]发现,并在本世纪被Willstatter[2]]称为“苯胺黑”。对于聚苯胺的结构,科学家们提出过许多模型,现已公认的是1987年MacDiarmid[9]提出的:即结构式中含有“苯-苯”连续的还原单元和含有“苯

光电化学综述

光电化学传感器的应用研究进展 摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。 关键词:光电化学;传感器 一、引言 20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。由于采用电化学检测,同光学检测相比,其设备价廉。 二、光电化学的概述 1、光电化学的工作机理 要了解光电化学的工作原理,首先得研究光催化技术。光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。这里以半导体二氧化钛(TiO )为例介绍一下光电化 2 学的工作原理。 半导体TiO 具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构 2 成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面区在受到能量

绿色化学在无机合成中的应用

绿色化学在无机合成中的应用 摘要:绿色化学又称环境无害化学,是一门从源头上阻止污染的化学。它的核心内涵是在化学反应过程和化工生产中, 不再使用有毒、有害的物质,不再产生废物,不再处理废物。其研究内容主要是围绕化学原料、催化剂、溶剂、化学反应过程及工艺和产品的绿色化展开的。近年来,由于化学工业向大气、水和土壤等排放大量有毒、有害的物质, 因而大力研究与开发从源头上减少和消除污染的绿色化学是必不可少的,因此可以说21世纪的化学及化学工业必将以实现绿色化学为中心和目标。而作为一个多学科交叉的研究领域,绿色化学中有许多科学问题需要深入研究。在这里仅就我较熟悉的绿色化学在一般无机合成中的应用谈一下我的看法。 关键字:绿色化学无机合成应用 一、催化还原SO2到元素硫 SO 2是危害最为严重的大气污染物之一。因此,许多国家对SO 2 排放量的限 制都有严格规定,很多专家学者在从事脱硫基础与技术研究。Makansi等对已经工业化和正在被研究的烟气脱硫过程进行了综述。其中大多数是基于碱金属和碱 土金属的碱性化合物作为吸收剂,与烟气中的SO 2反应生成硫酸盐(如CaSO 4 ), 此过程的缺点是处理工艺繁复,处理设备占地面积大,烟气中的硫没有回收利用, 尤其存在二次污染问题;直接催化氧化SO 2到SO 3 ,再吸收制稀硫酸是一种可以 选择的方法(包括目前烟气脱氮脱硫一体化工艺的氧化脱硫部分),但这种方法最终是液体产物,势必给操作运输带来不便,而且最大的缺点是消耗大量的资金去浓缩稀硫酸并存在严重腐蚀问题;其它以吸附再生为基础的脱除技术也正在开发之中,可是对于这些技术来说,要设计一整套过程来处理脱附时释放出来的SO 2 。 最好的处理SO 2方法是将SO 2 选择性还原为元素硫,可以克服上述方法的缺点。 根据所使用还原剂的不同,可分为H 2、炭、烃类(主要是CH 4 )、CO和NH 3 还原法。 1、H2还原法

精细化工《洗洁精的配制》实验综述报告(1)

万方数据

精细化工《洗洁精的配制》实验综述报告 作者:陈晓玲 作者单位:安徽理工大学化学工程学院 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2011(10) 被引用次数:1次 本文读者也读过(9条) 1.杨庆利.杨跃飞.薛博仁.张燕山.董万田.王丰收绿色表面活性剂烷基糖苷在家居清洁和个人洗护产品中的应用[会议论文]-2011 2.王德金家庭生产洗洁精技术[期刊论文]-农家科技2004(10) 3.夏清林.杜琰琰.李少群.周颖.麦惠霞某天然植物性洗洁精的毒性研究[期刊论文]-中国职业医学2003,30(3) 4.翁春英.黄阳成.WENG Chunying.HUANG Yangcheng蔬菜中残留农药消减方法研究[期刊论文]-长江蔬菜2011(2) 5.俞国强.查捷.袁振华10种家用洗洁精对蚕豆根尖细胞的诱变性探讨[期刊论文]-中国卫生检验杂志2005,15(2) 6.张美华.ZHANG Meihua市售立白洗洁精的杀菌效果观察[期刊论文]-实用全科医学2006,4(3) 7.周卫花.林文敏.蔡佳慧.衷明华.Zhou Weihua.Lin Wenmin.Cai Jiahui.Zhong Minghua南美蟛蜞菊洗手液的研制[期刊论文]-广东化工2010,37(12) 8.吴建忠中学生物科技活动研究[学位论文]2006 9.09年小本创业:就学洗洁精生产技术[期刊论文]-大众商务(创业版)2009(3) 引证文献(1条) 1.毛坤明产蛋鸭洗洁精中毒的诊疗[期刊论文]-福建畜牧兽医 2012(5) 引用本文格式:陈晓玲精细化工《洗洁精的配制》实验综述报告[期刊论文]-科技信息 2011(10)

光电化学传感器的研究进展_王光丽

中国科学B辑:化学 2009年 第39卷 第11期: 1336~1347 https://www.360docs.net/doc/3614090640.html, https://www.360docs.net/doc/3614090640.html, 1336 《中国科学》杂志社SCIENCE IN CHINA PRESS 光电化学传感器的研究进展 王光丽, 徐静娟, 陈洪渊* 生命分析化学教育部重点实验室, 南京大学化学化工学院, 南京210093 * 通讯作者, E-mail: hychen@https://www.360docs.net/doc/3614090640.html, 收稿日期: 2009-08-11; 接受日期: 2009-09-03 摘要光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置. 光电化学检测方法灵敏度高、设备简单、易于微型化, 已经成为一种极具应用潜力的分析方法. 本文主要介绍光电化学传感器的基本原理、特点、分类, 并对有代表性的研究和发展前景做了总结和评述. 关键词光电化学传感器综述 1引言 光电化学过程是指分子、离子或半导体材料等因吸收光子而使电子受激发产生的电荷传递, 从而实现光能向电能的转化过程. 具有光电化学活性的物质受光激发后发生电荷分离或电荷传递过程, 从而形成光电压或者光电流. 具有光电转换性质的材料主要分为4类. (1)无机光电材料: 这类材料主要指无机化合物构成的半导体光电材料, 如Si、TiO2、CdS、CuInSe2等[1]. (2)有机光电材料: 常用的有机类光电材料主要是有机小分子光电材料和高分子聚合物材料. 小分子材料如卟啉类、酞菁类、偶氮类、叶绿素、噬菌调理素等[2~4]; 高分子聚合物材料主要有聚对苯撑乙烯(PPV)衍生物、聚噻吩(PT)衍生物等[5]. (3)复合材料: 复合材料主要是由有机光电材料或者配合物光电材料与无机光电材料复合形成, 也可以是两种禁带宽度不同的无机半导体材料复合形成的材料. 复合材料比单一材料具有更高的光电转换效率. 常见的复合材料体系有C dS-TiO2、ZnS- TiO2[1]、联吡啶钌类配合物-TiO2[6~9]等. 基于TiO2的复合材料是目前研究最多的一种, 也有用ZnO[10~12]、SnO2[13]、Nb2O5[14]、Al2O3[15]等其它宽禁带的半导体氧化物进行复合的. 后来, 利用金纳米粒子或者碳纳米结构的导电性, 人们发展了基于金纳米粒子或者碳纳米结构-半导体复合物以提高半导体光生电子的捕获和传输能力. 富勒烯/CdSe[16,17]、碳纳米管/CdS[18~21]、碳纳米管/ CdSe[22,23]、卟啉/富勒烯/金纳米粒子[24]、CdS/金纳米粒子[25]等体系具有较高的光电转换效率. 另外, 某些生物大分子如细胞、DNA等也具有光电化学活性, 可以通过它们自身的光电流变化研究生物分子及其它物质与它们的相互作用. 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系, 是传感器定量的基础. 以光电化学原理建立起来的这种分析方法, 其检测过程和电致化学发光正好相反, 用光信号作为激发源, 检测的是电化学信号. 和电化学发光的检测过程类似, 都是采用不同形式的激发和检测信号, 背景信号较低, 因此, 光电化学可能达到与电致化学发光相当的高灵敏度. 由于采用电化学检测, 同光学检测相比, 其设备价廉. 根据测量参数的不同, 光电化学传感器可分为电位型和电流型两种. 2光寻址电位型传感器 电位型光电化学传感器主要指光寻址电位传感器(light addressable potentiometric sensor , LAPS), 它

相关文档
最新文档