第四章 计算智能1 人工智能课程 北京大学

第四章 计算智能1     人工智能课程   北京大学
第四章 计算智能1     人工智能课程   北京大学

第四章计算智能(1)

教学内容:本章讨论计算智能所涉及的领域和范围,计算智能的含义及它与传统的人工智能的区别。介绍人工神经网络的由来、特性、结构、模型和算法;神经网络的表示和推理。简要地介绍模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。

教学重点:计算智能;人工神经网络的结构、模型和算法,以及表示和推理。

教学难点:人工神经网络的结构、算法和推理;模糊数学的运算法则和模糊逻辑推理。

教学方法:课堂教学为主。适当提问,加深学生对概念的理解。

教学要求:通过对本章的学习,使学生掌握人工神经网络的结构、模型和算法,了解计算智能所涉及的领域和范围,了解人工神经网络的特性、表示和推理,了解模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。

4.1概述

教学内容:本节介绍计算智能所涉及的领域和范围,计算智能的含义及其与传统人工智能的区别。贝兹德克提出的“ABC”,及它与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。

教学重点:计算智能的含义及其与传统的人工智能的区别。

教学难点:“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。

教学方法:课堂教学。

教学要求:掌握计算智能的含义,了解计算智能与传统的人工智能有何区别。了解贝兹德克提出的“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。

信息科学与生命科学的相互交叉、相互渗透和相互促进是现代科学技术发展的一个显著特点。

计算智能涉及神经网络、模糊逻辑、进化计算和人工生命等领域,它的研究和发展正是反映了当代科学技术多学科交叉与集成的重要发展趋势。

把神经网络(NN)归类于人工智能(AI)可能不大合适,而归类于计算智能(CI)更能说明问题实质。进化计算、人工生命和模糊逻辑系统的某些课题,也都归类于计算智能。

计算智能取决于制造者(manufacturers)提供的数值数据,不依赖于知识;另一方面,人工智能应用知识精品(knowledge tidbits)。人工神经网络应当称为计算神经网络。

第一个对计算智能的定义是由贝兹德克(Bezdek)于1992年提出的。

尽管计算智能与人工智能的界限并非十分明显,然而讨论它们的区别和关系是有益的。马克斯(Marks)在1993年提到计算智能与人工智能的区别,而贝兹德克则关心模式识别(PR与生物神经网络(BNN)、人工神经网络(ANN)和计算神经网络(CNN)的关系,以及模式识别与其它智能的关系。忽视ANN与CNN 的差别可能导致对模式识别中神经网络模型的混淆、误解、误表示和误用。

提问:计算智能与人工智能的区别和关系如何。

贝兹德克对这些相关术语给予一定的符号和简要说明或定义。

他给出有趣的ABC:

A-Artificial,表示人工的(非生物的),即人造的

B-Biological,表示物理的+化学的+(??)=生物的

C-Computational,表示数学+计算机

图4.1表示ABC及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。

图4.1ABC的交通关系图

计算智能是一种智力方式的低层认知,它与人工智能的区别只是认知层次从中层下降至低层而已。中层系统含有知识(精品),低层系统则没有。

当一个系统只涉及数值(低层)数据,含有模式识别部分,不应用人工智能意义上的知识,而且能够呈现出:

(1)计算适应性;

(2)计算容错性;

(3)接近人的速度;

(4)误差率与人相近,

则该系统就是计算智能系统。

当一个智能计算系统以非数值方式加上知识(精品)值,即成为人工智能系统。

提问:计算智能的主要特征是什么?

4.2神经计算

教学内容:本节将介绍人工神经网络的由来、特性、结构、模型和算法;然后讨论神经网络的表示和推理。这些内容是神经网络的基础知识。神经计算是以神经网络为基础的计算。

教学重点:人工神经网络的结构、模型和算法;神经网络的表示和推理。

教学难点:人工神经网络的结构和算法及其表示和推理。

教学方法:课堂教学为主,并适当提问、收集学生学习情况。

教学要求:掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般了解神经网络的表示和推理方法。

4.2.1人工神经网络研究的进展

1960年威德罗和霍夫率先把神经网络用于自动控制研究。

60年代末期至80年代中期,神经网络控制与整个神经网络研究一样,处于低潮。

80年代后期以来,随着人工神经网络研究的复苏和发展,对神经网络控制的研究也十分活跃。这方面的研究进展主要在神经网络自适应控制和模糊神经网络控制及其在机器人控制中的应用上。

人工神经网络的特性:

(1)并行分布处理神经网络具有高度的并行结构和并行实现能力,因而能够有较好的耐故障能力和较快的总体处理能力。

(2)非线性映射神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。

(3)通过训练进行学习神经网络是通过所研究系统过去的数据记录进行训练的。一个经过适当训练的神经网络具有归纳全部数据的能力。

(4)适应与集成神经网络能够适应在线运行,并能同时进行定量和定性操作。神经网络的强适应和信息熔合能力使得网络过程可以同时输入大量不同的控制信号,解决输入信息间的互补和冗余问题,并实现信息集成和熔合处理。

(5)硬件实现神经网络不仅能够通过软件而且可借助软件实现并行处理。近年来,一些超大规模集成电路实现硬件已经问世,而且可从市场上购到。

4.2.2人工神经网络的结构

神经网络的结构是由基本处理单元及其互连方法决定的。

图4.2所示神经元单元由多个输入,i=1,2,...,n和一个输出y组成。中间状态由输入信号的权和表示,而输出为:

图4.2神经元模型

式中,为神经元单元的偏置(阈值),为连接权系数(对于激发状态,

取正值,对于抑制状态,取负值),n为输入信号数目,为神经元输出,

t为时间,f(_)为输出变换函数,有时叫做激励函数,往往采用0和1二值函数或S形函数,见图4.3,这三种函数都是连续和非线性的。一种二值函数可由下式表示:

如图4.3(a)所示。一种常规的S形函数见图4.3(b),可由下式表示:

常用双曲正切函数(见图4.3(c))来取代常规S形函数,因为S形函数的输出均为正值,而双曲正切函数的输出值可为正或负。双曲正切函数如下式所示:

图4.3神经元中的某些变换(激励)函数

提问:神经网络有哪几种激励函数?

1、人工神经网络的基本特性和结构

人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。严格地说,人工神经网络是一种具有下列特性的有向图:

(1)对于每个节点i存在一个状态变量;

(2)从节点j至节点i,存在一个连接权系统数;

(3)对于每个节点i,存在一个阈值;

(4)对于每个节点i,定义一个变换函数;对于最一般的情况,此函数取形式。

人工神经网络的结构基本上分为两类:递归(反馈)网络和前馈网络。

(1)递归网络

在递归网络中,多个神经元互连以组织一个互连神经网络,如图4.4所示。有些神经元的输出被反馈至同层或前层神经元。因此,信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是递归网络有代表性的例子。递归网络又叫做反馈网络。

图4.4递归(反馈)网络图4.5前馈(多层)网络

图4.4中,表示节点的状态,为节点的输入(初始)值,为收敛后的输出值,i=1,2,...,n。

(2)前馈网络

前馈网络具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通;神经元从一层连接至下一层,不存在同层神经元间的连接,如图4.5所示。图中,实线指明实际信号流通而虚线表示反向传播。前馈网络的例子有多层感知器(MLP)、学习矢量量化(LVQ)网络、小脑模型联接控制(CMAC)网络和数据处理方法(GMDH)网络等。

2、人工神经网络的主要学习算法

神经网络主要通过指导式(有师)学习算法和非指导式(无师)学习算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。

(1)有师学习

有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。有师学习算法的例子包括Delta规则、广义Delta规则或反向传播算法以及LVQ算法等。

(2)无师学习

无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚

集。无师学习算法的例子包括Kohonen算法和Carpenter-Grossberg自适应谐振理论(ART)等。

(3)强化学习

如前所述,强化(增强)学习是有师学习的特例。它不需要老师给出目标输出。强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法(GA)。

提问:神经网络主要有哪二类学习算法?

4.2.3人工神经网络的典型模型

根据伊林沃思(W.T.Illingworth)提供的综合资料,最典型的ANN模型(算法)及其学习规则和应用领域如表4.2所列(见表4.2)。

4.2.4基于神经网络的知识表示与推理

1、基于神经网络的知识表示

基于神经网络系统中知识的表示方法与传统人工智能系统中所用的方法(如产生式、框架、语义网络等)完全不同,传统人工智能系统中所用的方法是知识的显式表示,而神经网络中的知识表示是一种隐式的表示方法。在这里,知识并不像在产生式系统中那样独立地表示为每一条规则,而是将某一问题的若干知识在同一网络中表示。

例:对图4.6所示的异或逻辑的神经网络来说,其邻接矩阵为:

图4.6异或逻辑的神经网络表示

如果用产生式规则描述,则该网络代表下述四条规则:

IF x

1=0AND x

2

=0THEN y=0

IF x

1=0AND x

2

=1THEN y=1

IF x

1=1AND x

2

=0THEN y=1

IF x

1=1AND x

2

=1THEN y=0

提问:神经网络中的知识表示采用了什么样的表示方法?结合这个例子回答。

2、基于神经网络的推理

基于神经网络的推理是通过网络计算实现的。把用户提供的初始证据用作网络的输入,通过网络计算最终得到输出结果。

一般来说网络推理有正向网络推理,其步骤如下:

(1)把已知数据输入网络输入层的各个节点。

(2)利用特性函数分别计算网络中各层的输出。计算中,前一层的输出作为后一层有关节点的输入,逐层进行计算,直至计算出输出层的输出值。

(3)用阈值函数对输出层的输出进行判定,从而得到输出结果。

4.3模糊计算

教学内容:本节简要地介绍模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。这些内容构成模糊逻辑的基础知识。模糊计算就是以模糊逻辑为基础的计算。

教学重点:模糊数学的模糊逻辑推理和模糊判决。

教学难点:模糊数学的运算法则和模糊逻辑推理。

教学方法:课堂教学为主,注意结合例子进行讲解。

教学要求:掌握模糊数学的基本概念、运算法则、模糊逻辑推理方法。

4.3.1模糊集合、模糊逻辑及其运算

首先,让我们介绍模糊集合与模糊逻辑的若干定义。

设U为某些对象的集合,称为论域,可以是连续的或离散的;u表示U的元素,记作U={u}。

定义4.1模糊集合(fuzzy sets)论域U到[0,1]区间的任一映射,即

,都确定U的一个模糊子集F;称为F的隶属函数(membership function)或隶属度(grade of membership)。在论域U中,可把模糊子集表示为元素u与其隶属函数的序偶集合,记为:

(4.7)

定义4.2模糊支集、交叉点及模糊单点如果模糊集是论域U中所有满足的元素u构成的集合,则称该集合为模糊集F的支集。当u满足,则称此模糊集为模糊单点。

定义4.3模糊集的运算设A和B为论域U中的两个模糊集,其隶属函数分别为和,则对于所有,存在下列运算:

(1)A与B的并(逻辑或)记为,其隶属函数定义为:

(2)A与B的交(逻辑与)记为,其隶属函数定义为:

(3)A的补(逻辑非)记为,其传递函数定义为:

定义4.4直积(笛卡儿乘积,代数积)若分别为论域

中的模糊集合,则这些集合的直积是乘积空间中一个模糊集合,其隶属函数为:

定义4.5模糊关系若U,V是两个非空模糊集合,则其直积U×V中的一个模糊子集R称为从U到V的模糊关系,可表示为:

定义4.6复合关系若R和S分别为U×V和V×W中的模糊关系,则R和S 的复合是一个从U到W的模糊关系,记为:

其隶属函数为:

式(4.15)中的*号可为三角范式内的任意一种算子,包括模糊交、代数积、有界积和直积等。

定义4.7正态模糊集、凸模糊集和模糊数

以实数R为论域的模糊集F,若其隶属函数满足

则F为正态模糊集;若对于任意实数x,a

则F为凸模糊集;若F既是正态的又是凸的,则称F为一模糊数。

定义4.8语言变量一个语言变量可定义为多元组。其中,x为变量名;为x的词集,即语言值名称的集合;U为论域;G是产生语言值名称的语法规则;M是与各语言值含义有关的语法规则。

讨论:隶属函数也是函数,它与通常的实函数有什么区别?

4.3.2模糊逻辑推理

模糊逻辑推理是建立在模糊逻辑基础上的,它是一种不确定性推理方法,已经提出了Zadeh法,Baldwin法、Tsukamoto法、Yager法和Mizumoto法等方法,在此仅介绍Zadeh的推理方法。

在模糊逻辑和近似推理中,有两种重要的模糊推理规则,即广义取式(肯定前提)假言推理法(GMP,Generalized Modus Ponens)和广义拒式(否定结论)假言推理法(GMT,Generalized Modus Tollens),分别简称为广义前向推理法和广义后向推理法。

GMP推理规则可表示为:

前提1:x为A’

前提2:若x为A,则y为B

结论:y为B’

GMT推理规则可表示为:

前提1:y为B

前提2:若x为A,则y为B

结论:x为A’

上述两式中的A、A’、B和B’为模糊集合,x和y为语言变量。

4.3.3模糊判决方法

在推理得到的模糊集合中取一个相对最能代表这个模糊集合的单值的过程就称作解模糊或模糊判决(Defuzzification)。模糊判决可以采用不同的方法:重心法、最大隶属度方法、加权平均法、隶属度限幅元素平均法。

下面介绍各种模糊判决方法,并以“水温适中”为例,说明不同方法的计算过程。

1、重心法

所谓重心法就是取模糊隶属函数曲线与横坐标轴围成面积的重心作为代表点。理论上应该计算输出范围内一系列连续点的重心,即

但实际上是计算输出范围内整个采样点(即若干离散值)的重心。这样,在不花太多时间的情况下,用足够小的取样间隔来提供所需要的精度,这是一种最好的折衷方案。

(举例说明)

2、最大隶属度法

这种方法最简单,只要在推理结论的模糊集合中取隶属度最大的那个元素作为输出量即可。不过,要求这种情况下其隶属函数曲线一定是正规凸模糊集合(即其曲线只能是单峰曲线)。如果该曲线是梯形平顶的,那么具有最大隶属度的元素就可能不止一个,这时就要对所有取最大隶属度的元素求其平均值。

举例:对于“水温适中”,按最大隶属度原则,有两个元素40和50具有最大隶属度1.0,那就要对所有取最大隶属度的元素40和50求平均值,执行量应取:

3、系数加权平均法

系数加权平均法的输出执行量由下式决定:

式中,系数的选择要根据实际情况而定,不同的系统就决定系统有不同的响应

特性。当该系数选择时,即取其隶属函数时,这就是重心法。在模糊逻辑控制中,可以通过选择和调整该系数来改善系统的响应特性。

提问:系数加权平均法优点是什么?

4、隶属度限幅元素平均法

用所确定的隶属度值α对隶属度函数曲线进行切割,再对切割后等于该隶属度的所有元素进行平均,用这个平均值作为输出执行量,这种方法就称为隶属度限幅元素平均法。

4.4小结

什么是人工智能计算机

什么是人工智能计算机 )查看。 什么是人工智能计算机 著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。” 而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。” 这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成

为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。 人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。 从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 人工智能的三道坎 首先是大数据。从某种意义上来说,人工智能在近一两年的走红,与大数据的发展和被重视程度不无关系。随着以智能手机为代表的科技产品开始深入到人们生活的方方面面,用户在线上的行为越来越多,由此形成了大量的用户数据。而人工智能正好可以利用这些数据,建立数学模型和完成用户画像,让程序来做一些过去只有人能够做的事情。 大数据这个门槛,导致了人工智能只能是巨头的游戏,跟创业

人工智能习题&答案-第4章-计算智能1-神经计算-模糊计算

第四章计算智能(1):神经计算模糊计算4-1 计算智能的含义是什么?它涉及哪些研究分支? 贝兹德克认为计算智能取决于制造者提供的数值数据,而不依赖于知识。计算智能是智力的低层认知。 主要的研究领域为神经计算,模糊计算,进化计算,人工生命。 4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。 计算智能是智力的低层认知,主要取决于数值数据而不依赖于知识。人工智能是在计算智能的基础上引入知识而产生的智力中层认知。生物智能,尤其是人类智能,则是最高层的智能。即CI包含AI包含BI 4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域? 人工神经网络具有如下至关重要的特性: (1) 并行分布处理 适于实时和动态处理 (2)非线性映射 给处理非线性问题带来新的希望 (3) 通过训练进行学习 一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题 (4) 适应与集成 神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统 (5) 硬件实现 一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。 4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

生物神经元 大多数神经元由一个细胞体(cell body或soma)和突(process)两部分组成。突分两类,即轴突(axon)和树突(dendrite),轴突是个突出部分,长度可达1m,把本神经元的输出发送至其它相连接的神经元。树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。 轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其它神经元发送信息。对某些突触的刺激促使神经元触发(fire)。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称为被触发。突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。学习就发生在突触附近。 每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。神经元通过突触形成的网络,传递神经元间的兴奋与抑制。大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。 人工神经网络的结构 人工神经网络由神经元模型构成。每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。 人工神经网络的结构分为2类, (1)递归(反馈)网络 有些神经元的输出被反馈至同层或前层神经元。信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是代表。 (2) 前馈网络 具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。多层感知器(MLP),学习矢量量化网络(LVQ),小脑模型连接控制网络(CMAC)和数据处理方法网络(GMDH)是代表。 人工神经网络的主要学习算法 (1) 指导式(有师)学习 根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。包括Delta规则,广义Delta规则,反向传播算法及LVQ算法。 (2) 非指导(无导师)学习 训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。包括

计算机人工智能的发展及预测

计算机人工智能的发展及前沿 摘要 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 关键词:人工智能;数学基础;发展预测;

一、什么是人工智能 智能是知识与智力的总合。知识是智能行为的基础;智力是获取知识并运用知识求解问题的能力。智能具有以下特征: (1)具有感知能力——指人们通过视觉、听觉、触觉、味觉、嗅觉等感觉器官感知外部世界的能力; (2)具有记忆与思维的能力——这是人脑最重要的功能,亦是人之所以有智能的根本原因; (3)具有学习能力及自适应能力; (4)具有行为能力。 人工智能是计算机科学的一个分支,是智能计算机系统,即人类智慧在机器上的模拟,或者说是人们使机器具有类似于人的智慧(对语言能理解、能学习、能推理)。[1] 美国斯坦福大学人工智能研究中心的尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科———怎样表示知识以及怎样获得知识并使用知识的科学。”美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”[2] 二、人工智能的发展简史 (1)孕育(1956年前)[3] ?古希腊的Aristotle(亚里士多德)(前384-322),给出了形式逻辑的基本规律。 ?英国的哲学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量” ?德国数学家、哲学家Leibnitz(布莱尼茨)(1646-1716)。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。做出了能做四则运算的手摇计算机 ?英国数学家、逻辑学家Boole(布尔)(1815-1864)实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统——布尔代数。 ?美籍奥地利数理逻辑学家Godel(哥德尔)(1906-1978),证明了一阶谓词的完备性定;任何包含初等数论的形式系统,如果它是无矛盾的,那么一定是不完备的。意义在于,人的思维形式化和机械化的某种极限,在理论上证明了有些事是做不到的。 ?英国数学家Turing(图灵)(1912-1954),1936年提出了一种理想计算机的数学模型(图灵机),1950年提出了图灵试验,发表了“计算机与智能”的论文。[4] ?美国数学家Mauchly,1946发明了电子数字计算机ENIAC ?美国神经生理学家McCulloch,建立了第一个神经网络数学模型。 ?美国数学家Shannon(香农),1948年发表了《通讯的数学理论》,代表了“信息论”的诞生。

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

人工智能与计算机视觉

过去几年,全球的互联网公司包括谷歌、微软、Facebook以及中国的百度、阿里巴巴都在加强人工智能领域的投资,设立自己的人工智能研究院。vivo是第一家设立专攻人工智能方向研究院的中国手机公司。此举是vivo内部已经确立的一份3-5年的中长期发展的战略规划,未来对人工智能的发展研究是必然趋势,vivo公司创始人兼CEO沈炜曾表示“人工智能和5G的结合将会是5G时代手机发展的趋势”。 今年我们看到vivo在产品上不少创新,比如AI拍照、商用屏下指纹技术等等,这些都是基于生物特征(biometrics)的鉴别技术,除此之外还有对人脸、虹膜、指纹、声音等特征上的识别,这些大多涉及到视觉信息,正是体现了计算机视觉的应用性,那什么是计算机视觉呢? 计算机视觉技术的概念 正像其它学科一样,一个大量人员研究了多年的学科,却很难给出一个严格的定义,模式识别如此,目前火热的人工智能如此,计算机视觉亦如此。与计算机视觉密切相关的概念有视觉感知(visual perception),视觉认知(visual cognition),图像和视频理解( image and video understanding)。这些概念有一些共性之处,也有本质不同。 从广义上说,计算机视觉就是“赋予机器自然视觉能力”的学科。自然视觉能力,就是指生物视觉系统体现的视觉能力。一则生物自然视觉无法严格定义,在加上这种广义视觉定义又“包罗万象”,同时也不太符合40多年来计算机视觉的研究状况,所以这种“广义计算机视觉定义”,虽无可挑剔,但也缺乏实质性内容,不过是一种“循环式游戏定义”而已。 实际上,计算机视觉本质上就是研究视觉感知问题。视觉感知,根据维科百基(Wikipedia)的定义, 是指对“环境表达和理解中,对视觉信息的组织、识别和解释的过程”。根据这种定

2019公需科目计算智能+人工智能导论答案

D、人造机器人 答案:C PEAS分别是指哪些组件? A、性能/环境/执行器/传感器 B、传感器/性能/环境/执行器 C、环境/执行器/传感器/性能 D、传感器/环境/执行器/性能 答案:A 智能体程序分别有哪些类型?() A、感知智能体/决策智能体/学习智能体/规划智能体 B、简单反射型智能体/基于模型的反射型智能体/基于目标的智能体/基于效用的智能体 C、机器人/软件/硬件/算法 D、类人智能体/类动物智能体 答案:B 智能体使用什么组件来获得环境信息?() A、执行器 B、CPU C、传感器 D、条件--行动规律 答案:C 基于模型的反射型智能体的核心组件比简单反射型智能体多了什么?() A、执行器 B、传感器 C、CPU D、世界模型 答案:D 基于目标的智能体比基于模型的反射型智能体多了什么组件?() A、CPU B、世界模型 C、目标 D、环境 答案:C 可以把效用想象成什么?() A、效果 B、能源 C、金钱 D、智能体 答案:C 基于效用的智能体比基于目标的智能体多了什么核心组件?() A、世界模型 B、CPU C、效用评估 D、金钱

答案:C 哪个例子是强链接?() A、收音机听到的一个人 B、微博上的陌生朋友 C、亲人 D、同事 答案:CD 一个图表示为G = (V, E),其中V是指?() A、一个点 B、一条边 C、边集合 D、点集合 答案:D 局部信息相似性链路预测的优势是什么?() A、精准 B、速度快 C、符合实际场景 D、包含节点属性 答案:B 下面哪个是全局信息预测算法?() A、Common neighBors (CN) B、JACCArD (JC) C、ADAmiC-ADAr (AA) D、PAgeRAnk 答案:D 谷歌搜索引擎的算法基本框架是?() A、Common neighBors (CN) B、JACCArD (JC) C、ADAmiC-ADAr (AA) D、PAgeRAnk 答案:D PAgeRAnk中,参数Oj是指() A、所有网页的数量 B、从网页引出去的链接的数量 C、指向网页的链接的数量 D、可调参数 答案:B 一个好的学习训练模型应该是?() A、在训练时最小化错误率(提高在训练集上的准确率) B、模型应该简单(防止过拟合) C、将模型函数正则化 D、可以利用已知的数据特性,例如稀疏、低秩等 答案:ABCD 正则化是为了什么?

计算机人工智能的研究方向和应用领域

人工智能的研究方向和应用领域 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。广义的人工智能包括人工智能、人工情感与人工意志三个方面。 一、研究方向 1.问题求解 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。 2.逻辑推理与定理证明逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。为此不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。 1976年7月,美国的阿佩尔(K.Appel)等人合作解决了长达124年之久的难题--四色定理。他们用三台大型计算机,花去1200小时CPU时间,并对中间结果进行人为反复修改500多处。四色定理的成功证明曾轰动计算机界。 3.自然语言理解 NLP(Natural Language Processing)自然语言处理也是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘打入计算机的指令)。目前语言处理研究的主要课题是:在翻译句子时,以主题和对话情况为基础,注意大量的一般常识--世界知识和期望作用的重要性。 人工智能在语言翻译与语音理解程序方面已经取得的成就,发展为人类自然语言处理的新概念。 4.自动程序设计

论计算机与人工智能

论计算机和人工智能 摘要:计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。这些年来,人工智能在计算机科学、逻辑学等领域已取得重大成就,但离真正的人类智能还相差甚远。现在是网络时代,人工智能科学要在学科交叉研究中实现人工智能的发展与创新,会更加关注认知科学与人工智能之间的交叉渗透;要利用现实生活中复杂网络的小世界模型发展人工智能。 关键词:人工智能;计算机发展;应用方向;发展方向 一、引言 人工智能(Artificial Intelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。 二、人工智能的定义 人工智能(artificial intelligence,AI)又称为机器智能或者计算机智能。所谓人工智能就是用人工的方法在计算机上实现的智能;或者说是人们使用机器模拟人类智能。人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。 人工智能虽然是计算机科学的一 个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到医学、逻辑学等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。 三、计算机和人工智能 的发展史 1.计算机的发展史 计算机的发展与电子技术的发展密切相关,每当电子技 术有突破性的进展,就会导致 计算机的一次重大的改革。 (1)第一代计算机(1946年—1957 年) 第一代计算机的共同特点是:逻辑器件使用电子管;用 穿孔卡片机作为数据和指令 的输入设备;用磁鼓或磁带作 为外存存储器;使用机器语言 编译。 (2)第二代计算机(1958年—1964

人工智能YOLO V2 图像识别实验报告

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。 深度学习是机器学习中的一个新的研究领域,通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向,引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动了目标和行为识别的研究,推动了深度学习及其在目标和行为识别中的新进展。基于这个发展趋势,我们小组选择了基于回归方法的深度学习目标识别算法YOLO的研究。 1.1.2课程项目研究的意义 众所周知,当前是信息时代,信息的获得、加工、处理以及应用都有了飞跃

第四章 计算智能1 人工智能课程 北京大学

第四章计算智能(1) 教学内容:本章讨论计算智能所涉及的领域和范围,计算智能的含义及它与传统的人工智能的区别。介绍人工神经网络的由来、特性、结构、模型和算法;神经网络的表示和推理。简要地介绍模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。 教学重点:计算智能;人工神经网络的结构、模型和算法,以及表示和推理。 教学难点:人工神经网络的结构、算法和推理;模糊数学的运算法则和模糊逻辑推理。 教学方法:课堂教学为主。适当提问,加深学生对概念的理解。 教学要求:通过对本章的学习,使学生掌握人工神经网络的结构、模型和算法,了解计算智能所涉及的领域和范围,了解人工神经网络的特性、表示和推理,了解模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。 4.1概述 教学内容:本节介绍计算智能所涉及的领域和范围,计算智能的含义及其与传统人工智能的区别。贝兹德克提出的“ABC”,及它与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。 教学重点:计算智能的含义及其与传统的人工智能的区别。 教学难点:“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。 教学方法:课堂教学。 教学要求:掌握计算智能的含义,了解计算智能与传统的人工智能有何区别。了解贝兹德克提出的“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。 信息科学与生命科学的相互交叉、相互渗透和相互促进是现代科学技术发展的一个显著特点。 计算智能涉及神经网络、模糊逻辑、进化计算和人工生命等领域,它的研究和发展正是反映了当代科学技术多学科交叉与集成的重要发展趋势。

把神经网络(NN)归类于人工智能(AI)可能不大合适,而归类于计算智能(CI)更能说明问题实质。进化计算、人工生命和模糊逻辑系统的某些课题,也都归类于计算智能。 计算智能取决于制造者(manufacturers)提供的数值数据,不依赖于知识;另一方面,人工智能应用知识精品(knowledge tidbits)。人工神经网络应当称为计算神经网络。 第一个对计算智能的定义是由贝兹德克(Bezdek)于1992年提出的。 尽管计算智能与人工智能的界限并非十分明显,然而讨论它们的区别和关系是有益的。马克斯(Marks)在1993年提到计算智能与人工智能的区别,而贝兹德克则关心模式识别(PR与生物神经网络(BNN)、人工神经网络(ANN)和计算神经网络(CNN)的关系,以及模式识别与其它智能的关系。忽视ANN与CNN 的差别可能导致对模式识别中神经网络模型的混淆、误解、误表示和误用。 提问:计算智能与人工智能的区别和关系如何。 贝兹德克对这些相关术语给予一定的符号和简要说明或定义。 他给出有趣的ABC: A-Artificial,表示人工的(非生物的),即人造的 B-Biological,表示物理的+化学的+(??)=生物的 C-Computational,表示数学+计算机 图4.1表示ABC及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。

图形计算器之人工智能

图形计算器之人工智能 在接触CASIO公司的图形计算器Classpad 330的三个月里,我们通过研究发现Classpad的编程功能真的很强大,简直就是一个可以随身携带的Visual Basic语言编程器,同时,也是因为一次偶然的机会,在了解到iphone4s的siri语音控制功能给人们所带来的便利之后,我便有了编一个人工智能对话程序的想法。 【探究目的】 利用图形计算器的编程功能,在机器上实现一个便利的人工智能对话程序,从而对计算机算法以及相关知识有一个深入的认识。 【探究过程】 说起人机智能对话,我最先想到的是这样一个简单的程序: Lbl r‘设置循环点r Inputstr x,"Hello!"‘输入语句,保存至x变量 If x=m Then Print n ‘输出变量n Ifend Inputstr x,"next talk? ","next talk" Goto r‘前往循环点r (其中m为预设问题,n为预设回答) 通过判断输入问题是否与预设问题等价,来进行回答。有了这个基础,我便有了信心,开始扩大这个数据库的容量,而dt()这个子程序就是那个时期的产物。可是很快,我就遇到

了困难,如果要实现日常的对话,这个数据库将会变得无比巨大,因为一旦有一个字符不同,系统便会无法判别,就连大小写甚至句末的空格、句号、问号等都要加以区分,实在是很麻烦,所以我便开发了如下的筛选化归程序段: Strlwr x,x ‘将字符串x全部改成小写字母Strlen x,xl ‘测量字长保存至xl变量 Chrtonum x,ui,xl ‘ui取得末位字符对应的机内码If ui=32 or ui=44 or ui=46 or ui=33 or ui=63 ‘32代表“空格”的机内码,44 代表“句号”的机内码,以此 类推… Then Strleft x,xl-1,x ‘x取得左起至xl-1的字符串Ifend 于是乎,当你输入“how are you ”或“how are you?”或“How are you?”时,对于机内变量x,都是同一个问题“how are you”,这样就有效地节约了数据库的空间。然而随后,在使用的过程中,我又发现,数据库再大,也还是有无法识别的问题,所以,我便想让它具有学习的功能,程序段如下: z=0 ‘z变量起标志作用 If x=m Then z=z+1 Print n Ifend

浅谈人工智能与计算机

浅谈人工智能与计算机 王晨浩 计算机1506班201526810617 摘要人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向.人工智能作为计算机学科的一个分支,有其自身的特点,现已在社会生活各个领域都有应用,并将有更为广阔的发展前景。 关键词人工智能 / 发展 / 应用 / 机器人 / 智能研究 / 计算机学科 1.引言 在进入了二十一世纪之后,信息科学技术的发展越来越受到人们的重视,重视程度也超越了以往的任何时候。正是因为这样,人工智能技术的发展在进入新的世纪之后也有了非常快速的进步,那么,这项技术作为一种比较高端的信息科学技术,它主要是通过借助计算机的各种功能来非常形象的模拟我们人类的思维方式和思维结果,从而使人类的各种思维活动可以在计算机的程序当中得以实现[1]。2.人工智能的发展概述 人工智能的研究经历了以下几个阶段:第一阶段:20世纪50年代人T智能的兴起和冷落。人工智能概念首次提出后,出现了一批显著的成果,如机器定理证明、跳棋程序、LISP表处理语言等。但由于揭发推理能力有限,以及其翻泽失败等,使人工智能走入低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。第二阶段:20世纪60年代末到70年代,专家系统出现使人工智能研究出现新高潮,DENDAI。化学质谱分析系统、MTCIN疾病诊断和治疗系统、PROSPECTIOR 探矿系统,Hearsay-II语言理解系统等专家系统的研究和开发,将人工智能引向了实用化。1969年成立了国际人工智能联合会。第三阶段:20世纪80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统LIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮一第四阶段:20世纪80年代末,精神网络飞速发展。1987年,美国召开第一次精神网络国际会议,宣告了这一新学科的诞生。此后,各国在精神网络方面的投资逐渐增大,精神网络迅速发展起来。第五阶段:20世纪90年代,人工智能出现新的研究高潮。由于网络技术特别是嗣际互联网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研

人工智能基础算法

一、粒子群算法 粒子群算法,也称粒子群优化算法(Particle Swarm Optimization ),缩写为PSO , 是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA )。PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover)和变异(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等?优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响 解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kenn edy 博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimizatio n-PSO) 算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性. 粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation)操作.它通过追随当前搜索到的最优值来寻找全局最优 二、遗传算法 遗传算法是计算数学中用于解决最佳化的,是进化算法的一种。进化算法最初是 借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种模拟。对于一个最优化问题,一 定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群。

人工智能之迷宫

一、问题描述 迷宫图从入口到出口有若干条通路,求从入口到出口最短路径的走法。 图1.1 迷宫示意图 二、设计原理 图1.1为一简单迷宫示意图的平面坐标表示。以平面坐标图来表示迷宫的通路时,问题的状态以所处的坐标位置来表示,即综合数据库定义为{(x, y) | 1≤x, y ≤ 4 },则迷宫问题归结为求解从(1, 1) 到 (4, 4)的最短路径。迷宫走法规定为向东、南、西、北前进一步,由此可得规则集简化形式如下。 右移 R1:if(x, y) then (x+1, y) 如果当前在(x, y)点,则向右移动一步 下移 R2:if(x, y) then (x,y -1) 如果当前在(x, y)点,则向下移动一步 左移 R1: if(x, y) then (x -1,y) 如果当前在(x, y)点,则向左移动一步 上移 R2:if(x, y) then (x, y+1) 如果当前在(x, y)点,则向上移动一步 给出其状态空间如图2.1所示

为求得最佳路径,可使用A*算法。 A*算法f 函数定义 f(n) = g(n) +h(n) 设:每一步的耗散值为1(单位耗散值) 定义:g(n) =d(n) 从初始节点s到当前节点n的搜索深度 h(n) =| X g -X n | + | Y g -Y n | 当前节点n与目标节点间的坐标距离 其中:( X g , Y g ) 目标节点g坐标( X n , Y n )当前节点n坐标 显然满足:h(n) ≤h*(n) OPEN表节点排序 ⑴ 按照f 值升序排列 ⑵ 如果f 值相同,则深度优先 A*算法的搜索过程如下: 1、OPEN=(s), f(s)=g(s)+h(s) 2、LOOP:if OPEN=( ) then EXIT(FAIL) 3、n ← FIRST(OPEN) 4、if GOAL(n) THEN EXIT(SUCCESS) 5、REMOVE(n,OPEN),ADD(n,CLOSED) 6、{m i ﹜← EXPAND(n) ①计算f(n,m i )=g(n,m i )+h(m i ),(自s过n,m i 到目标节点的耗散值) ② ADD(m j ,OPEN),标记m j 到n的指针(m j 不在OPEN和CLOSED中) ③ if f(n,m k ) < f(m k ) then f(m k ) ← f(n,m k ),标记m k 到n的指

关于人工智能的一些介绍与看法

关于人工智能的一些介绍与看法 内容提要:人工智能是计算机科学的一个领域,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。 关键词:人工智能领域应用技术 一、人工智能概述 “人工智能”一词最初是在1956年DARTMOUTH学术会议上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之越来越深入人心。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 通常,计算机的数学基础包括统计学,信息论和控制论,当然还包括一些非数学学科。长期的工作中,计算机往往只是始终如一的运用这些知识来进行工作,基本上只是依靠以前的“经验”。所谓人工智能,就是指能让计算机像人脑一样去工作,不仅仅是能够连续式学习,更要在工作的过程中,学会跳跃式学习,也就是能过像人类一样,获得顿悟或是灵感。一直以来,计算机通常只能靠经验来工作,很难会“顿悟”,也就是很难获得较大的技能提高。人类的实践过程同时包括经验和创造。这正是智能化工作者梦寐的东西。 近几十年来,人工智能日益发展,技术日趋成熟,研究成果也日趋丰富。例如2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。 二、人工智能的科学范畴 现在,人工智能已构成信息技术领域的一个重要的学科。该学科研究如何使机器具有智能或者说如何利用计算机实现智能的理论、方法和技术,所以,人工智能既属于计算机科学技术的一个前沿领域,也属于信息处理和自动化技术的一个前沿领域。但由于其研究内容涉及到“智能”,因此,人工智能不仅局限于计算机、信息和自动化等学科,还涉及到智能学科、认知科学、语言学、逻辑学、教育科学、系统教学、数理科学等众多学科领域。人工智能是一门综合性的交叉学科和边缘学科。 三、人工智能的研究内容 人工智能的研究内容可以归纳为:搜索与求解、学习与发现、知识与推理、发明与创造、感知与交流、记忆与联想、系统与建设、应用于工程等八个方面。从研究对象来说,人工智能涉及三个相对独立的域,即:(1)研究会读和说的计算机程序,也就是通常称为“自然语言处理”领域;(2)研制灵敏的机器,通过设计出具有视觉和听觉程序化的机器人,在活动时能识别不断改变的环境;(3)开发用符号识别来模拟人类专家行为的程序,即专家系统。但是,从研究的性质来说,人工智能一般可分为理论研究和工程研究两个方面。理论研究主要是对有关开发和理解人和机器智能方面理论进行研究和探索.而工程研究则主要是

人工智能技术在计算机辅助教学中的应用与实现

人工智能技术在计算机 辅助教学中的应用与实现 金聪 刘金安 (华中师范大学计算机科学系 武汉 430079) 摘 要介绍了计算机辅助教学系统及其现状,分析了现代教育技术与传统教育模式的各自特点,探讨了ICAI的实现原理及利用ICAI对教学的改进方案,并对智能计算机辅助教学系统进行了详细讨论,最后说明了将计算机技术、人工智能技术与网络技术应用于教学过程的必然性、必要性和有效性。 关键词智能计算机辅助教学系统;人工智能;专家系统;推理机 1 引言 随着现代科技的飞速发展,多媒体计算机在教育领域得到了广泛应用,并对教育、教学过程产生着深刻影响。为了使教学改革能与之相适应,需要引入先进的教学手段,而使用计算机辅助教学系统(Computer Aided Instruction, CAI)可以提供理想的教学环境,容易激发学习者的学习积极性和主动性,从而显著提高教学效果。多媒体技术的日益发展以及与其它领先技术的结合,必然促进CAI的进一步发展。 人工智能(Artificial Intelligence, AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性学科。人工智能又称为智能模拟,是用计算机系统模仿人类的感知、思维、推理等思维活动。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。例如,用计算机模拟人脑的部分功能进行学习、推理、联想和决策;模拟医生给病人诊病的医疗诊断专家系统;机械手与机器人的研究和应用等。 本文针对CAI的发展前景,重点论述人工智能技术对CAI,尤其是对智能化CAI产生的重大影响,并通过一个实例说明实现的思路与设想。 2 计算机辅助教学系统及其现状 2.1 计算机辅助教学系统 计算机辅助教学(CAI)即利用计算机代替教师进行教学,把教学内容编成各种“课件”,学习者可以根据自己的程度选择不同的内容进行学习,从而使教学内容多样化、形象化,便于因材施教。如各种教学软件、试题库、专家系统等。CAI 无论是在普通教育、高等教育还是在继续教育中都扮演着重要的角色。 在国外,CAI课件已经广泛应用于学校和家庭中,并收到了很好的效果。在我国,尽管CAI的研究起步较晚,但发展很快,自上世纪80年代起,已有一批实力雄厚的高等院校把CAI的发展列为重点研究课题。 2.2 计算机辅助教学的现状 CAI的实现需要应用AI技术及编制复杂的程序,如自然语言理解、知识表示、推理方法等,一些AI技术的特殊应用成果,如代数说明、符号合成、医疗诊断及理论证明等均被应用于CAI系统,以提高其智能性和实用性。 早期绝大多数CAI课件大都使用决策理论和随机学习的模式,它极大地简化了学习过程的表达形式。例如早期的地质教学系统(SCHOCAR)等。后来,随着人工智能技术的发展,CAI系统中添加了学生的学习行为及训练策略,同时AI技术被应用于建立学习顾问模块(存放所要教课程的问题和技能)。这种方法能控制训练策略并给出适合学生的学习内容。目前为了获取对课程知识表示和控制的灵活性和模块性,有些CAI系统还用AI技术来表示训练计划和策略。例如多数程序设计语言的CAI均属此例。 到目前为止,所使用的绝大多数传统的CAI都是将全部教学信息以编程方式预置于课件中,这样的CAI课件一旦制作完成,任何较大的教学改动都会给维护工作带来极大的不便。因此现有的CAI系统面临许多挑战,它主要存在以下几方面的问题。 (1)缺乏开放性 不具有开放性是目前CAI课件最大的缺点。使用者无法对课件进行任何修改,只能利用已有资源按设定的路线进行教学。其弊端在于:① 固定内容的局限性使课件的适用面狭窄;② 设定的运行路线使授课缺乏自主性;③ 授课的针对性不强;④ 无法利用新出现的资源在较高起点上进行二次开发。 (2)缺乏人机交互能力 现有CAI大多以光盘作为信息的载体,将教材中的内容

相关文档
最新文档