梁坤京理论力学第十二章动量矩定理课后答案

梁坤京理论力学第十二章动量矩定理课后答案
梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理

12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。求质点对原点 O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度

V x

dx

sin t dt a

V y dy 2b cos2 t 质点对点 O 的动量矩为

L O M o (mV x ) M 0(

mV y )

mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。 轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。 解:(1)当轮子只滚不滑时 B 点为速度瞬心。 轮子角速度

V A R

质心C 的速度V C

BC

R e

轮子的动量

p mv C

mv A (方向水平向右)

R

对B 点动量矩L B J B

2 2 2

由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2

食 (2)当轮子又滚又滑时由基点法求得 C 点速

度。

V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩

L B mv C BC J C

m(v A 2

e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2)

因轮子只滚不滑,所以有 a c = r ( 3) ? 12

将式(3)代入式(1)、(2)消去F 得到

mr sin

m?g

上式对时间两次积分,并注意到 t = 0时 0, 0,则 mgrt 2 sin mgrt 2s in 2(J C mr 2) 2(m 2 mr 2) 把 r = 0.025 m 及 t = 5 s 时,s 'grt 2sin f gt 2sin

-

r r

s r 1

grt 2

sin 2( 2 r 2) r 3 m 代入上式得

0.025

9.8 52si n20

2 3

0.09 m 90 mm

12-17 图示均质杆 AB 长为I ,放在铅直平面内,杆的一端 A 靠在光滑铅直墙上,另一端 B 放在光滑的水平地板上,并与水平面成 °角。此后,令杆由静止状态倒下。求(1)杆在任 意位置时的角加速度和角速度; (2)当杆脱离墙时,此杆与水平面所夹的角。 解:(1)取均质杆为研究对象,受力分析及建立坐标系 Oxy 如图(a ),杆AB 作平面运动,

质心在C 点。 mx c F NA (1)

my c F NB mg ⑵

J c

匚l 匚l ? F NB 2cos F N A 2 sin

(3)

由于 1 l . X c cos , y c sin 2 2

将其对间 t 求两次导数,且注意到 J ?

刚体平面运动微分方程为 得到

y c

-(sin 2

-(cos 2

2

cos ) 2

sin )

将式 再将 J c

(4 )、( 5)代入式 F NA , F N B 的表达式代入

ml 2 ( 4 ml 2

(1 )、(2)中,得

ml

NA —( sin

ml

N B ~2~ ( cos

3)中,得

(4) (5)

2

cos

2 .

sin cos mgl 2

4 l 2

代入上式得

12 d dt

分离变量并积分得

)mg

2?

sin )cos mgl cos

2

止(sin

4

cos

塑cos

2I

H 12 17 [?]

2

cos )sin

{^(sin o sin )

(2)当杆脱离墙时F NA = 0 ,设此时 1

则 F NA

ml

( sin 1 2

cos 1) 0 2

2

将和表达式代入上式解得

sin 1

—sin 0 3

2

1 arcsin(-sin 0)

3

12-19 均质实心圆柱体 A 和薄铁环B 的质量均为 m 半径都等于r ,两者用杆 AB 铰接,无 滑动地沿斜面滚下,斜面与水平面的夹角为 ,如图所示如杆的质量忽略不计,求杆 AB 的

(2)若在圆柱体 A 上作用一逆时针转向,矩为 M 的力偶,试问在什么条件下圆柱体 B 的质

a )、(

b )所示,A 和B 均作平 面运动,杆AB 作平动,由题意知

A

B

,a A a B

a, F T

F T

对圆柱A 有

ma mgsi n F T F 1

(1) Rr J A

(2)

对薄铁环B 有

ma T mgsi n

F 2

F 2r J B

(4)

滚不滑条件得到的 a = r 代入,解得

(4),并将 J A m

r 2

, J

2 1 . F T F T

mg sin 2

mr , F T F T ,以及根据只

4

(压力)及 a gsin

7

12-21 图示均质圆柱体的质量为 m 半径为r ,放在倾角为60的斜面上。一细绳缠绕在圆 柱体上,其一端固定于点 A ,此绳与A 相连部分与斜面平行。若圆柱体与斜面间的摩擦系数

1

为f

,试求其中心沿斜面落下的加速度

as

3

解:取均质圆柱为研究对象,其受力如图( a )所示,圆柱作平面

运动,则其平面运动微分方程为

J (F T F )r (1) 0 F N mgcos60

(2)

ma C mgs in 60 F T F (3)

F = fF N

( 4)

圆柱沿斜面向下滑动,可看作沿AD 绳向下滚动,且只滚不滑, 所以有 a c = r

1

把上式及f —代入式(3)、(4)解方程(1)至(4),得

3

a =

(方向沿斜面向下)

12-23 均质圆柱体 A 和B 的质量均为 m 半径为r ,一绳缠在绕固定轴 O 转动的圆柱A 上, 绳的另一端绕在圆柱 B 上,如图所示。摩擦不计。求: (1)圆柱体B 下落时质心的加速度; 加速度和杆的内力。 解:分别取圆柱 A 和薄铁环B 为研究对象,其受力分析如图( 联立求解式( 1)、 (2)、 (3)、

US 12証圉

心加速度将向上。

解:(1 )分别取轮A 和B 研究,其受力如图(a )、(b )所示,轮A 定轴转动,轮B 作平面运 动。

对轮A 运用刚体绕定轴转动微分方程

J A A F T r

( 1)

对轮B 运用刚体平面运动微分方程有

mg F T ma B ⑵

J B B

F T r

(3)

再以C 为基点分析B 点加速度,有

a B a C a BC

A r

B r

( 4)

联立求解式(1)、( 2)、( 3 )、( 4),并将

M 2mgr

故当转矩M 2mgr 时轮B 的质心将上升。

B 固定。圆柱体沿绳子解开的而降

落, 其初速为零。求当圆柱体的轴降落了高度 h 时圆柱体中心A 的速度

力F T 。

解:法1 :图(a )

ma A mg F T (1) 」a F T 「 (2)

a A

r a (3)

J A 1 2 mr 2

解得 F T 1 3 mg (拉)

a A ■|g (常量)

3 (4)

由运动学 V A , 2a A h 3 .3gh (J)

法2:由于动瞬心与轮的质心距离保持不变,

故可对瞬心 量矩定理:

J C mgr (5)

J C . 2彳2 J A mr mr

2

又 a A r

a A Z 3

g (同式(4))

再由 ma A mg F T

9-8图示圆柱体A 的质量为m 在其中部绕以细绳, 绳的一端 u 和绳子的拉

C 用

(a)

F T

F T 及 J B J

A 予

2

代入,解得

4 a B -g

5

2 )若在A 轮上作用一逆时针转矩 动微分方程有

J A

以C 点为基点分析 M 则轮A 将作逆时针转动,对 A 运用刚体绕定轴转

A M F T r

( 5)

B 点加速度,根据题意,在临界状态有

a B

a C a BC

A r

B

r 0

(6)

联立求解式(5)、 (6 )和(2 )、( 3)并将 T T 及 J B J A

予2代入,得

K 7 12 - 23 I*]

得 F T 3m

g (拉)

V A j2a A h |,/3gh (J)

3 9- 10图示重物A 的质量为 绳子跨过不计质量的定滑轮 C 沿水平轨道滚动而不滑动。 子C 的半径为r ,二者总质量为 m m 当其下降时,借无重且不可伸长的绳使滚子 D 并绕在滑轮B 上。滑轮B 与滚子C 固结为一体。已知滑轮 B 的半径为R,滚

,其对与图面垂直的轴 0的回转半径为 。求:重物A 的加速度。 解:法1:对轮: J O TR Fr ma o

对A : ma A (1) (2) mg (3) 又: a A 以0为基点: t a H

t

a H a

H 绳 n

a H t 3HO a O a o

a A (R r) 由上四式联立,得 a H n a HO R t

a HO (R r) (J)

(注意到

mg(R r)2

(4) a

A m ( 2 r 2) m(R r)2

g nz 口 m (R r)2

啲 E (a)

11* 1 法2:对瞬心 J E ma A 又a A J E E 用动量矩定理

T(R r) mg T (R J 0 r) 可解得:a A 2 / 2 m r m ( g m ( 2 r 2) 1

矿 i m (R r)2

(本题质心瞬心之距离为常数) r 2

) 9- 11图示匀质圆柱体质量为 ,求圆柱中心 a o

n a H

i

n a HO

(b) t a H 4 t a HO

常数,滚动阻碍系数为 解:J D M f

F N M M f 半径为r ,在力偶作用下沿水平面作纯滚动。若力偶的力偶矩 M 为 0的加速度及其与地面的静滑动摩擦力。 (1) 代入(1), F N mg 3 2

mr 2 a r 得

2(M mg)

3mr

习题9- 11图

(a)

又:ma F

F 2(M mg)

3r 9- 12跨过定滑轮 上,如图所示。已知圆柱 的加速度以及绳索的拉力。 解:对轮C : J C D 的细绳,一端缠绕在均质圆柱体 A 上,另一端系在光滑水平面上的物体 A 的半径为r ,质量为 滑轮 F T 「 m ;物块B 的质量为 D 和细绳的质量以及轴承摩擦忽略不计。 B m 2。试求物块 B 和圆柱质心 C F T F T

A

m i a c mg F T 对物块

B:

m2a B F T

且:a。a B r ;J c 1 mr 2

2

解得:a

a B

m i

g ;a c

m i2m2

3m2g m 3m2m i

F T mm

g m i 3m2

2020年智慧树知道网课《理论力学(西安交通大学)》课后章节测试满分答案

绪论单元测试 1 【多选题】(2分) 下面哪些运动属于机械运动? A. 发热 B. 转动 C. 平衡 D. 变形 2 【多选题】(2分) 理论力学的内容包括:。 A. 动力学 B. 基本变形 C. 运动学 D. 静力学

3 【单选题】(2分) 理论力学的研究对象是:。 A. 数学模型 B. 力学知识 C. 力学定理 D. 力学模型 4 【多选题】(2分) 矢量力学方法(牛顿-欧拉力学)的特点是:。 A. 以变分原理为基础 B. 以牛顿定律为基础 C.

通过力的功(虚功)表达力的作用 D. 通过力的大小、方向和力矩表达力的作用 5 【多选题】(2分) 学习理论力学应注意做到:。 A. 准确地理解基本概念 B. 理论联系实际 C. 熟悉基本定理与公式,并能在正确条件下灵活应用 D. 学会一些处理力学问题的基本方法 第一章测试 1 【单选题】(2分)

如图所示,带有不平行的两个导槽的矩形平板上作用一力偶M,今在槽内插入两个固连于地面的销钉,若不计摩擦,则。 A. 板不可能保持平衡状态 B. 板必保持平衡状态 C. 条件不够,无法判断板平衡与否 D. 在矩M较小时,板可保持平衡 2 【单选题】(2分)

A. 合力 B. 力螺旋 C. 合力偶 3 【单选题】(2分) 关于力系与其平衡方程式,下列的表述中正确的是: A. 在求解空间力系的平衡问题时,最多只能列出三个力矩平衡方程式。 B. 在平面力系的平衡方程式的基本形式中,两个投影轴必须相互垂直。 C. 平面一般力系的平衡方程式可以是三个力矩方程,也可以是三个投影方程。

D. 任何空间力系都具有六个独立的平衡方程式。 E. 平面力系如果平衡,则该力系在任意选取的投影轴上投影的代数和必为零。 4 【单选题】(2分)

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Ox y内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v ? t mab ωω3 cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C,A C = e ;轮子半径为R,对轴心A 的转动惯量为JA ;C 、A、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 ? 轮子角速度R v A =ω? 质心C 的速度)(e R R v C B v A C += =ω? ?轮子的动量(A C mv R e R mv p += =?方向水平向右) ?对B点动量矩ω?=B B J L ? 由于? 2 22)( )( e R m me J e R m J J A C B ++-=++= 故[ ] R v e R m me J L A A B 2 2)( ++-=? (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量( )(e v m mv p A C ω+==?方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-13 如图所示,有一轮子,轴的直径为50 m m,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图(a)所示,根据刚体平面运动微分方程有 ? F mg ma C -=θsin ? (1) J Cα = Fr ? ?(2) 因轮子只滚不滑,所以有 a C =αr (3)

理论力学课后习题答案-第8章--动量定理及其应用

第8章 动量定理及其应用 8-1 计算下列图示情况下系统的动量。 (1) 已知OA =AB =l ,θ=45°,ω为常量,均质连杆AB 的质量为m ,而曲柄OA 和滑块B 的质量不计(图a )。 (2) 质量均为m 的均质细杆AB 、BC 和均质圆盘CD 用铰链联结在一起并支承如图。已知AB = BC = CD = 2R ,图示瞬时A 、B 、C 处于同一水平直线位置,而CD 铅直,AB 杆以角速度ω转动(图b )。 (3) 图示小球M 质量为m 1,固结在长为l 、质量为m 2的均质细杆OM 上,杆的一 端O 铰接在不计质量且以速度v 运动的小车上,杆OM 以角速度ω绕O 轴转动(图c )。 解:(1)p = mv C = ωml 2 5 ,方向同C v (解图(a ) ); (2)p = mv C 1 + mv C 2 = mv B = 2Rm ω,方向同B v ,垂直AC (解图(b )); (3)j i p )60sin 2 60sin ()]60cos 2()60cos ([2121?+?+?-+?-=ωωωωl m l m l v m l v m j i 4 23]42)[(2 12121m m l l m m v m m +++- +=ωω(解图(c ) )。 8-2 图示机构中,已知均质杆AB 质量为m ,长为l ;均质杆BC 质量为4m ,长为2l 。图示瞬时AB 杆的角速度为ω,求此时系统的动量。 解:杆BC 瞬时平移,其速度为v B ω ωωml ml l m p p p BC AB 29 42=+=+= 方向同v B 。 习题8-1解图 (a) (b) (c) 习题8-1图 v (a) (b) (c) C 习题8-2解图

清华大学版理论力学课后习题答案大全_____第6章析

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

012 第十二章 动量矩定理

第12章 动量矩定理 通过上一章的学习我们知道动量是表征物体机械运动的物理量。但是在某些情况下,一个物体的动量不足以反映它的运动特征。例如,开普勒在研究行星运动时发现,行星在轨道上各点的速度不同,因而动量也不同,但它的动量的大小与它到太阳中心的距离之乘积—称为行星对太阳中心的动量矩,总是保持为常量,可见,在这里,行星对太阳中心的动量矩比行星的动量更能反映行星运动的特征。 在另一些情况下,物体的动量则完全不能表征它的运动。例如,设刚体绕着通过质心C 的z 轴转动。因为不论刚体转动快慢如何,质 心速度C v 总是等于零,所以刚体的动量也总是零。但是,刚体上各质点的动量大小与其到z 轴的距离的乘积之和—即刚体对z 轴的动量矩却不等于零。可见,在这里,不能用动量而必须用动量矩来表征刚体的运动。 §12-1 质点动量矩定理 例2.人造地球卫星本来在位于离地面600km h =的圆形轨道上,如图所示,为使其进入410km r =的另一圆形轨道,须开动火箭,使卫星在A 点的速度于很短时间内增加0.646km/s ,然后令其沿椭圆轨道自由飞行到达远地点B ,再进入新的圆形轨道。问:(1)卫星在椭圆轨道的远地点B 处时的速度是多少?(2)为使卫星沿新的圆形轨道运行,当它到达远地点B 时,应如何调整其速度?大气阻力及其它星球的影响不计。地球半径6370km R =。 图12-5 解:首先求出卫星在第一个圆形轨道上的速度,可由质点动力学方程求出。卫星运行时只受地球引力的作用,即 2 2 () R F mg R x =+ 式中x 是卫星与地面的距离。当卫星沿第一圆形轨道运动时,有

22 2 ()()v R m mg R h R h =++ 即 2 2 () gR v R h =+ (b ) 将6370km R =,600km h =,9.8m/s g =代入上式,得卫星在第一个圆形轨道上运动的速度 17.553km/s v = 所以卫星在椭圆轨道上的A 点的速度为 7.5530.6468.199km/s A v =+= 卫星在椭圆轨道上运动时,仍然只受地球引力作用,而该引力始终指向地心O ,对地以O 的矩等于零,所以卫星对地心O 的动量矩应保持为常量。设卫星在远地点B 的速度为B v ,则有 A A B B r v r v = 所以 4 63706008.199 5.715km/s 10A B A B r v v r += ?=?= 设卫星沿新的圆形轨道运行时所需的速度为2v ,则 22 2 2 4 9.86370 6.306km/s 10gR v r ?=== 由此可见,为使卫星沿着第二个圆形轨道运行,当它沿椭圆轨道到达B 点时,应再开动火箭,使其速度增加一个值 20.591km/s B B v v v ?=-= 顺便指出,在(b )式中令0h →,就得到7.9km/s v =,这就是为使卫星在离地面不远处作圆周运动所需的速度,称为第一宇宙速度。 §12-2 质点系动量矩定理 例1.质量为1m 、半径为R 的均质圆轮绕定轴O 转动,如图所示。轮上缠绕细绳,绳端悬挂质量为2m 的物块,试求物块的加速度。均质圆 轮对于O 轴的转动惯量为211 2 O J m R =。

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:23t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,= ??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4) 4(R W 412222,+= ?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → → → →?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

理论力学课后习题答案第9章动量矩定理及其应用)

O ω R r A B θ 习题9-2图 习题20-3图 Ox F Oy F g m D d α 习题20-3解图 第9章 动量矩定理及其应用 9-1 计算下列情形下系统的动量矩。 1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。 2. 图示质量为m 的偏心轮在水平面上作平面运动。轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。 解:1、2 s m L O ω=(逆) 2、(1) )1()(R e mv e v m mv p A A C +=+==ω(逆) R v me J R e R mv J e R mv L A A A C C B )()()(22 -++=++=ω (2))(e v m mv p A C ω+== ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++= 9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。 解: ω)(22r m R m J L B A O O ++= 9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。不计铰链摩擦。 解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6 565== =l OD d 刚体作定轴转动,初瞬时ω=0 l mg l mg J O ?+?=22 α 222232)2(212 1 31 ml ml l m ml J O =+??+ = 即mgl ml 2 532=α 2rad/s 17.865==g l α g l a D 36 256 5t =?=α 由质心运动定理: Oy D F mg a m -=?33t 4491211 362533==-=mg g m mg F Oy N (↑) 0=ω,0n =D a , 0=Ox F (a) O M v ω ω A B C R v A (b) 习题9-1图

12第十二章 动量矩定理

1 质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3 刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4 如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5 如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6 图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统 对O 轴的动量矩为vR m R m vR m H o 12 232 ++=ω。( ) 7 图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v ,则轮子对速度瞬心I 的动量矩为R mv H c I =。( ) 1 已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则' z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ; B .)(2 2b a m z z -+=' J J ; C.)(2 2b a m z z --=' J J 。 2 两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和' F 的作用,由静止开始运动,若' F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。 3 在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。求质点对原点 O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 V x dx sin t dt a V y dy 2b cos2 t 质点对点 O 的动量矩为 L O M o (mV x ) M 0( mV y ) mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。 轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。 解:(1)当轮子只滚不滑时 B 点为速度瞬心。 轮子角速度 V A R 质心C 的速度V C BC R e 轮子的动量 p mv C mv A (方向水平向右) R 对B 点动量矩L B J B 2 2 2 由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2 食 (2)当轮子又滚又滑时由基点法求得 C 点速 度。 V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩 L B mv C BC J C m(v A 2 e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2) 因轮子只滚不滑,所以有 a c = r ( 3) ? 12

理论力学(机械工业出版社)第十一章动量矩定理习题解答.

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ2202sin 32d )sin (2ml x x l m J l z ==? 杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω2 3 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

第12章 动量矩定理(田)

第十二章 动量矩定理 一、填空题 1.如下(1)图所示,在提升重为G的物体A时,可在半径为r的鼓轮上作用一力偶M。已知鼓轮对轴O的转动惯量为I,某瞬时鼓轮的角加速度为α,则该瞬时,系统对轴O的动量矩定理可写成______________。 2.如下(2)图所示,轮B由系杆AB带动在固定轮A上无滑动滚动,两圆的半径分别为R,r。若轮B的质量为m,系杆的角速度为ω,则轮B对固定轴A的动量矩大小是_______________。 3.图(3)中匀质圆盘在光滑水平面上作直线平动,图(4)中匀质圆盘沿水平直线作无滑动滚动。设两圆盘的质量皆为m,半径皆为r,轮心O速度皆为v,则图示瞬时,它们各自对轮心O和对与地面接触点D的动量矩分别为:(3)LO =___________ ;LD =_____________________; (4)LO =_____________;LD =_____________________。 二、选择题 1.如下图(1)所示,已知两个匀质圆轮对转轴转动惯量分别为I A,I B,半径分别为RA,RB,作用在A轮上的转矩为M,则系统中A轮角加速度的大小为( )。 2 2A 2 2B 2 A A B A A 222A D C I I M B A B A B A B A A B B R I R I MR I M R I R I MR +==+=+=αααα、;、;、;、 2.如下图(2)所示,两匀质细杆OA和BC的质量均为m = 8kg,长度均为l = 0.5m, 固连成图所示的T字型构件,可绕通过点O的水平轴转动。当杆OA处于图示水平位置时,该构件的角速度ω = 4rad/s。则该瞬时轴O处反力的铅垂分力NOy的大小为( )。 A.NO=24.5N;B.NO=32.3N;C.NO=73.8N;D.NO=156.8N 3.如果把下图(3)中重为G A 的物体换为图(4)所示的力G A ,在这两种情况下,若把匀质滑轮的角加速度ε1和ε2的大小比较,则有( )。 A . ε1 < ε; B . ε1 > ε; C . ε1 = ε2 (1) (2) (3) (4) (1) (2) (3) (4)

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

理论力学@10动量定理

第10章 动量定理 主要内容 10.1.1 质点系动量及冲量的计算 质点的动量为 v K m = 质点系的动量为 C i i m m v v K ∑=∑= 式中m 为整个质点系的质量;对于刚体系常用i C i i m v k K ∑=∑=计算质点系的动量,式中 v Ci 为第i 个刚体质心的速度。 常力的冲量 t ?=F S 力系的冲量 ?∑=∑=2 1 d )(t t i i t t F S S 或 ??=∑=2 1 21 d )(d )(R t t t t i t t t t F F S 10.1.2 质点系动量定理 质点系动量定理建立了质点系动量对于时间的变化率与外力系的主矢量之间的关系,即 )(d d e i t F K ∑= (1)质点系动量的变化只决定于外力的主矢量而与内力无关。 (2)质点系动量守恒定律:当作用于质点系的外力系的主矢量0) (=∑e i F ,质点系动 量守恒,即K =常矢量。或外力系的主矢量在某一轴上的投影为零,则质点系的动量在此轴 上的投影守恒,如0=∑x F ,则x K =常量。 10.1.3 质心运动定理 质点系的质量与质心加速度的乘积等于外力系的主矢量。即 ()())(d d d d e i i i c m t M t F v v ∑=∑= 对于刚体系可表示为 )(1 Ci e i n i m F a ∑=∑= 式中a Ci 表示第i 个刚体质心的加速度。 10.1.4 定常流体流经弯管时的动约束力 定常流体流经弯管时,v C =常矢量,流出的质量与流入的质量相等。若流体的流量为Q ,密度为ρ。流体流经弯管时的附加动约束力为

)(12N v v F -=''Q ρ 式中v 2,v 1分别为出口处和入口处流体的速度矢量。 基本要求 1. 能理解并熟练计算动量、冲量等基本物理量。 2. 会应用动量定理解决质点系动力学两类问题,特别是已知运动求未知约束力的情形。当外力主矢量为零时,会应用动量守恒定理求运动的问题。 3. 会求解定常流体流经弯管时的附加动反力。 4. 会应用质心运动定理解决质点系动力学两类问题。 重点讨论 动量定理的应用 应用质点系动量定理一般可解决质点系动力学的两类问题。一类是已知质点系的运动,这里指的是用动量及其变化率或质心的加速度所表示的运动,求作用在质点系上外力系中的未知约束力。另一类是已知作用于在质点系上的外力系或外力系在某一坐标轴上的投影,求质点系的动量变化率或质心的加速度。 应用动量定理解质点系动力学问题时,应注意以下几点: 1.质点系动量的变化与内力无关。应用动量定理时,必须明确研究对象,分清外力与内力,只需将外力表示在受力图上。 2.应用动量定理可解决质点系动力学的两类问题,即已知力求运动的问题和已知运动求力的问题。一般用动量定理求未知约束力。 当外力系的主矢量为零时,系统的动量守恒,即 0)(=∑e i F ,i C i i m v k K ∑=∑==常矢量 当外力系的主矢量在某一轴(如x 轴)上投影为零时,系统的动量在该轴上的分量为一常数,即 0)(=∑e ix F ,Cx ix i x mv v m K ==∑=常数 对于刚体系可表示为 Cix i v m ∑=常数 利用以上动量守恒的关系,可以确定系统的运动。 例题分析 例10-1 一水柱以速度 v 沿水平方向射入一光滑叶片。设水柱的射入速度与叶片相切,水柱的截面积为A ,密度为 ,水柱离开叶片时的倾角为,不计水柱的重量。若叶片固 定不动,求叶片对水柱的附加动约束力主矢的分量F x 和F y 。

理论力学课后习题及答案解析

第一章 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是: 向A点简化的结果是一个力R A和一个力偶M A,且:

如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的 三角形面积,作用点通过三角形的形心。 习题4-4.求下列各梁和刚架的支座反力,长度单位为m。 解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程:

解方程组: 反力的实际方向如图示。 校核: 结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。校核: 结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。 解:(1) 研究整体,受力分析(BC是二力杆),画受力图:

四川大学 理论力学 课后习题答案 第1周习题解答

静力学习题及解答—静力学基础
第 1 周习题为 1.2~1.9; 1.10~1.12 为选作。 1.1 举例说明由 F1 ? r = F2 ? r ,或者由 F1 × r = F2 × r ,不能断定 F1 = F2 。 解:若 F1 与 F2 都与 r 垂直,则 F1 ? r = F2 ? r = 0 ,但显然不能断定 F1 = F2 ; 若 F1 与 F2 都与 r 平行,则 F1 × r = F2 × r = 0 ,也不能断定 F1 = F2 ;
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.2 给定力 F = 3 (? i + 2 j + 3k ) ,其作用点的坐标为 (?3,?4,?6) 。已知 OE 轴上的 单位矢量 e =
3 (i + j + k ) ,试求力 F 在 OE 轴上的投影以及对 OE 轴之矩。 3 解:力 F 在 OE 轴上的投影
FOE = F ? e = 3 (?i + 2 j + 3k ) ?
3 (i + j + k ) = ?1 + 2 + 3 = 4 3
力 F 对坐标原点 O 之矩 i j k mO ( F ) = ? 3 ? 4 ? 6 = 3 (15 j ? 10k ) ? 3 2 3 3 3 根据力系关系定理,力 F 对 OE 轴之矩
mOE ( F ) = mO ( F ) ? e = 3 (15 j ? 10k ) ? 3 (i + j + k ) = 15 ? 10 = 5 3
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

第12章 动量矩定理

第十二章 动量矩定理 §12—1 质点和质点系的动量矩 一、质点的动量矩 质点Q 的动量对于点O 的矩,定义为质点对于点O 的动量矩 动量矩的单位:kgm 2/s 二、 质点系的动量矩 ()mv r mv M O ?=()OQA r mv mv M O ?=?=2sin ?() i i n i O O v m M L ∑==1 () i i n i z z v m M L ∑==1 ()A Q O mv M z ' '?±=2()[]() mv M mv M z z O =

绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角速度的乘积。 §12—2 动量矩定理 一、质点的动量矩定理 质点的动量矩定理: 质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩。 直角坐标投影式为 []z z O L L =()2 1 1 1 i n i i i n i i i i i n i z z r m r v m v m M L ∑∑∑====?==ω2 1 i n i i z r m J ∑==ω z z J L =()mv dt d r mv dt dr mv r dt d mv M dt d O ?+?=?=)()(()F r mv v mv M dt d O ?+?=()()F M mv M dt d O O =()()()()()()F M m v M dt d F M m v M dt d F M m v M dt d z z y y x x == =

特殊情形: 当质点受有心力F 的作用时,如图11-4所示,力矩0=)(o F M ,则质点对固定点O 的动量矩)(m o v M =恒矢量,质点的动量矩守恒。例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩0=)(o F M ,行星的动量矩 )(m o v M =恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此 恒矢量的大小是不变的,即mvh =恒量,行星的速度v 与恒星到速度矢量的距离h 成反比。

理论力学_习题集(含答案)

《理论力学》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《理论力学》(编号为06015)共有单选题,计算题,判断题, 填空题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。 一、单选题 1. 作用在刚体上仅有二力A F 、B F ,且0+=A B F F ,则此刚体________。 ⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断 2. 作用在刚体上仅有二力偶,其力偶矩矢分别为A M 、B M ,且A M +0=B M ,则此刚体________。 ⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断 3. 汇交于O 点的平面汇交力系,其平衡方程式可表示为二力矩形式。即()0=∑A i m F ,()0=∑B i m F ,但________。 ⑴、A 、B 两点中有一点与O 点重合 ⑵、点O 不在A 、B 两点的连线上 ⑶、点O 应在A 、B 两点的连线上 ⑷、不存在二力矩形式,∑∑==0,0Y X 是唯一的 4. 力F 在x 轴上的投影为F ,则该力在与x 轴共面的任一轴上的投影________。 ⑴、一定不等于零 ⑵、不一定等于零 ⑶、一定等于零 ⑷、等于F 5. 若平面一般力系简化的结果与简化中心无关,则该力系的简化结果为________。 ⑴、一合力 ⑵、平衡 ⑶、一合力偶 ⑷、一个力偶或平衡 6. 若平面力系对一点A 的主矩为零,则此力系________。 ⑴、不可能合成一个力 ⑵、不可能合成一个力偶

⑶、一定平衡 ⑷、可能合成一个力偶,也可能平衡 7. 已知1F 、2F 、3F 、4F 为作用刚体上的平面共点力系,其力矢关系如图所示为平行四边形,因此可知________。 ⑴、力系可合成为一个力偶 ⑵、力系可合成为一个力 ⑶、力系简化为一个力和一个力偶 ⑷、力系的合力为零,力系平衡 8. 已知一平衡的平面任意力系1F 、2F ……1n F ,如图,则平衡方程∑=0A m ,∑=0B m ,∑=0Y 中(y AB ⊥),有________个方程是独立的。 ⑴、1 ⑵、2 ⑶、3 9. 设大小相等的三个力1F 、2F 、3F 分别作用在同一平面内的A 、B 、C 三点上,若AB BC CA ==,且其力多边形如b <>图示,则该力系________。 ⑴、合成为一合力 ⑵、合成为一力偶 ⑶、平衡

理论力学第8章动量定理及其应用

— 1 — 第8章 动量定理及其 应用 8-1 计算下列图示情况下系统的动量。 (1) 已知OA =AB =l ,θ=45°,ω为常量,均质连杆AB 的质量为m ,而曲柄OA 和滑块B 的质量不计(图a )。 (2) 质量均为m 的均质细杆AB 、BC 和均质圆盘CD 用铰链联结在一起并支承如图。已知AB = BC = CD = 2R ,图示瞬时A 、B 、C 处于同一水平直线位置,而CD 铅直,AB 杆以角速度ω转动(图b )。 (3) 图示小球M 质量为m 1,固结在长为l 、质量为m 2的均质细杆OM 上,杆的一 端O 铰接在不计质量且以速度v 运动的小车上,杆OM 以角速度ω绕O 轴转动(图c )。 解:(1)p = mv C = ωml 2 5,方向同C v (解图(a ) ); (2)p = mv C 1 + mv C 2 = mv B = 2Rm ω,方向同B v ,垂直AC (解图(b )); (3)j i p )60sin 2 60sin ()]60cos 2 ()60cos ([2 121?+?+?- +?-=ωωωωl m l m l v m l v m j i 4 23]4 2)[(2 12 121m m l l m m v m m +++- +=ω ω(解图(c ))。 8-2 图示机构中,已知均质杆AB 质量为m ,长为l ;均质杆BC 质量为4m ,长为2l 。图示瞬时AB 杆的角速度为ω,求此时系统的动量。 习题8-1解图 (a) (b) (c) 习题8-1图 v (a) (b) (c) C 习题8-2解图

— 2 — 解:杆BC 瞬时平移,其速度为v B ω ωωml ml l m p p p BC AB 2 942 =+=+= 方向同v B 。 8-3 两均质杆AC 和BC 的质量分别为m 1和m 2,在C 点用铰链连接,两杆立于铅垂平面内,如图所示。设地面光滑,两杆在图示位置无初速倒向地面。问:当m 1= m 2和m 1= 2m 2时,点C 的运动轨迹是否相同。 解:根据受力分析知:∑=0x F ,故系统的质心在水平方向运动守恒。 当m 1= m 2时,系统关于y 轴对称,质心位于y 轴上,且沿y 轴作铅垂直线运动,点C 的运动轨迹亦为铅垂直线。 当m 1= 2m 2时,质心位于y 轴左侧,且作铅垂直线运动,点C 的运动轨迹必为曲线。 故两种情况下,点C 的运动轨迹不相同。 8-4 图示水泵的固定外壳D 和基础E 的质量为m 1,曲柄OA =d ,质量为m 2,滑道B 和活塞C 的质量为m 3。若曲柄OA 以角速度ω作匀角速转动,试求水泵在唧水时给地面的动压力(曲柄可视为匀质杆)。 解:以整个水泵为研究对象,受力如图(a ): 解法1:用动量定理求解 瞬时t ,系统动量 p = p 2+p 3 ω2 2222d m v m p C ? ==,方向如图 ?ωs i n 3333 d m v m p C ==,方向如图 由质系动量应理: ∑==y y y F F t p d d (1) ∑= =x x x F F t p d d (2) ?ω?ωs i n s i n 23232d m d m p p p y y y +?=+= ? ωc o s 2 232d m p p p x x x ? =+= x x x F F F == ∑ g m m m F F F )(321++-==∑y y y 代入(1)、(2),并注意到t ω?=得: g m m m F t d m t d m t y )(s i n s i n 2d d 32132++-=??? ??+?ωωωω x F t d m t =?? ? ???ωωc o s 2d d 2 得t ωd m m g m m m F 2 y ωcos 2 2)(3 2321++++= (3) t m d F 2 x ωωs i n 2 2- = (4) 习题8-4图 习题8-3解图 p (a)

相关文档
最新文档