油滴实验

实验二 基本电荷测定 密立根油滴实验

- 4 - 实验二 基本电荷测定??密立根油滴实验 密立根(R. A. Millikan )是著名的实验物理学家,1907年开始,他在总结前人实验的基础上,着手电子电荷量的测量研究,之后改为以微小的油滴作为带电体,进行基本电荷量的测量,并于1911年宣布了实验的结果,证实了电荷的量子化.此后,密立根又继续改进实验,精益求精,提高测量结果的精度,在前后十余年的时间里,做了几千次实验,取得了可靠的结果,最早完成了基本电荷量的测量工作.密立根的实验设备简单而有效,构思和方法巧妙而简洁,他采用了宏观的力学模式来研究微观世界的量子特性,所得数据精确且结果稳定,无论在实验的构思还是在实验的技巧上都堪称是第一流的,是一个著名的有启发性的实验,因而被誉为实验物理的典范.由于密立根在测量电子电荷量以及在研究光电效应等方面的杰出成就而荣获1923年诺贝尔物理学奖. 【实验目的】 1.学习密立根油滴实验的设计思想; 2.通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测定基本电荷量e ; 3.通过对实验仪器的调整,油滴的选择、跟踪和测量,以及实验数据处理等,培养学生严谨的科学实验态度. 【实验原理】 利用带电荷的微小油滴在均匀电场中运动的受力分析,可将油滴所带的微观电荷量q 的测量转化为油滴宏观运动速度的测量. 1.静态平衡测量法 一带电油滴在水平的平行板均匀电场中受到重力mg 、电场力qE 和空气浮力f 作用,平衡时有f qE mg +=,即 E f mg q -= (1) 因表面张力作用,油滴呈小球状,设油滴半径为r ,油滴密度为0r ,空气密度为r ¢, 则重力和浮力分别为 g r f g r mg r r ¢==303 π34 π34 (2) 上式中油滴半径r 为未知量.由此,油滴电荷量q 的测量转 化为微小油滴半径r 的测量. 当平行板未加电压,油滴在重力作用下降落时,除有 空

密立根油滴实验报告

近代物理实验报告密立根油滴实验 学院数理与信息工程学院 班级物理 姓名 学号 时间 2013年12月9日

密立根油滴实验 【摘要】 本实验我们根据密立根油滴实验原理,引进了CCD摄像技术,从监视器上观察油滴运动,测定了油滴带电量q,并运用差值法处理了相应数据,得出了元电荷e的值,验证了电荷的量子性,同时也了解了密立根巧妙的设计思想,进一步提高了实验技能。 【关键词】油滴;平衡态;非平衡态;电荷大小 【引言】 1917年密立根设计并完成了密立根油滴实验,其重要意义在于它直接地显示出了电量的量子化,并最早测定了电量的最小单位——基本电荷电量e,即电子所带电量。这一成就大大促进了人们对电和物质结构的研究和认识。油滴实验中将微观量测量转化为宏观量测量的巧妙设想和精确构思,以及用比较简单的仪器,测得比较精确而稳定的结果等都是富有创造性的。由于上述工作,密立根获得了1923年度诺贝尔物理学奖。密立根的实验装置随着技术的进步而得到了不断的改进,但其实验原理至今仍在当代物理科学研究的前沿发挥着作用,例如,科学界用类似的方法测定出基本粒子——夸克的电量。 【实验方案】 一、实验原理 1、静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m,所带的电量为q,两极板间的电压为V ,如图1 所示。

图1 如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=6.17×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 图2

橡胶试验用标准油

ASTM(D471-98) Standard Test Method for Rubber Property –Effect of Liquids1 实验油种类及作用: 燃油A:异辛烷 燃油B:异辛烷7:3甲苯 燃油C:异辛烷5:5甲苯 燃油D:异辛烷6:4甲苯 燃油E:甲苯 燃油F:柴油 燃油G:燃油D 85:15 无水乙醇 燃油H:燃油C 85:15 无水乙醇 燃油I:燃油C 85:15 无水甲醇(M15) 燃油K:燃油C 15:85 无水甲醇(M85) 注:以上均为体积比 作用:模拟各种商品汽油的不同溶胀作用。 101#油:癸二酸二异辛脂(99.5%,质量分数),吩噻嗪(0.5%,质量分数) 作用:模拟二脂类润滑油的溶胀作用 102#油:ASTM1#油(95%,质量分数),烃类化合物油添加剂(5%,质量分数) 作用:模拟液压油的溶胀作用 103#油:三-n-丁基磷酸酯 作用:模拟磷酸二脂类航空液压油 104#油:分析纯级乙二醇(50%,体积分数),蒸馏水(50%,体积分数) 作用:模拟引擎冷却剂的溶胀作用 105#油:ASTM用油(TMC1006) 作用:满足ASTM D4485及SAE J300测试要求的润滑油 106#油:ARM200 作用:最终取代101#油,因为101#油已不准备以混合物的形式提供。 1993年,IRM902,IRM903分别取代了ASTM2#,ASTM3#作为标准实验油,原因是后两者有致癌作用。 ASTM 1#油模拟低溶胀性作用(低体积增加油)苯胺点:124±1℃ IRM902(ASTM 2#油)模拟中溶胀性作用(中体积增加油)苯胺点:93±3℃ IRM903(ASTM 3#油)模拟高溶胀性作用(高体积增加油)苯胺点:70±1℃ 模拟各类密封油,燃料油等的溶胀作用。 注:实验油的溶胀作用与实验油本身的苯胺点有关,苯胺点越低,溶胀作用越大。(苯胺点是表征石油类产品芳烃含量的参数,苯胺点越低,芳烃含量越高) 芳烃含量越高→苯胺点越低→对橡胶溶胀作用越大 联邦德国标准:(体积比) FAM A:异辛烷(30)甲苯(50)乙醇(5)二异丁烯(15) FAM B:FAM A(84.5)甲醇(15) 去离子水(0.5) FAM C:FAM A(40)甲醇(58)去离子水(2)

大学物理密立根油滴实验数据分析

班级: 姓名: 学号: 实验日期: 1.静态法测量 静态法测油滴带电量 斜率C e 19 01059219.1-?= 其与标准值C e 19 10 602.1-?=的相对误差为: %612.0%1000*=?-= e e e E 序号 U(V) t1 t2 t3 t4 t5 tg(s) r(m) q(C) n e(C) 1 23 2 5.45 5.32 5.5 5.39 5.42 5.416 1.54104E+12 3.17276E-18 20 1.58638E-19 2 205 14.22 14.16 14.22 14.09 14.14 14.166 9.52863E+11 8.48827E-19 5 1.69765E-19 3 175 5.85 5.86 5.95 5.92 5.94 5.904 1.47598E+12 3.69561E-18 23 1.60679E-19 4 151 3 2.9 32.06 31.93 31.66 32.9 32.29 6.31132E+11 3.34861E-19 2 1.67431E-19 5 217 26.93 26.69 26.62 27.55 26.99 26.956 6.90759E+11 3.05493E-19 2 1.52746E-19

班级: 姓名: 学号: 实验日期: 选做内容: 2.动态法测量 动态法测油滴带电量序号 U(V) te(s) tg(s) a(m) q(C) n e(C) 1 286 25.25 5.45 2.6428E-06 2.9609E-18 18 1.64494E-19 2 29 3 10.13 7.9 4 2.18954E-06 2.38917E-18 1 5 1.59278E-19 3 290 37.51 6.6 2.40155E-06 2.10977E-18 13 1.6229E-19 精品文档, 你值得期待 153 7.81 2.71 3.74782E-06 1.77207E-17 111 1.59646E-19 斜率C e 19 01059442.1-?= 其与标准值C e 19 10602.1-?=的相对误差为:

密立根油滴实验报告

密立根油滴实验——电子电荷的测量 【实验目的】 1. 通过对带电油滴在重力场和静电场中运动的测 量,验证电荷的不连续性,并测定电荷的电荷值e 。 2. 通过实验过程中,对仪器的调整、油滴的选择、 耐心地跟踪和测量以及数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。 3. 学习和理解密立根利用宏观量 测量微观量的巧妙设想和构思。 【实验原理】 1. 静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d 的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质 量为m ,所带的电量为q ,两极板间的电压为V ,如图 1 所示。如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力

作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=6.17×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 至于油滴匀速下降的速度g v ,可用下法测出:当两极板间的电压V 为零时,设油滴匀速下降的距离为l ,时间为t ,则 g g t l v = (4) 最后得到理论公式: V d pa b t l g q g 2 3 )1(218????? ? ??????+= ηρπ (5) 2. 动态(非平衡)测量法 非平衡测量法则是在平行极板上加以适当的电压V ,但并不调节V 使静电力和重力达到平衡,而是使油滴受静电力作用加速上升。 由于空气阻力的作

密立根油滴实验报告

密立根油滴实验报告 山东英才职业技术学院实验报告大学物理实验课程2009 年3 月16 日机械学院系本科一班姓名学号同组 人姓名实验题目密立根油滴实验测电子电量成绩一、实验目的1、验证电荷的不连续性2、测定电子电量。二、实验仪器用具计算机及其仿真软件三、实验原理1、设两个极板之间不加电压当重力和空气阻力达到平衡时油滴将做 匀速下降如图所示。设其速度为gv则有gvrgr6343 1 2、当极板两端加上合适的电压为1U时使油滴处于静止状态则有03413dUqgr 2 由1式和2式联立即可测得油滴的电量为ggtlv/ gtUldqg2182/312/32/3 3 3、粘滞系数的修正由于油滴小不能视为连续介质gtlgpb231 4 式中b为常数p为大气压强将4式代入3式则有 2/312/32142/312/32/32/31110960.1110430.111231218ggggtUtt Utlgpbgldq 5 四、实验内容一启动软件双击桌面“大学物理仿真实验”软件图标→在菜单上单击“油滴实验”按钮→单击 窗口中的“开始实验”图标。二仪器调节1?6?1?6?1图Ud 1调平仪器按照要求调节调平螺丝使气泡处于气室中央。2、调焦显微镜用左键和右键在调焦窗口中单击调焦齿轮使右 边窗口中金属丝的像清晰可见。三实验内容及步骤1、单击电压表进入实验状态→单击电源开关接通电源→单击油 滴盒弹出观察窗口2、在显微镜视野中选择1号油滴调节平衡电压至216V时油滴静止。依次测得它通过距离为l时所

用有时间分别为0.740s、7.40s、7.46s、7.43s。计算结果如下1计算得到平均时间stg423.7 2将平均时间和平衡电压代入5式计算油滴所带电量为 10028.3423.72161423.710960.1110430.1182/32/3214Cq 3基本电荷数0.19925.181060.110028.31918理论eqn取整4电子电量的测量值10599.1103.0281918Cnnqe测5电子电量的相对误差063.060.160.1599.1/191919标标测eeeE 3、再选择不同的2号和3号油滴分别测得平衡电压和时间如表。4、10599.13119Ceei测测5、相对误差063.0602.1602.1599.1/标标测eeeE 数据记录表格油滴序号油滴运行时间 1 2 3 测 e 平衡电压V 216 290 230 1gts 7.40 7.46 7.28 2gts 7.40 7.31 7.50 3gts 7.46 7.37 7.46 4gts 7.43 7.37 7.48 gts 7.423 7.378 7.430 油滴电量Cq 1810028.3 1810276.2 1810839.2 基本电荷数标eqn/ 19.0 14.0 18.0 测量值nqe/测1910594.1 1910626.1 1910578.1 1910599.1 相对误差标标测eeeE/ 063.0 基本常数重力加速度2/80.9smg油滴密度20/9813Ctmkg大气压强cmHgp0.76 常数cmHgmb61017.6油滴匀速下降距离mml00.2平行极板间距mmd00.5 空气粘滞系数 20/10832.15Ctsmkg电子电量Ce191060.1标。

硅橡胶耐油试验

橡胶用试验检测用油 橡胶耐油试验用ASTM 美国标准试验油(标准油,参比油,实验油)1#(IRM901),2#(IRM 902),3#(IRM 903),5#(IRM 905)橡胶塑料试验用标准油,满足ASTM D471测试要求,参比油-ASTM 1#( IRM 901),2#(IRM 902),3#(IRM 903),5#(IRM 905) 橡胶耐油试验用美国ASTM 试验用油(标准油,参比油)(ASTM 1#,IRM902,IRM903,IRM905)。由于目前美国ASTM 新标准对其油品的质量进行了调整,并且在新标准中将1#,2#,3#,5#号试验用标准油升级到IRM 901,IRM902,IRM903,IRM905, ASTM D5964-96(2001)。标准实验油IRM 901IRM902产品符合ASTMD471标准,是橡胶塑料用汽车配件的试验用油。IRM903产品符合ASTMD471标准,是橡胶塑料用汽车配件的试验用油。 标准实验油FUEL A产品符合ASTMD471及ISO1817标准,是橡胶塑料用汽车配件的试验用油FUEL B产品符合ASTMD471及ISO1817标准,是橡胶塑料用汽车配件的试验用油FUEL C 产品符合ASTMD471及ISO1817标准,是橡胶塑料用汽车配件的试验用油 FUEL D产品符合ASTMD471及ISO1817标准,是橡胶塑料用汽车配件的试验用油 标准实验油FAM A产品符合DIN51604标准,是橡胶塑料用汽车配件的标准度试验油。 FAM B 产品符合DIN51604标准,是橡胶塑料用汽车配件的标准度试验油。 FAM C 产品符合DIN51604标准,是橡胶塑料用汽车配件的标准度试验油。 FAM D 产品符合DIN51604标准,是橡胶塑料用汽车配件的标准度试验油。 标准实验油 ASTMD 1产品符合ASTMD471标准,是橡胶塑料用汽车配件的试验用油。 ASTMD 2产品符合ASTMD471标准,是橡胶塑料用汽车配件的试验用油。 ASTMD 3产品符合ASTMD471标准,是橡胶塑料用汽车配件的试验用油。 标准实验油 101 102 103 104ISO1817标准,是橡胶塑料用汽车配件的试验用油 IRM902 IRM901 IRM903 FUEL A FEUL B FUEL C FUEL D FAM A FAM B FAM C FAM D ASTMD 1#2#3#标准实验油 101 1、产品名称:IRM901 1号油 成分:溶剂精炼重质含蜡石油(CAS NO.64741-88-4)含量:30-70% 溶剂精炼石油残留物(CAS NO.64742-01-4)含量:30-70% 2、产品名称:IRM902 2号油 成分:重质加氢环烷基分馏物(CAS NO.64742-52-5)含量:100%

密立根油滴实验数据处理

密立根油滴实验数据处理 罗泽海 摘要:本文主要讨论了大学物理实验中的密立根油滴实验数据处理。其中主要讲解了MOD-8型密立根油滴实验仪的使用及其实验实验事项、密立根油滴实验的基本原理,重点介绍密立根油滴实验平衡测量的数据处理,实验数据处理过程由的数值计算和图形绘制来实现,通过运用microsoft excel图表对数据处理,计算出电荷e的实验值幷与理论值进行比较,作出实验误差小结个人预见。 关键词:油滴实验数据处理个人预见

Dense grain root oil drops experimental data processing Luozehai Abstract: This paper discusses the physics experiment Millikan oil drop experiment data proce- ssing. Mainly explained MOD-8 type Millikan oil drop experiment and the experiment using the experimental instrument matters, Millikan oil drop experiment of the basic principles, focusing on balance Millikan oil drop experiment measurement data processing, data processing process from the numerical computation and graphics rendering to achieve, through the use of microsoft excel chart of data processing to calculate the charge e of the experimental data are compared with the theoretical value Bing, individuals predicted to experimental error summary. Key words:Oil Drop Experiment;Data Processing;Individual predicted

密立根油滴实验报告

创作编号:BG7531400019813488897SX 创作者: 别如克* 密立根油滴实验——电子电荷的测量 【实验目的】 1. 通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续 性,并测定电荷的电荷值e 。 2. 通过实验过程中,对仪器的调整、油滴的选择、耐心地跟踪和测量以及 数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。 3. 学习和理解密立根利用宏观量测量微观量的巧妙设想 和构思。 【实验原理】 1. 静态(平衡)测量法 用喷雾器将油滴喷入两块相距为d 的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m ,所带的电量为q ,两极板间的电压为V ,如图 1 所示。如果调节两极板间的电压V ,可使两力达到平衡,这时: d V q qE mg == (1) 为了测出油滴所带的电量q ,除了需测定平衡电压V 和极板间距离d 外,还需要测量油滴的质量m 。因m 很小,需用如下特殊方法测定:平行极板不加电压时,油滴受重力作用而加速下降,由于空气阻力的作用,下降一段距离达到某一速度g ν后,阻力r f 与重力mg 平衡,如图 2 所示(空气浮力忽略不计),油滴将匀速下降。此时有: mg v a f g r ==ηπ6 (2) 其中η是空气的粘滞系数,是a 油滴的半径。经过变换及修正,可得斯托克斯定

律: pa b v a f g r + = 16ηπ (3) 其中b 是修正常数, b=6.17×10-6m ·cmHg,p 为大气压强,单位为厘米汞高。 至于油滴匀速下降的速度g v ,可用下法测出:当两极板间的电压V 为零时,设油滴匀速下降的距离为l ,时间为t ,则 g g t l v = (4) 最后得到理论公式: V d pa b t l g q g 2 3 )1(218????? ? ??????+= ηρπ (5) 2. 动态(非平衡)测量法 非平衡测量法则是在平行极板上加以适当的电压V ,但并不调节V 使静电力和重力达到平衡,而是使油滴受静电力作用加速上升。由于空气阻力的作用,上升一段距离达到某一速度υ 后,空气阻力、重力与静电力达到平衡(空气浮力忽略不计),油滴将匀速上升,如图 3 所示。这时: mg d V q v a e -=ηπ6 (6) 当去掉平行极板上所加的电压V 后,油滴受重力作用而加速下降。当空气 阻力和重力平衡时,油滴将以匀速υ 下降,这时: mg v g =πη6 (7) 化简,并把平衡法中油滴的质量代入,得理论公式: 2 12 3 1111218???? ?????? ??+???? ???????????? ? ? +=e e e t t t v d pa b l g q ηρπ (8)

汽轮机危急保安器充油试验(中英)

Turbine Emergency Governor Filling Oil Test 编号No.: 第 1 页共2 页(1/2) 开始操作时间:年月日时分终了时间月日时分Operating starting time: Y M D H M; Finishing time: Y M D H M 操作任务:号机组汽轮机危急保安器充油试验 Operation task: #__Unit Turbine Emergency Governor Filling Oil Test √序号 Seq. No. 操作项目 Operation Item 1 检查确认号机组汽轮机具备危急保安器充油试验的条件 Check and confirm #__unit turbine meet the requirement of emergency governor filling oil test. 2 检查确认汽轮机所有保护均已正常投入 Check and confirm turbine all protection put into normal operation. 3 检查确认汽轮机已冲转至3000Rpm Check and confirm turbine rolling to 3000rpm. 4 检查确认机组真空大于87Kpa,轴封系统运行正常 Check and confirm unit vacuum more than 87Kpa, gland seal system running normally. 5 检查确认机组交流润滑油泵运行正常,直流事故油泵可靠备用,润滑油压正常 Check and confirm unit AC lube oil pump running normally, DC emergency oil pump reliable backup, lube oil pressure normal. 6 检查确认机组高压密封油备用泵( )运行正常 Check and confirm unit HP seal oil spare pump running normally. 7 检查确认机组EH油系统运行正常,油压正常 Check and confirm unit EH oil system running normally, oil pressure normal. 8 检查确认机组高、低压胀差在正常范围内 Check and confirm unit HP & LP differential expansion within a normal range. 9 检查确认机组各项参数在正常范围内 Check and confirm unit each parameter within normal range. 10 检查确认锅炉燃烧良好,主再热汽温、汽压稳定 Check and confirm boiler combustion well, main & reheat steam temperature and pressure stable. 11 全面检查记录机组各项参数 Overall inspect and record unit each parameter. 操作人(Operator) ______________ 监护人(Supervisor) _____________ 值班负责人(Responsible):___________ 值长(Shift-chief):_______________

密立根油滴实验报告.docx

广东第二师范学院学生实验报告 实验项目名称 年 月曰 密立根油滴实验 实验时间 实验成绩 实验地点 指导老师签名 内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳 算等)、实验结果与分析、实验心得、实验问题回答 一、 实验目的 1、 通过对带电油滴在重力和静电场中运动的测量, 验证电荷的不连续性, 2、 通过实验对仪器的调整,油滴的选择耐心的跟踪和测量以及数据的处理等, 一丝不苟的科学实验方法和态度。 二、 实验使用仪器与材料 MOD-5C 型微机密立根油滴仪、棕油 三、 实验步骤 1、 调节仪器上的三只调平手轮,将水泡调平。 2、 打开监视器和油滴仪的电源,在监视器上先出现“ CCD 微机密立根油滴仪” ,5秒钟之后自动 进入测试状态,显示出标准分划板刻度及电压值和时间值。 3、 将喷雾器中的油滴喷进油滴仪的油雾杯中, 上线。 4、 按K3 (计时/停),让计时器停止计时, 匀速下降的同时,计时器开始时,到“终点” (数据、图表、计 并测定电子的电荷值 培养严肃认真和 e 。 选择一颗合适的油滴,调节电压使其停在第二格 (值未必要为O ),然后将K2按向“测量”,油滴开始 (取第七格下线)时迅速将 K2按向“平衡”,油滴 立即静止,计时也立即静止,此时电压值和下落时间值显示在屏幕上。 5、 对同一颗油滴进行 3次测量,而且每次测量都要重新调整平衡电 压。 6油的密度:P =981 kg? m 3(20 C ) 重力加速度:g=9.78m ? s -2(广州) 空气粘滞系数:η =1.83 × 10-5 kg? m 1 ? s -1 3 3 油滴匀速下降距离:l=0.25 × 1O - × 6=1.5 × 1O - m 6 修正常数:b=6.17 × 1O - m? CmHg 大气压强:p=76.0cmHg _ I _3 平行极板间距离d=5.00 × 10 m

绝缘油试验作业指导书

绝缘油试验作业指导书 10.1.1 绝缘油介质损耗角正切值tanδ测试 试验目的 反映油质受到污染或老化的情况,它对油中可溶性的极性物质、老化产物或中性胶质以及油中微量的金属化合物极为灵敏。 试验仪器 绝缘油介损测量仪 其他准备工具: 干湿温度计1只 地线若干 无水乙醇若干 四氯化碳若干 乙醚若干 1只 玻璃棒或不 锈钢棒 干燥干净的 若干 绸布 试验接线

. . ~ T2T1 C N Cx M M C a R 4 C 4 I R 3 G J QS3型西林电桥试验接线图 T2-试验变压器;M-气体放电管;T1-调压器;I-零平衡(找对称)装置;C N -高压标准空气电 容器;G-检流计;C X -测定油杯 试验步骤 (1)清洗油杯 试验前先用有机溶剂将测量油杯仔细清洗并烘干,以防附着于电极上的任何污物、杂质及湿分潮气等对试验结果的影响,即保证空杯的tanδ值应小于0.01%,才能满足对测试绝缘油的准确度要求。然后用被试油冲洗测试量杯2-3次,载注入被试油,至少静置10min ,待油中气泡逸出后再进行测量。 (2)介质损耗角正切值测量 对被试油样升温至90℃,进行介质损耗角正切值测量。 (3)废油处理 试验完毕后,妥善处理好废油。应用专门容器存放,并定期集中处理。

试验标准 根据《电气装置安装工程电气设备交接试验标准GB50150-2006》: 项目标准说明 介质损耗因数90℃时,注入电 气设备前≤0.5 注入电气设备后 ≤0.7 按《液体绝缘材 料工频相对介电 常数、介质损耗 因数和体积电阻 率的测量》 GB/T5654中的有 关要求进行试验 根据《输变电设备状态检修试验规程》: 项目要求 介质损耗因数(90℃)1.≤0.02(注意值),500kV及以 上;2.≤0.04(注意值),330kV及以 下 试验注意事项

车辆齿轮油GL-5台架试验比较(ASTM标准与SHT标准)

车辆齿轮油台架试验比较(astm标准与SH/T标准) 表1. L-33 ASTM D7038(L-33-1)SH/T 0517-92 试验油样用量40±1oz(1.20±0.03L) 1.2L 齿轮型号Dana30 Dana30 试验步骤 试验期 温度:180±1℉(83±0.6℃)水:1.00±0.02oz(29.6±0.6mL)齿轮转速:2500±25r/min 试验时间:4.0±0.1h 温度:82.2℃ 水:30mL 齿轮转速:2500r/min 试验时间:4h 贮存期 贮存温度:125±1℉(52±0.6℃)贮存时间:162±0.2h 贮存温度:51.7±0.6℃贮存时间:162h 锈蚀水平 无锈:10 痕迹:9 轻锈:8 中锈:5 重锈:0 无锈:0 痕迹:1 轻锈:2 中锈:5 重锈:10 评分计算 评分=①×0.087+②×0.193+③×0.094+④×0.169+⑤×0.079+⑥×0.079+⑦×0.051+⑧×0.083+⑨×0.071+⑩×0.094 评分=后盖板内表面评分×0.5+除后盖板内表面以外其他部位评分总和×2.5 评分区域编号 ①:同差速箱小齿轮接触的差速器止推面 ②:同差速箱侧齿轮接触的差速器止推面和内孔面 ③:同差速器接触的差速箱器止推面和内孔面 ④:后盖板内表面 ⑤:驱动大齿轮齿表面 ⑥:驱动小齿轮齿表面 ⑦:驱动小齿轮轴承滚柱表面 ⑧:驱动小齿轮轴承外环内表面 ⑨:差速器轴承滚柱表面 ⑩:差速器轴承外环内表面评分区域 ①:同差速箱小齿轮接触的差速器止推面 ②:同差速箱侧齿轮接触的差速器止推面和内孔面 ③:同差速器接触的差速箱器止推面和内孔面 ④:后盖板内表面 ⑤:驱动大齿轮齿表面 ⑥:驱动小齿轮齿表面 ⑦:驱动小齿轮轴承滚柱表面 ⑧:驱动小齿轮轴承外环内表面 ⑨:差速器轴承滚柱表面 ⑩:差速器轴承外环内表面

密立根油滴实验

北京航空航天大学物理研究性实验报告 专题:密立根油滴实验

目录 摘要 .............................................................. - 3 -实验目的 ........................................................ - 3 -实验原理 ........................................................ - 3 -实验器材 ........................................................ - 5 -实验步骤 ........................................................ - 5 - 1.调整仪器................................................ - 5 - 2.练习测量................................................ - 5 - 3.正式测量................................................ - 6 -注意事项 ........................................................ - 7 -原始数据和数据处理 .................................... - 7 -对实验的进一步讨论(研究性学习)......... - 9 - 一、误差分析........................................... - 9 - 二、对油滴的控制方法分析................... - 9 - 二、对实验的改进意见........................... - 9 -参考文献 ...................................................... - 10 -

油水分离器实验工艺

油水分离器试验程序 首先应提供油水分离器及15ppm油份报警装置OMD11的相关证书 1.临时污油桶内准备污油水, 供试验油份计使用; 2.确认电机的转向无误, 测量泵的驱动电机冷/热绝缘电阻应不小1MΩ; 3.分离器安全阀试验,设定值P=0.20+0.01Mpa; 4.接通电源,做泵的故障报警试验; 5.打开下部冲洗水入口的气动活塞阀和上部分离油的出口阀,由下部进入冲 洗水, 上部出油口排气,当水注满后各阀关闭,三色两极管为绿色,排水泵起动,上部三通阀排水;确认压缩空气的压力为6~8bar, 供水压力为最大1bar; 6.油份探测器试验(可模拟进行, 三色两极管显示) 接通电加热器. 当探测器从水中浸入到油或空气中, 三色两极管显示红色,装置上部排油阀打开,排油到舱柜;重新浸入水中, 三色两极管显示为橙黄色(或者闪亮,为反冲洗)上部反冲洗水出口阀打开, 油排出阀关闭.泵停止,同时停止加热; 7.含油浓度报警试验, 设定值15ppm; 拆下报警器水样进出口管,进口接自试验用污油水,进行报警试验; 8.分离水排放三通阀转换试验(模拟进行) 当分离水含油小于15ppm,排舷外;当大于或等于15ppm时,排舷外口自动关闭,转换为排舱底水舱; 9.分离器 运行分离器30分钟, 分离器连续操作两个分离循环, 依靠时间的设定从油注入到油渣排出口;

10.试验后用海水冲洗系统5~10分钟. THE TEST PROCEDURE FOR OILY-W ATER SEPARATOR TYPE: SKIT S 5.0m3/h FIRST SUPPL Y CORRELATION CERTIFICATE FOR RWO OIL WATER SEPARATOR & FOR 15ppm ALARM MONITOR 1.FILL IN BUCKET WITH OIL Y-WATER MIXTURE FOR TEST; 2.CHECK THE DIRECTION OF MOTOR ROTA TION. MEASURE THE ISOLATION RESISTANCE OF MOTOR PUMP IN COLD AND HOT CONDITION. THE V ALUE IS NOT TO BE LESS THAN 1MΩ; 3.TEST SAFETY V ALVE OF SEPARATOR. THE SETTING PRESSURE : P=0.20+0.01Mpa; 4.SUPPL Y POWER, TEST THE PUMP FAILURE ALARM; 5.OPEN THE PNEUMATIC PISTON V ALVE OF FLUSHING WATER INLET AND THE V ALVE OF OIL OUTLET. FILL FLUSHING W ATER, VENTILATE AIR FROM OIL OUTLET. WHEN FLUSHING WATER IS FULL, THE DIODE IS GREEN AND THE DISCHARGE W ATER FROM UPPER THREE-WAY V ALVE; ENSURE COMPRESSED AIR SUPPLY ARE 6~8bar, WATER SUPPLY IS MAX 1bar. 6.THE TEST FOR OIL LEVEL SENSOR(SIMULATION) THE HEATER WORK, WHEN SENSOR IS DIPPED INTO OIL OR AIR, THE DIODE IS RED, THE V ALVE OF DISCHARGING OIL AND DISCHARGE OIL TO BILGE TANK. WHEN SENSOR IS DIPPED INTO W ATER, THE DIODE IS ORANGE, THE V ALVE FOR FLUSHING WATER OUTLET OPEN, THE V ALVE FOR DISCHARGE OIL IS CLOSED. THE PUMP AND HEATER STOP. 7.OIL CONTENT ALARM TEST. THE SETTING V ALUE: 15PPM; 8.THE TREATED WATER CHANGER-OVER V ALVE TEST (SIMULATION). WHEN THE OIL CONTENT OF THE TREATED WA TER <15PPM, IT IS DISCHARGED OUTBOARD, WHEN THE OIL CONTENT OF THE TREATED WATER≥15PPM, IT IS DISCHARGED TO BILGE TANK. 9.OIL SEPARATOR THE SEPARATOR TO OPERA TED FOR 30min--- SEPARATOR TO OPERATE TWO CONSECUTIVE PURIFYING CIRCULATION, FROM OIL FILLING IN TO SLUDGE DISCHARGING OUT, DEPEND ON TIME SETTING.. AFTER TEST, FLUSHING THIS SYSTEM WITH SEA WATER.

密立根油滴实验

实验XX 密立根油滴实验 油滴实验是近代物理学中测量基本电荷e (也称元电荷)的一个经典实验,该实验是由美国著名物理学家密立根(Robert A. Millikan )经历十多年设计并完成的。这一实验的设计思想简明巧妙、方法简单,而结论却具有不容置疑的说服力,因此堪称物理实验的精华和典范。1908年,在总结前人实验经验的基础上,密立根开始研究带电液滴在电场中的运动过程。结果表明,液滴上的电荷是基本电荷的整数倍,但因测量结果不够准确而不具说服力。1910年,他用油滴代替容易挥发的水滴,获得了比较精确的测量结果。1913年,密立根宣布了其开创性的研究结果,这一结果具有里程碑的意义:(1)明确了带电油滴所带的电荷量都是基本电荷的整数倍,(2)用实验的方法证明了电荷的不连续性,(3)测出了基本电荷值(从而通过荷质比计算出电子的质量)。此后,密立根又继续改进实验,提高实验精度,最终获得了可靠的结果(经过很多次的实验,密立根测出的实验数据是e=1.5924(17)×10?19C ,这与现在公认的值相差仅1%),最早完成了基本电荷的测量工作。这一结果再次证明电子的存在,使对“电子存在”的观点持怀疑态度的物理学家信服。由于在测定基本电荷值和测出普朗克常数等方面做出的成就,密立根在1923年获得了诺贝尔物理学奖。 随着现代测量精度的不断提高,目前元电荷的公认值为e =(1.60217733±0.00000049)×10-19C 。本实验采用CCD 摄像机和监视器,可非常清楚地看到钟表油油滴的运动过程,大大改善了实验条件,使测量结果更为准确。 【实验目的】 1. 学习用油滴实验测量电子电荷的原理和方法。 2. 验证电荷的不连续性。 3. 测量电子的电荷量。 4. 了解CCD 摄像机、光学系统的成像原理及视频信号处理技术的工程应用等。 5. 训练学生在实验过程中严谨的态度、实事求是的作风。 【实验原理】 密立根油滴实验测量基本电荷的基本设计思想是使带电油滴在两金属极板之间处于受力平衡状态。按运动方式分类,可分为平衡法和动态法。本实验采用平衡法,其原理如下: 质量m 、带电量为q 的球形油滴,处在两块水平放置的平行带电平板之间,如图1所示。改变两平板间电压U ,可使油滴在板间某处静止不动,此时油滴受到重力、静电力和空气浮力的作用。若不计空气浮力,则静电力qE 和重力mg 平衡,即 d U q qE mg == (1) 式中E 为两极板间的电场强度,d 为两极板间的距离。只要测 出U 、d 、m 并代入(1)式,即可算出油滴带电量q 。然而因 油滴很小(直径约为m 106-),其质量无法直接测得。 两极板间未加电压时,油滴受重力作用而下落,下落过程 中同时受到向上的空气粘滞阻力r f 的作用。根据斯托克斯定律,同时考虑到对如此小的油滴来说空气已不能视为连续媒质,加上空气分子的平均自由程和大气

实验报告(四球试验)

实验报告 一:实验目的 利用MS-800型四球摩擦磨损试验机测试润滑油的摩擦系数 二:实验设备 主要用到变频器、传感器、放大器、数据采集卡和计算机、MS-800四球试验机、四个钢球(符合G308 要求的Ⅱ级钢球,材料CGr15,直径12.7mm ,硬度HRC64~66 之间)、美孚工业齿轮油632、清洗剂(石油醚)、卫生纸、扳手,载荷1kg ,其中MS-800四球试验机的技术指标如下: MS-800主要技术指标 三:实验原理 由右图可见,四球机的四个钢球形成一个等边四面体,上球对下3球在3个接触点的作用力可由等边四面体来分析。设加载在顶球1上的垂直负荷W , W N N N 4082.0321=== (1) 由于上球与下面任意一个小球之间的摩擦力 11312111N F F F F μ====,因此测量出1F 就可 以得到摩擦系数μ的大小。 下面还需要求出顶球与底球的接触点至顶球球心垂线的距离11B O 、11C O 、11D O ,以求出顶球在接触处的线速度。从图中几何关系得: 11115774.03 1R R B O == (2) 自动拉力记录仪测得的力并不等于四球摩擦后产生的摩擦力,而是要经过力的传递和一定的放大倍数后得到的一个力,大小可以通过下面的计算得出。 由右图 可知:111B O L = MS-800各项技术指标 数 据 最大轴向负荷 800公斤 主轴转速 1450±50转/分 加温油杯最高工作温度 200℃ 一次试验耗油量 约10毫升 试验时间的控制 手动和10秒自动刹车 杠杆加载扩大倍数 10-20倍 主电机功率及转速 1.1千瓦 1410转/分 A D 1 C N 2 O 1 C 1 B 1 B O N 1N 3 D ω 四球机钢球受力分析图

相关文档
最新文档