蛋白纯化液相层析

蛋白纯化离子交换层析

蛋白纯化离子交换层析 离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静电荷为0,当溶液pH值大于蛋白质等电点时,羧基电离,蛋白质带负电荷,蛋白质能够被阴离子交换剂所吸附,相反,当溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷,被阳离子交换剂所吸附,溶液的pH值距蛋白质等电点越远,蛋白质带电荷越多,与交换剂的结合程度也越强,反之则越弱。 当溶液的pH值发生改变时,蛋白质与交换剂的吸附作用也发生变化,因此可以通过改变洗脱液的pH值来改变蛋白对交换剂的吸附能力,从而把不同的蛋白质逐个分离,当pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱,当pH值降低时,抑制蛋白质阴离子化,随之降低蛋白质对阴离子交换剂的吸附。 另外,无机盐离子(如NaCl)对交换剂也具有交换吸附的能力,当洗脱液中的离子强度增加时,无机盐离子和蛋白质竞争吸附交换剂。当Cl-的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl-浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。 因此,洗脱阴离子交换剂结合的蛋白时,则降低pH值,增加盐离子浓度;洗脱阳离子交换剂结合蛋白时,则升高溶液pH值,增加盐离子浓度,能够洗脱交换剂上的结合蛋白。

蛋白纯化层析柱

蛋白纯化层析 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell 解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。第一步捕获步骤,也就是从细胞裂解物粗成份中分离蛋白,这需要一个具有高容量和高流量(flow rate)的填料。bead大小比较大,范围比较宽(比较于bead大小平均值)的“fast flow”填料比较理想,

这种填料也有利于防止目标蛋白被水解——因为速度比较快。 第二步则对分辨率要求更高,需要更好的从混合物中分离需要的成份。通常bead的大小与分辨率成反比,因此在这一部中比较小的bead 比较合适。吸附性的技术,比如离子交换IEX和疏水作用HI通常被用在纯化的这前两个步骤,而凝胶过滤则会留到了最后的修饰那一步,用于小体积,高浓度的样品。另外要注意,进行凝胶过滤层析时,样品的体积应该保持在柱床体积的1%到4%。 选择柱料的时候有两个因素要考虑到,针对目的蛋白的选择性和有效性——这些可以由洗脱峰的宽度来说明。其中选择性主要是指填料与目的蛋白相互作用以及结合的能力,IEX和HI层析方法就是指目标分子与筛分介质之间的相互作用,而GF的选择性依赖于填料的分馏范围(fractionation range)。 柱料的有效性则是指层析介质洗脱样品得到显著层析峰的能力,Mitchell表示,“如果你的峰值不集中,比较宽,那么即使是选择性很好,分辨率仍然会被消弱”。bead越大,洗脱峰就越不集中,柱子的有效性就越低。纯化洗脱相近的蛋白需要高效性,高选择性和高效性的结合就会得到高分辨率。 凝胶过滤层析(gel filtration chromatography) 凝胶过滤法(gel filtration)也称为排阻层析(exclusion chromatography)、凝胶层析(gel chromatography)或分子筛层析(molecular sieve chromatofraphy),它是在1960年后发展出来的技术。

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

A蛋白亲和层析法纯化单克隆抗体

摘要:世界首个单克隆抗体(monoclonal antibody,简称单抗)于1986 年,获得美国食品与药品监督管理局的上市批准,拉开了单抗药物发展的序幕,成为生物医药领域中最耀眼的明珠。单克隆抗体纯化过程中a蛋白(protein a)层析介质的选择尤为重要,可以影响抗体的纯度。本文主要阐述单抗纯化过程中a蛋白亲和层析的相关内容。 关键词:a蛋白;耐碱性;动态载量 全球医药行业走向趋势是精准医疗时代,单抗是其中较为成熟的领域,引领了生物制药产业发展最为重要的驱动力。单抗药物主要是由中国仓鼠卵巢细胞(chinese hamster ovary cell,简称 cho 细胞)表达产生,由 cho 细胞分泌的外源蛋白分子,通过纯化过程实现由细胞培养液中回收。随着单抗生产上游改造、培养参数的优化,其产量已达5-10g/l,同时也增加了下游蛋白回收中去除各种宿主杂质的负担。宿主蛋白残留的组成随着培养条件的改变显现出显著的变化,单抗药物杂质主要包括与产品相关的污染物和工艺相关的污染物。 根据终产品纯度、杂质含量的严格要求,单抗目前采用三步纯化策略:粗纯(样品捕获)、中度纯化和精细纯化,该策略工艺复杂、对操作要求严格,导致纯化成本一般占总生产成本的 50%-80%。用a蛋白亲和层析凝胶捕获抗体是大规模单抗纯化的首要步骤,一步纯化可使蛋白纯度达 95%以上。但a蛋白树脂价格昂贵,在大规模生产中,a蛋白纯化步骤的成本占整个抗体纯化成本的 35%以上。因此,蛋白 a 纯化效率的提高是进一步提高产品质量、降低生产成本的关键[1]。 1 a蛋白的性质金黄色葡萄球菌 a蛋白(staphylococal protein a,spa)是一种从金黄色葡萄球菌细胞壁分离的蛋白质。能特异性地与人或哺乳动物抗体(主要是igg)的fc区域结合。天然的a蛋白是十种氨基酸组成。由于不含有胱氨酸及半胱氨酸,所以无二硫键。紫外光谱和吸收系数为 a275nm %=1.65,等电点为ph5.1。spa十分稳定,用4mol/l尿素、硫氰盐酸、6mol/l的盐酸胍和ph2.5的酸性条件,以及加热煮沸均不影响其活性。分子量:全长的spa 54kd,去掉与细胞壁结合部分的spa 42kd。spa与igg结合的亚类主要是igg1、igg2和igg4。近几年来基因工程的spa出现,解决了天然a蛋白的耐碱性问题,mabselect sure是基因工程的spa,去掉了天然spa的dace 区域,对于b区域进行了修饰,将不耐受naoh的氨基酸去掉。使修饰后的spa可以耐受0.1-0.5m的naoh;这就很好的解决了层析介质cip的问题,同时修饰后的spa也耐受蛋白酶。减少在纯化过程中蛋白酶对spa的作用,使洗脱收集液中spa的脱落更低。 2 结合单抗的a蛋白层析介质的选择 在a蛋白捕获步骤中主要去除的杂质大部分是hcp和基因组dna;由于a蛋白层析介质对聚体没有去除作用,所以在此捕获步骤中应采取尽量减少聚体的形成策略,例如:提高洗脱ph,加入添加剂等;在此捕获步骤中会有a蛋白(配基)的脱落。在a蛋白捕获过程中,培养上清中的蛋白酶会降解层析介质的配基a蛋白,以及a蛋白与介质骨架的偶联方式,这些都是protein a的脱落原因,所以选择a蛋白脱落较低的层析介质是非常必要的[2]。 2.1 a蛋白层析介质相关指标 耐碱性:药物gmp生产最基本的要求是无菌、无热源。naoh 是最好的除菌、出热源的试剂。同时naoh也是公认的cip试剂,使用naoh 可以很好的除去残留在层析介质上的杂质,以确保工艺的稳定性以及层析介质的寿命;?郧?naoh的成本低。naoh是公认的cip试剂,实验表明,naoh的清洗效果高于其他试剂,适合琼脂糖基架的填料。而对照的可控玻璃基架(cpg)填料的清洗结果表明,盐酸胍比磷酸更为有效。cpg填料在高ph下不稳定,不适合用naoh 清洗。传统的a蛋白的清洗试剂,如:尿素,盐酸胍等的清洗试剂效果不理想,?郧以谂渲檬

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化的一般原则及方法选择

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2.各种蛋白纯化方法及优缺点 2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。硫酸

AKTA蛋白纯化系统操作

AKTA蛋白纯化系统操作 AKTA蛋白纯化系统是当前蛋白纯化工作经常用到的一组设备,自动化程度很高。AKTA系统依据不同的配置,可以分为AKTA EXPLORER、AKTA PILOT、AKTA PURIFIER等多种型号的设备。以下以AKTA EXPLORER为例简单介绍AKTA蛋白纯化系统的一般操作。 1、认识AKTA。 AKTA explorer 是为方法开拓及研究应用而设计的全自动液相色谱系统。该色谱系统的分离装置有三个主要组件,在底部平台的左侧整齐堆起(Fig 1)。它们是: FIG 1、AKTA EXPLORER主机 ? Pump-900 为双通道高效梯度泵系列。在AKTAexplorer 100,流速范围0.01-100 ml/min,压力高达10 Mpa(泵名为P-901)。在AKTA explore10,流速范围0.001-10 ml/min,压力高达25 Mpa(泵名为P-903)。 ? Monitor UV-900,同时监控190-700 nm 范围内高达3 个波长的多波长紫外-可见(UV-Vis)监测器。(针对部分AKTA PURIFIER机型,尚有UPC-900监测器可供选择,光源为汞灯光源,一次可以监控一个波长,安装滤光片后,可以在选择的波长范围内进行切换。)? Monitor pH/C-900,在线电导和pH 监测的组合监测器。 Fig 2、AKTA EXPLORER硬件模式图

AKTA EXPLORER系统的主要组成部件可以用模式图表示(Fig 2)。组成部件,如混合器、柱及不同的阀安装在右边部分。打开装阀的门可全部看到。柱被挂在装阀的门的外侧。 分离装置由UNICORN 软件控制。软件安装于一独立的电脑主机之中,在电脑与色谱系统之间的通信由数据采集装置CU950进行控制。 2、一般操作 2.1 开机 按位于底部平台前左侧的ON/OFF 按钮,打开色谱系统,然后打开电脑电源。待仪器自检完毕(CU950上面的3个指示灯完全点亮并不闪烁)。双击桌面上UNICORN图标,进入操作界面。UNICORN的操作界面分为四个窗口(Fig 3) Fig 3、Unicorn的操作界面 2.2准备工作溶液和样品 所有的工作溶液和样品必须经过0.45μm的滤膜过滤,样品也可高速离心后取上清备用。当缓冲液中含有有机溶剂(如乙腈、甲醇),需在使用前用低频超声脱气10min。 2.3清洗及管道准备 首先将A泵的进液管道(A1)放入缓冲液或平衡液中,将B泵的进液管道(B1)放入高盐溶液中,在system control窗口点击工具栏内的manual,选择pump→pump wash explorer,选中A1,B1管道为ON,execute。泵清洗将自动结束。(Fig 4) Fig 4、AKTA Explorer的泵清洗操作 2.4安装层析柱

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

蛋白纯化层析柱

蛋白纯化层析柱 2011-06-15 15:19:14 易生物仪器浏览次数:1164 网友评论 0 条 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是... 关键词:蛋白离子交换分离分子物质树脂从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。

GE NOVAGEN 镍柱纯化系统流程

蛋白纯化系统操作流程 一、蛋白的诱导:蛋白原核表达 1、取菌种接种于含Amp LB固体培养基中(分区划线),37℃培养过夜; 2、挑取单克隆接种于5ml含Amp LB液体培养基中,37℃振摇过夜; 3、从过夜培养物中取2ml接种于100ml Amp LB液体培养基中,振摇2h(留样1ml); 4、加入一定终浓度IPTG,37℃诱导表达4h(留样1ml),离心,弃上清收集细菌。 存入4℃。 二、蛋白表达状态分析(可溶性or包涵体表达) 取少量(1ml)诱导菌体沉淀,加入不含变性剂(如盐酸胍,尿素等)PBS(150μl),超声裂解。分离上清和沉淀,分别SDS-PAGE电泳。 三、蛋白的纯化 纯化前准备 1.推荐在中性至弱碱性条件下(pH 7-8)结合重组蛋白。磷酸盐buffer是常用的缓冲液, Tric-Cl在一般情况下可用,但要注意它会降低结合强度。 2.避免在buffer中包含EDTA或柠檬酸盐等螯合剂 3.若重组蛋白以包涵体形式表达,在所有的buffer中添加6 M 盐酸胍或8 M 尿素 注: 1.包含尿素的样品可直接进行SDS-PAGE分析,若样品中包含盐酸胍,在SDS-PAGE前则 需先用含有尿素的buffer进行透析 2.除利用咪唑洗脱蛋白,其它方法,如低pH 值法等可被应用,详见说明书 Bingding buffer 中咪唑的浓度 在洗涤时所用的Bingding buffer 中咪唑浓度越大,重组蛋白纯度越高。但过高的咪唑浓度将导致蛋白的洗脱。合适的咪唑浓度需要优化。 Buffer 的准备

所用的水及化学物质须是高纯度的。Buffer 在使用前需经0.45 μm滤膜过滤 所用高纯度的咪唑需在280nm 处无吸光度或吸光度极低 推荐buffer Bingding buffer:20 mM 磷酸盐 0.5 M NaCl 20- 40 mM 咪唑pH 7.4 (咪唑浓度是蛋白依赖的,可变!)Elution buffer :20 mM 磷酸盐 0.5 M NaCl 500 mM 咪唑pH 7.4 (咪唑浓度是蛋白依赖的,可变!) 样品准备 样品需被充分溶解。过柱前经0.45 μm滤膜过滤。样品以pH 7.4 binding buffer 溶解。勿用强酸强碱调节pH 值,否则将可能导致沉淀。 重力纯化法Ni-NTA Column 准备 1. 温和地颠倒瓶中的Ni-NTA Agarose 数次。 2. 吸取2ml的树脂加入15ml离心管中,使树脂在重力(5–10 minutes)或低速离心(5 minute at 500 × g),轻柔的吸出上清。 3. 加入5ml的无菌蒸馏水,温和的颠倒柱子3min,离心5 minute at 500 × g,轻柔的吸出上清。 4. 用bingding buffer 重复第3步。 5. 在Ni 柱中加入等体积的bingding buffer,制成50%的slurry 样品与Ni 柱结合 1.每1ml 50%的slurry中加入4ml 的样品。1ml 50%的slurry 可结合20mg His-蛋白 2.将混合物室温,低速振荡孵育1h Buffer 洗涤及洗脱 1.离心5 minute at 500 × g,轻柔的吸出上清。上清保存放在4℃for SDS-PAGE

蛋白质的离子交换层析技术模板

离子交换层析技术 层析( chromatography) 也称为色谱, 就是将混合物中各种组分分离的方法, 是分离、纯化及鉴定生物大分子时最常使用的技术之一。一个层析系统都包括两相, 即固定相和移动相。当移动相流过加有样品的定相时, 由于各组分在两相之间的分配比例不同, 它们( 各组分) 就会以不同的速度移动而相互分离开来。定相能够是固体, 也能够是被固体或凝胶所支持的液体。定相能够被装入柱中或涂成薄层、薄膜, 成为层析”床”。动相能够是气体, 也能够是液体, 前者称为气相层析, 或者成为液相层析。 离子交换层析技术是以离子交换纤维素、离子交换树脂或离子交换葡聚糖凝胶为固定相, 以待分离的样品为移动相, 分离和提纯蛋白质、核酸、酶、激素和多糖等的一项技术。 ( 一) 原理 在纤维素与葡聚糖分子上结合有一定的离子基团, 当结合阳离子基团时, 可换出阴离子, 则称为阴离子交换剂。如二乙氨乙基( Dicthylaminoethyl, DEAE) 纤维素。在纤维素上结合了DEAE, 含有带正电荷的阳离子纤维素—O—C6 H14N+H, 它的反离子为阴离子( 如Cl-等) , 可与带负电荷的蛋白质阴离子进行交换。当结合阴离子基团时, 可置换阳离子, 称为阳离子交换剂, 如羧甲基( Carboxymethy, CM) 纤维素。纤维素分子上带有负电荷的阴离子( 纤维素-O-CH2-COO一) , 其反离子为阳离子( 如Na+等) ,可与带正电荷蛋白质阳离子进行交换。 溶液的pH值与蛋白质等电点相同时, 静电荷为0, 当溶液pH值大于蛋白质等电点时, 则羧基游离, 蛋白质带负电荷。反之, 溶液的pH值小于蛋白质等电点时, 则氨基电离, 蛋白质带正电荷。溶液的pH值距蛋白质等电点越远,

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白纯化系统Biologic-LP使用说明

蛋白纯化系统Biologic-LP使用说明 Biologic-LP是蛋白质层析纯化系统, 其原理是利用不同蛋白分子所具有的特性(如等电点、分子量及亲水或疏水性)与层析柱中的介质产生的吸附作用后,再用相应的洗脱液来对吸附在层析柱上的蛋白进行洗脱。根据目标蛋白及不同层析柱介质的特性,设计相应的洗脱程序可以使目标蛋白与其他杂蛋白先后从层析柱上洗脱下来。通过观察紫外光的吸收峰,可分别收集不同时段洗脱下来的蛋白液。蛋白混合物通过这样的程序可被分离至单个蛋白。通常分布在混合物中的目标蛋白需要通过组合而不是单一的层析路线来进行分离操作。常规的分离路线如通过疏水层析—离子交换—疏水层析的技术路线来有效分离目标蛋白。 本层析系统使用主要分为三个部分。首先在使用前确认分离的技术路线和使用的层析柱。其次根据层析柱使用的要求配制相关试剂和确定层析过程的参数。最后通过层析操作分离纯化目标蛋白,并清洗层析柱和管道以确保仪器能长期有效使用。 一设计蛋白的纯化路线及选择不同的层析柱及层析方法根据目标蛋白的特性及来源,设计纯化的路线并确定每一步操作所需要的层析柱及层析方法。根据不同层析方法的要求,准备蛋白样品及洗脱液及洗脱方式(如线形洗脱或梯度洗脱)。而后确认层析操作中的主要参数。

二层析系统的操作 以下是对所有层析操作中共同的步骤进行的描述。特别注意的是不同的分离方式如离子交换和疏水层析它们的原理和参数设置完全不同。这里仅就相同的操作进行描述,具体的参数设置见使用说明书并咨询负责本仪器的老师,切不可擅自操作,以免破坏仪器。 1、确定目标蛋白层析柱的选择,不同的分离方式选择不同的层析柱。 2、样品制备。根据层析柱介质对蛋白样品的要求,制备样品和洗脱 液。所有用于层析的溶液及样品均要通过0.45μm膜过滤,以免堵塞层析柱。 3、打开层析仪电源,按照显示屏的提示,分别设置好A液、B液、 流速、时间等相关参数,并将接样管插入接样仪。 4、打开电脑及Biologic-LP Data View软件,观察层析过程是否正常 或是否需要调整,做好接样前的准备。 三、层析系统的维护 操作结束后,按仪器使用说明,清洗层析柱及管道,将层析柱保存好,备用。特别注意不同的层析柱要求的清洗方式不同,对管道的清洗也不同,层析柱的保存方式也不同。清洗和保存时一定要按照使用说明书的要求进行操作,不能出现错误以免对层析系统造成破坏。

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

蛋白纯化系统技术指标

技术标部分 仪器名称:蛋白纯化系统 数量:1套原装进口设备 用途:适用于实验室从分析、小规模制备,到中试规模的工艺摸索和制备,可通过凝胶过滤、离子交换、亲和层析、羟基磷灰石、疏水层析等层析谱技术,进行蛋白质、肽类、多糖、核酸等生物大分子和中草药与天然产物活性成分的分离、纯化和制备。 技术指标: 1.原装进口产品 2. 系统泵 *全自动柱塞泵,双泵四泵头,每个泵头都有独立除气阀 *单泵流速:0.001-10 ml/min 最大流速:20 ml/min 流速准确度:±2%,流速精度:RSD<0.5% 梯度精度: ±<0.8%,流速范围:0. 25-10 ml/min 具备恒压调速功能 3. 紫外检测器 *检测范围:0 - 3AU *线性:±2% 光源和流动池分开设计,避免光源过热对样品的影响 4. 电导检测 *检测范围:0.01 mS/cm-999 mS/cm 电导精确度:±0.01 mS/cm,实时自动检测 5. 温度检测 *温度范围:0 - 99 C 温度准确度:±1.5°C 6. 阀门 自动进样阀:1个,自动切换上样、进样和冲洗三个状态 出口阀组件:1个 自动柱位选择阀:1个,无需改变管路连接即可实现旁路及正反向洗脱功能 7. 组分收集器 收集方式:可根据体积、峰或时间自动收集 收集数目:≥100个 收集范围:0.1ml-50ml 具有滴感应器,防滴漏功能

流路:PEEK惰性材料(以保持蛋白活性)耐受有机溶剂 8. 软件 流路实时在现,实时监控和控制 内置层析柱和凝胶信息 具有自动积分、一键积分功能,操作简单,可打印结果报告 9. 配件 上样环:500um,1ml,5ml各一个 预装柱,包含His标签亲和介质等 PH计 10. 配套电脑参数 4核处理器、内存8 GB,独立显卡4G显存、硬盘1 TB,可刻录光驱,24寸的高清显示器 11. 技术支持 技术人员和甲方人员一起设计教学实验,并定期参与相关实验课程

相关文档
最新文档