主板电池放电的方法

主板电池放电的方法
主板电池放电的方法

主板电池放电的方法

1.使用CMOS放电跳线

对现时的大多数主板来讲,都设计有CMOS放电跳线以方便用户进行放电操作,这是最常用的CMOS放电方法(下面的方法2、3、4及小结里的方法基本不使用)。该放电跳线一般为三针,位于主板CMOS电池插座附近,并附有电池放电说明(有的为两针,如华擎主板,也位于主板CMOS电池附近,有CLRCMOS标识,两针的直接用导电物体连接一两秒即放电成功)。在主板的默认状态下,会将跳线帽连接在标识为“1”和“2”的针脚上,从放电说明上可以知道为“Normal”,即正常的使用状态。

要使用该跳线来放电,首先用镊子或其它工具将跳线帽从“1”和“2”的针脚上拔出,然后再套在标识为“2”和“3”的针脚上将它们连接起来,由放电说明上可以知道此时状态为“Clear CMOS”,即清除CMOS(如下图所示)。经过短暂(一秒即可,长点也无所谓)的接触后,就可清除用户在BIOS内的各种手动设置,而恢复到主板出厂时的默认设置。

由跳线的放电说明,对CMOS进行放电

对CMOS放电后,需要再将跳线帽由“2”和“3”的针脚上取出,然后恢复到原来的“1”和“2”针脚上。注意,如果没有将跳线帽恢复到Normal状态,则无法启动电脑并会有报警声提示。

2.取出CMOS电池

相信有不少用户遇到过下面的情况:要对CMOS进行放电,但在主板上(如华硕主板)却找不到CMOS放电的跳线,怎么办呢?此时,可以将CMOS供电电池来达到放电的目的。因为BIOS的供电都是由CMOS电池供应的,将电池取出便可切断BIOS电力供应,这样BIOS中自行设置的参数就被清除了。

在主板上找到CMOS电池插座,接着将插座上用来卡住供电电池的卡扣压向一边,此时CMOS 电池会自动弹出,将电池小心取出。

将卡扣往旁边一压,电池就会自动弹出

接着接通主机电源启动电脑,屏幕上就会提示BIOS中的数据已被清除,需要进入BIOS 重新设置。这样,便可证明已成功对CMOS放电。

启动时BIOS提示出错,证明放电成功

3.短接电池插座的正负极

取出供电电池来对CMOS放电的方法虽然有一定的成功率,但是却不是万能的,对于一些主板来将,即使将供电电池取出很久,也不能达到CMOS放电的目的。遇到这种情况,就需要使用短接电池插座正负极的方法来对CMOS放电了。当然,在有CMOS放电跳线的主板上,如果大家觉得CMOS放电操作过于麻烦,也可以使用这种方法。

CMOS电池插座分为正负两极,将它们短接就可以达到放电的目的。首先将主板上的CMOS供

电电池取出,然后使用可以有导电性能的物品(螺丝刀、镊子等导电物品),短接电池插座上的正极和负极就能造成短路(如下图所示),从而达到CMOS放电的目的。

使用导电物体来短接电池插座的正极和负极

4.改变硬件配置

除了上面介绍的三种方法,还可以使用改变电脑硬件配置的方法来尝试清除BIOS中设置的密码。因为在启动时如果系统发现现在的硬件配置和原来的硬件配置不同,可能会自动进入BIOS设置画面让用户重新设置,并且不需要输入密码。

例如BIOS中将硬盘的参数设置为“User”,便可以将硬盘移走,那么重新启动时BIOS就可能因检测不到硬盘而出错,并自动进入BIOS设置,此时用户就可以重新设置密码了。注意,该方法的成功率不是很高,可以适合的主板也不是很多,如果使用其它方法都无效,可以一试。

小结

上面介绍的是对CMOS放电的四种硬件方法,可以用于不同的情况。当然,要对CMOS放电,还有许多软件的方法,如使用Debug命令、软件清除等,有兴趣的用户可以试试,但前提是可以启动操作系统。如果为BIOS设置了开机密码,那软件就无能为力了,只能使用本文介绍的硬件方法了。

ZFD-1蓄电池放电装置使用说明书

ZFD-1 蓄电池放电装置 使 用 说 明 书 许继集团电源有限公司

目录 1. 概述--------------------------------------------------3 2. 装置特点----------------------------------------------3 3. 装置型号及含义 -------------------------------------3 4. 装置外形----------------------------------------------4 5. 主要技术参数 ----------------------------------------4 6.使用条件-----------------------------------------------4 7. 人机接口示意图 ---------------------------------------5 8. 菜单总示意图------------------------------------------5 9. 各个菜单页面功能的详解 -------------------------------6 10. 操作注意事项------------------------------------------7 11. 告警-------------------------------------------------8 12.担保和服务--------------------------------------------8 13.随机文件及附件--------------------------------------- 8 14 附录--------------------------------------------------9

山特UPS电池配置的计算方法及其使用和维护

山特UPS电池配置的计算方法及其使用和维护 长延时UPS电源电池配置的计算方法 对于使用者来说,怎样去配置长延时UPS电池容量是一个必须了解的问题,放电电流的大小与电池的实际容量关系颇大,蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。比如 12V24AH /20R Panasonic电池以0.4C放电时,可提供使用的效率(容量)为73.3%,可放电2小时,而以7C放电时,可提供使用的效率(容量)为4%,放电时间50秒。因此,要计算UPS电源的时间必须先计算出放电电流,再通过查验厂家提供的放电时间表计算出准确时间。 计算放电电流的公式是: 放电电流=UPS容量(VA) ×负载功率因数/(逆变器效率*UPS终止电压) 以山特10KVA为例: UPS容量:10KVA UPS输出功率因数:0.8 UPS终止电压:单只电池终了电压×UPS电池组电池个数 =10.5V×16只=168VDC 逆变器效率:0.85 注意:电池的能量并非都能直接提供给负载,它还包含了把电池能量转换为负载可使用的能量的转换效率,即逆变器效率。 放电电流=10000VA*0.8/(0.85*168)V=56A 查表 可查询不同AH的电池在同样放电电流下的使用时间,以求得自己所要求合适容量的电池,在这里提出一点,以上我们的计算都是认为UPS为满负载,对用户而言,重要的是了解在实际负载下UPS电源提供的实际使用时间,从经济和实用的角度而言,了解自己的负载数量,计算一个实际放电电流再查表方是正确做法。 蓄电池使用及维护 免维护电池所指的是电池的内环境无需维护,而不是说可以任意使用,因此,在以下几个方面应加以注意: 为了保证电池良好的工作状态,对于长期搁置不用的蓄电池必须每隔一定时间充电一次,以达到激活电池的目的,恢复电池原有的容量数。另外,特别应注意的是,对于运行于供电质量高、很少发生停电的UPS电源来说,也应每隔一定的周期(3个月)人为地中断交流电的输入,使电池放电至少在UPS电池组可提供时间的一半,再重新充电,这样会延长电池的使用寿命。 对于不同容量的电池,绝对不可以在同一组中串联混合使用,应特别注意的是,对于不同容量的电池,并联使用也是很不好的,这样会大大降低电池的使用寿命,很简单地说,不同容量的电池组并联使用时,由于放电电流的不同分配,放电速率则对于它们来说一定是不

TEP-F系列电阻型恒流放电装置产品说明书

TEP-F系列电阻型恒流放电装置 说 明 书 (V1.0) 珠海泰坦科技股份有限公司

概述 蓄电池作为备用电源在直流系统中起着极其重要的作用,从而在电力、通信、金融、交通等各行各业中得到广泛的应用。判断蓄电池组性能的好坏,最可靠和最有效的方法就是对蓄电池组进行核对性放电。目前常用的放电设备主要使用可变电阻、电阻盘、碳棒、水槽等,需要人工调节放电电流,控制精度低,工作繁复,劳动强度大。若采用相控逆变方式对电池放电,虽没有上述缺点,但其为脉冲放电,电流纹波很大,对电池造成不良影响,并对电网造成很大污染。若在放电过程中电网停电,有可能引发意外事故。 珠海泰坦科技股份有限公司研制开发成功的TEP-F系列PTC电阻型恒流放电装置采用新型功率元件,全新的控制原理,体积小,重量轻,放电电流在大范围内连续可调,稳流精度高。监控单元采用大屏幕液晶全中文显示,友好的菜单式人机操作界面,完成对装置运行参数和工作状态的监控,在达到放电终止电压或设定时间后能自动停止放电,监控单元自动计算处理放电数据和放电曲线。通过通讯接口,监控单元可将实时数据后台监控系统,完成数据记录、分析、报表和打印等工作。 产品特点 ●本装置采用新型的陶瓷电阻做为放电负载,同时采用先进的PWM闭环控制方式, 可连续调控放电电流,实现定电流恒流放电。在放电时,监控单元对蓄电池组电压进行监测,当蓄电池组满足以下三个条件时,放大器停止放电。一:电压低于放电终止整定电压;二:放电时间到达整定时间;三:安时数到整定值时,三个条件满足任何一条放电器自动停止放电。 ●可与本公司研制的蓄电池端电压采集单元BMCU-A配套使用,自动监测蓄电池组 每节电池的电压,当蓄电池组中某节电池电压下降到放电终止电压时,自动停止放电,使每一节电池放电电压均得以精确监控。 ●在放电过程中,显示放电电压、电流、容量、时间及放电曲线。数据可通过通 讯接口传送至计算机后台监控系统,通过后台分析软件对放电数据进行记录、分析、制作报表和打印等。 ●具有多种故障保护功能,安全可靠。

笔记本电池充放电原理

笔记本电池充放电原理 (1) NB 电池: 目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。锂离子电池没有这种问题,但它唯一的缺点是怕冷。而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理: 在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook, Pins: 1. 接地(GND) 2. TS (侦测电池插入) 3. HDQ BUS (主要在存取电池的各项叁数) 4. BAT_BC 5. No connection 6. 电池输入/ 输出电压 (2) Gauge IC: Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有

此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常. (3) Charge IC: Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合 哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程: 在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下: Step 1: AC_IN 有讯号, 而且也已侦测到Battery in. Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.

{时间管理}电池使用时间的计算方法

(时间管理)电池使用时间 的计算方法

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,于停电后壹般能够继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,能够满足用户长时间停电时继续供电的需要,壹般长效型UPS满载配置时间可达数小时之上。 壹般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。壹般于电力环境较差、停电较为频繁的地区采用UPS和发电机配合供电的方式。当停电时,UPS先由电池供电壹段时间,如停电时间较长,能够起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。壹般计算机UPS电池供电时间,能够先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流能够按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率) 如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法 于UPS电源运行中,如果遇到市电供电中断时,蓄电池必须于用户所预期的壹段时间内向逆变器提供足够的直流能源,以便于带额定负

载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量和下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有于考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量和蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。 常见的微机、服务器及其配件的负载特性

锂电池的充放电次数及检测仪

一般决定锂电池使用寿命的是它的充电循环次数,所谓充电循环次数,是指锂电池从满电状态把电池电量放倒0,又充满的过程。无论是三元锂电池还是磷酸铁锂电池,如果采取浅放浅充的方式充放电,其使用寿命将会延长很多,三元锂电池的充电循环次数能很轻松地突破1000次。 往往说到锂电池循环次数这个问题,基本上都会和“充电周期”挂上关系,这两者其实可以说是同个意思,你可以说:电池循环次数是以周期来计算的,也可以反过来说锂电池充电周期是以循环次数来计算的,这两种说法都不为过。 什么是充电周期?一次充电周期指的是锂电池一次完整的充放电过程,也就是说当电池使用电量达到电池容量的100%,即完成了一个充电周期,但不一定通过一次充电就完成。这点是很多人的一个认知误区。 锂电池的寿命是500个充电周期。怎么才能算作是一个充放电周期呢?一个充电周期意味着锂电池的所有电量由满用到空,再由空充到满的过程,这并不等同于充一次电。所谓的500次,是指锂电池厂家在恒定的放电深度(80%)实现了625次左右的可充次数,达到了500个充电周期。再来个算式就更清楚了:625×80%=500.(忽略锂电池容量减少等因素)。 实际中,由于生活中的各种影响,特别是充电时的放电深度不是恒定的,所以,“500个充电周期”只能算作是参考。进口三元锂电池充放电次数可达到约3000次左右,国产的大概也就是800-1000次。

正常用锂电池充电放电次数高达到2000次、锂电池有三元锂电池、铁锂电池、聚合物锂电池,各有差距。正常用铅酸电池各充电放电次数高达500次、如平液电池、富液电池、胶体电池等各有不同。 目前的新能源汽车上使用的动力电池主要是三元锂电池、钴酸锂电池、磷酸铁锂电池这三种,无论是哪一种类型的电池,都存在着使用寿命,动力电池的寿命是按照循环使用次数来进行衡量的,充放电的次数越多,电池的使用寿命就会越少。对于动力电池电芯循环使用次数国家强制要求必须要在1000次以上,磷酸铁锂一般可以做到2000次,而三元锂电池一般也能1000次以上。 不同的电池有不同的循环使用寿命。通常三元锂动力电池的循环使用寿命在1500次到2000次左右。所以单纯的充电次数并不会影响到电池的寿命。动力电池的寿命只会根据循环次数来减少。充电次数并不能够直接决定动力锂电池的使用寿命,在一次充放电的循环中多次充电也只能算是电池损耗的一次循环使用。所以我们在使用电动汽车的时候,不需要担心充电次数多而影响到动力锂电池的使用寿命。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,是一家专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的企业。研发了一系列动力电池,机电,机电控制维保领域的相关产品,有效的降低了服务商的运营维护成本,延长了电池的使用寿命,我们致力于打造

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

电池放电时间计算

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(-7.0C)、超高倍率(>7.0C)如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。 25)放电率 电池在规定时间内放出额定容量时所需的电流值;或按一定输出电流放完额定容量时所需的时间。常用倍率(若干C)或时率表示。 26)活性物质 电池放电时,能进行氧化或还原反应而产生电能的电极材料。 27)充电 将外电路输入蓄电池的电能转化为化学能贮存起来的操作过程。 28)充电率 蓄电池在规定时间内充到额定容量所需的电流值;或在一定电流下充到额定容量所需的时间。一般用倍率(若干C)或时率表示。

时间管理电池使用时间的计算办法

最新卓越管理方案您可自由编辑

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法

在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

蓄电池放电装置

蓄电池放电装置 ◆功能特点 ●采用单体监测模块:兼容2V/6V/12V单体电压监测 ●多单体监测:每个无线监测模块可同时监测4个单体,相比传统1对1的方 法,极大的节约成本、提高效率 ●多组蓄电池组离线或在线放电测试:同时测试每组蓄电池组的实际放电电 流。 ●在线补偿式放电功能:在线放电时,主机显示电流=电池组放电电流=主 机内部假负载电流+实际负载电流,由于在线放电时实际负载电流会随着在线 电压的变化而变化,主机内部假负载电池也会自动进行调整,以保证蓄电池 组一直以真正的恒流方式放电。 ●单体电压停机门限可设置多节:可在一次连续不中断的放电测试中发现 多节落后单体电池。支持并接多台小巧的恒流扩展模块,满足更大放电电流 的需要,主机可控制恒流模块同时启动和同时停止。 ●采用航空合金电热元件:电热转换效率高,功耗小,安全系数高,体积 小、重量轻; ●放电电流自动计算功能:内置各小时率放电系数,可根据被测电池的标 称容量和需要的放电率来自动计算需要设置的放电电流。 ●实时检测和显示各单体电压:在主机屏幕上呈现出各单体电压柱状图的变化轨迹,还能自动实时呈现出电压最高与最低的单体,帮助您快速分析单体变化的趋势。 ●放电参数预设功能:允许预先内置多达8种常用的放电参数设置,无须重新设置放电参数,使用者也可以对内置的预放参数进行修改,让操作更加方便 ●智能判别程序:主机能自动判断单体监测是夹子脱落还是真正达到门限,避免人为等意外因素中断放电过程 ●大容量存储内存:可存储多组放电数据,在主机上直接可对历史放电数据进行查看、分析、删除等管理动作。 ●数据传输连接方式:支持通过U盘将放电数据拷入PC机进行分析和生成测试报告。 ●灵活的供电方式:采用交直流两种供电方式,适用性更广。 ●完善的数据分析软件:能同时显示单体电压、单体内阻条形图、总电压曲线、电流曲线、容量柱状图、特性比较图、数据表格等,可自动生成EXCEL格式报表,便于测试数据发送或上传。 ●超大触摸屏:采用5.7英寸超大触摸屏,触屏操作更简单。放电过程中即可查看所有的放电参数,并且显示单体电压柱状图 ◆技术参数 适用蓄电池48V系统营业厅小型UPS 电力/变电站/供电所 高压UPS 20~110V系统220V系统 产品型号IDCE-4830CT IDCE-4815CT IDCE-1105CT IDCE-2206CT IDCE-6006CT IDCE-60010CT 电池组电压0~60V20~125V40~300V300~650V 放电电流0~300A 0~150A 0~50A 0~60A 0~60A 0~100A 控制精度放电电流≤±1%;组端电压≤±0.1%;单体电压:≤±0.5% 散热强迫风冷 尺寸(mm) 628×223×372 508×223×372 628×223×372 658×223×372 970×280×700 单机重量(kg) 181318 28 55

笔记本电池起死回生的妙招

当本本使用了一段时间后,你会发现续航能力大不如以前,这时你会以为电池坏掉了,其实不然,我来传授妙招。适用于XP/VISTA/WIN7操作系统。 方法一 笔记本电池特别是锂电池闲置太久或者刚维修过,它的充电曲线和放电曲线都产生的一定的偏移,需要用进行真正的充满放完的几个循环步骤纠正修复其充放电曲线,我们也叫电池的自学习过程. 1.设置(这是最关系到能把电池修复到最佳状态的最重要的一步.请大家勿必要注意啦) 打开我的电脑-控制面板-电源选项-电源使用方案如图。 把使用电池这项的时间参数全选为从不 将警报项的两个选项勾去掉,目的是当电池降到百分之几的时候让程序不响应。相应的操作,让笔记本电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。 2.充放电:如上设置完之后,就按充满放完原则给电池充放电,来回两三次,就可以将电池偏移的曲线修复过来.

注意事项:充电的时候一定要让电池充满,最好的办法是关机充几个小时或一个晚上,然后拔掉电源放电,直至电脑自动掉关机。这样来回至少两个循环 方法二 电池在使用和充电中的不稳定因素会造成电池的容量下降,但这种下降并不是由于老化而造成,所以适当的进行校准是可以使这部分丢失的容量恢复的。因此定期进行电池校准工作是非常有必要的一件事情,比如1-2月一次。 像Compaq和IBM这样笔记本电脑自身就在BIOS或电源管理程序中提供了电池校准功能,所以使用这两个品牌的朋友可以照提示操作即可。对于那些没有提供这个功能品牌的用户可以遵照我下面的步骤: 1.将屏幕保护设置为“无” 2.在Windows电源管理中将电源使用方案设置为“一直开着”,并且将下面的关闭设备相关菜单全部设置为“从不” 3.在警报选项卡中将“电量不足警报”设置为10%,操作设置为“不进行任何操作”;将“电量严重短缺警报”设置为3%,操作为“待机” 4.屏幕亮度调到最高 5.确认关闭了所有的窗口,并且保存了所有之前工作的数据 6.确认电池充电在80%以上后,拔掉电源和一切外接设备,此时如果屏幕亮度自动降低,那么请将它打到最亮 OK,你可以去睡觉了,放电结束后笔记本会自动关机,之后将电源插上让笔记本充电,注意一定要等 完全充满后再开机,然后将电源方案恢复到校准之前的设置。 这样做的目的是让电池持续小电流放电,而这种放电状态在我们的日常使用中是不可能达到的,因为正常状态我们难免进行各种会使电流上上下下变动的操作。 方法三 使用BatteryMon软件来进行恢复 1.下载BatteryMon软件后并解压缩 2.点击继续

电池放电时间计算

电池放电时间计算集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

新电池估算方法: 估计算法:电池容量× 0.8 ÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用0.006,机房里选用0.008 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到1.8v,也就是只要有一只电池达到1.8v,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以1.8×24=43.2v,即可以放到43.2v算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到1.8v,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(0.5-3.5C)、高倍率(3.5-7.0C)、超高倍率(>7.0C)

动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

三招原地复活 教你如何恢复笔记本电池

笔记本使用一段时间后,会发现续航力不如以前,这时你可不要以为电池真的坏了,其实只需要几个简单的小操作就能让电池恢复原来的战斗力,下面笔者就教大家3个方法。 笔记本电池特别是锂离子电池闲置太久或者刚维修过,它的充电曲线和放电曲线都产生的一定的偏移,需要用进行真正的充满放完的几个循环步骤纠正修复其充放电曲线。

设置1:如图中红框所示,把使用电池这项下的时间参数全部选择为“从不”。 设置2:如图中红框所示,将”低水平电量通知的两个选项勾去掉“,目的是当电量降到百分之几的时候让程序不执行相应的操作,让电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。

设置1:如图中红框所示那样,把使用电池这项下面的时间参数全部选择为“从不”。 设置2:如图中红框所示,将”电池不足警报和严重短缺警报的两个选项勾全部去掉“,目的是当电量降到百分之几的时候让程序不执行相应的操作,让电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。

充电的时候一定要让电池充满,最好的办法是关机充几个小时或一个晚上,然后拔掉电源放电,直至电脑自动关机,这样来回至少两个循环。 设置1:如图中红框所示:将屏幕保护设置为”无“。

设置2:如图中红框所示:将电源选项设置为高性能或平衡,硬盘和睡眠下面的选项都设为”从不“。 设置3:如图中红框所示:将“电量水平低”设置为10%,操作为“不采取任何操作”,如蓝框所示:将“关键电量水平”设置成为6%,操作为“睡眠”。

设置4:如图中红框所示:将屏幕亮度设置到最高等级。 设置5:确认关闭了所有的窗口,并保存所有之前工作的数据。确认电池充电在80%以上之后,拔掉电源和一切外接设备,此时如果屏幕亮度自动降低,那么请将它开到最亮。注意事项:放电结束后笔记本自动关机,之后将电源插上让笔记本充电,注意一定要等待。完全充满后再开机,然后将电源方案恢复到校准之前的设置

关于纯电动汽车续航里程的计算方法

关于纯电动汽车续航里程的计算方法最近因为工作原因开始研究纯电动汽车续航里程计算问题,后来在网上查找了一些这方面的资料,但是也没找到太准确的计算方法,根据最近一段时间的学习,对于续航里程计算我在这做一个自我认识的总结,希望对大家有用。 首先我需要提到一个《汽车理论》第四版,清华大学余志生主编的课本第67 页有一个关于电动车续航里程计算的公式,具体如下: 在这个公式中,蓄电池总能量就是我们提到的电池时的12V 100Ah这两个参数的乘积,但是这样得出来的结果单位是W.h,不需要公式里再乘以10的3次方了。另外电机及控制器效率是指电能在通过电机控制器到达电机时有能量损耗,电机自身产生机械能时也有损耗,两次传输效率乘积就是电机及控制器效率,这个参数依据不同的电机及电机控制器型号是不一样的,这个地方说取0.9只是个例子,不代表通用值。 电池平均放电效率是由电池厂家提供的一个电池放电曲线图得出的,如下图:

电池在不能的放电倍率(放电倍率是指100Ah容量的电池以100A的电流放电就称为以1CA的电流放电)下,能放出的总电能是不同的,放电速度越快,放出的总电能越少。这个地方我需要说明下,平时我们所提到的电池容量,如100Ah,是指电池的额定容量,在一定的放电条件下进行放电,这100Ah的电量是完全可以被放出来的,而且还可以超额放电,最多能放出120%的额定容量的电量。要说明的是,我这些都是针对铅酸电池而言,其他电池暂时不清楚。依据上图,该型号的电池在每一个放电倍率时,都能从图中读出它以该放电倍率放电所能持续的时间,放电倍率乘以放电时间就是放电效率。对放电曲线图里的所有倍率下的放电效率求平均值,就得出了平均放电效率。 这个参数大家应该都知道,这是传动效率。 但是在上述汽车理论公式中的0.7系数,我一直不知道是什么意思,后来我个人认为是作者认为在汽车形势中,电池的70%能量用在了汽车行驶上,其他30%用在了电器空调上。 另外一种求续航里程的方法: 首先大家应该明白电动车的能量流程图

UPS后备时间电池计算公式

U P S后备时间电池计算 公式 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

U P S电池放电时间计算方法(逆变效率按90%、12V电池放电终止电压10.5V) 1、计算蓄电池的最大放电电流值: I最大=Pcosф/(η*E临界) 注:P→UPS电源的标称输出功率 cosф→UPS电源的输出功率因数(UPS一般为0.8) η→UPS逆变器的效率,一般为0.88~0.94(实际计算中可以取0.9) E临界→蓄电池组的临界放电电压(12V电池约为10.5V,2V电池约为1.7V) 2、根据所选的蓄电池组的后备时间,查出所需的电池组的放电速率值C,然后根据: 电池组的标称容量=I最大/C 3、由于使用E临界——电池的最低临界放电电压值,所以会导致所要求的电池组的安时容量偏大的局面。按目前的使用经验,实际电池组的安时容量可按下面公式计算: 例如1.10KVAUPS延时60分钟 电池的最大放电电流26.4A=标称功率10000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=26.4A÷0.61C=43.3AH 10KVA延时60分钟,电池配置为32节1组12V44AH。选配时32节12V1组容量≥44AH 例如1.20KVA延时180分钟 电池的最大放电电流52.9A=标称功率20000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=52.9A÷0.28C=188.5AH 20KVA延时180分钟,电池配置为32节1组12V190AH。选配时32节12V1组容量≥190AH

锂离子电池的过充电和过放电产生的问题

针对锂离子电池过充电、过放电问题过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟的体 系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 (锰酸锂LiMnO 4 分子结构上面可以保证在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 磷酸铁锂(LiFePO 4)及其充电(脱锂)后形成FePO 4 的热稳定性非常好,其在 210~410℃的温度范围内所放出的热量仅为210J/g:而普遍使用的LiCoO2的充电态

智能蓄电池放电测试仪

智能蓄电池放电测试仪 产 品 说 明 书 北京恒奥德科技有限公司目录

1 概述( 2 ) 1.1 设备特点( 2 ) 1.2 系统组成( 2 ) 1.3 设备型号( 2 ) 2 主要技术参数( 3 ) 3. 基本工作原理( 4 ) 4. 使用与操作说明( 5 ) 4.1 操作面板( 5 ) 4.2 设备环境要求( 5 ) 4.3 仪器连接( 5 ) 4.4 操作界面说明( 6 ) 4.5 设备启动与参数预置( 6 ) 4.6 放电执行与监视( 9 ) 4.7 数据处理(12 ) 5 通信故障模块修改配置(13 ) 6 使用注意事项 7 后台软件操作说明 1.概述 1.1设备特点 在所有信息化、自动化程度不断提高的运行设备、运行网络系统中,不间断供电是一个最基

础的保障.而无论是交流还是直流的不间断供电系统,蓄电池作为备用电源在系统中起着极其重要的作用。平时蓄电池处于浮充备用状态,一旦交流电失电或其它事故状态下,蓄电池则成为负荷的唯一能源供给者。 我们知道,蓄电池除了正常的使用寿命周期外,由于蓄电池本身的质量如材料、结构、工艺的缺陷及使用不当等问题导致一些蓄电池早期失效的现象时有发生。为了检验蓄电池组的可备用时间及实际容量,保证系统的正常运行,根据电源系统的维护规程,需要定期或按需适时的对蓄电池组进行容量的核对性放电测试,以早期发现个别的失效或接近失效的单体电池予以更换,保证整组电池的有效性;或者对整组电池的预期寿命作出评估. 本测试仪可在蓄电池离线状态下,作为放电负载,通过连续调控放电电流,实现设定值的恒流放电。在放电时,当蓄电组端电压或单体电压,跌至设定下限值、或设定的放电时间到、或设定的放电容量到,仪器自动停止放电,并记录下所有有价值的、连续的过程实时数据. 本测试仪系统对单体电池的电压监测信息,采用无线中继接入,简单、安全、精确. 本仪器有非常友好的人机界面,不仅可以在菜单的提示下完成各种设置和数据查詢,而且放电的过程数据,均保存在设备的内存中,通过数据接口可以读取、转存,并通过上位机的专用软件,对数据进行分析,生成需要的曲线和报表. 本仪器有完善的保护功能,不仅有声、光告警,而且还有明确的界面提示. 本仪器体积小、重量轻、使用简单、测量精度高,规格齐全.同系列产品可使用于24V、48V、72V、110V、220V、480V、600V等系列的蓄电池组。 1.2 系统组成 测试仪系统现场使用时由主机、单体电池检测模块和无线中继模块组成. 主机由彩色显示屏、数据处理单元、数据采集单元、辅助电源单元、放电单元和面板操作单元组成. 2. 主要技术参数 营业厅小型UPS 电力/变电站/供电所高压UPS 适用蓄电池48V系统 20~110V220V系统 产品型号XGCE-4830 XGCE-4815 XGCE-1105 XGCE-2206 XGCE-6003 直流输入 电池组电压0~60V20~125V98~270V300~650V

相关文档
最新文档