陶瓷窑炉烟气处理技术

陶瓷窑炉烟气处理技术
陶瓷窑炉烟气处理技术

陶瓷窑炉烟气处理技术

随着国民经济的不断发展,我国陶瓷工业也得到了迅猛发展。2005年我国陶瓷产量:日用陶瓷175亿件,建筑陶瓷35 m2,卫生陶瓷约9 000万件,产量均居世界第一,约占世界的2/3,形势一片大好。但其带来的负面影响——窑炉烟气污染也越来越突出。

我国大气中90%的SO x、85%的CO2、80%的RO x(粉尘)和50%的NO x污染均来自陶瓷窑炉、蒸汽锅炉以及其他各种工业窑炉[1]。据资料统计,目前仅在日用陶瓷、建筑陶瓷生产领域中就有3 000余座燃煤窑炉,达到窑炉总数的70%,因此处理陶瓷窑炉烟气污染就成为了目前应该研究的方向。

笔者结合陶瓷窑炉烟气的污染物形成机制,对目前窑炉烟气的处理技术和发展方向进行了综述。

1 陶瓷窑炉烟气污染产生的机制

陶瓷窑炉烟气中有害物质可分为两类:一类是气相化学物质,另一类是固相的烟尘,都是造成大气污染的主要物质。

1.1 气相化学物质的产生

燃煤产生的气相化学物质主要有SO X和NO X。

(1) SO X是由煤、粘土中的硫化物杂质在800 ℃左右被氧化所致。

在陶瓷生产中不仅燃烧的燃料中含有硫化物杂质,而且原料也有一些含硫的杂质,如:黄铁矿(FeS2)、Fe2(SO4)3、CaSO4、Na2SO4等。这些杂质存在于陶瓷坯体中,在烧成的过程中,要进行一系列氧化还原反应。

(2) NO X的产生类型有3种:

a、热力型NO X,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NO X被称为热力型NO X(T -NO X)。

b、燃料型NO X,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用下易产生NH3或HCN氧化生成NO X。

c、快速型NO X,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成的氮氧化物。快速型NO X生成量很少,可不予考虑。

1.2 固相烟尘的产生

煤被加热350~600 ℃时,大量释放出以碳氢化合物为主的挥发分,进入炉膛空间。但是在低温缺氧条件下,挥发分不可能正常燃烧,发生裂化、脱氢、叠合、环化而生成含碳量多的苯环物质——碳黑;不完全燃烧生成环烃物质——烟炱;还可能因还原反应而分解出游离的碳粒;由烟气带出的飞灰和未燃尽的煤炭颗粒微尘;这些物质总称烟尘。全世界每年约有1亿t烟尘排放到空气中,如不及时处理,不仅会污染环境,而且会损害人类的健康。

2 烟气脱硫(FGD)

陶瓷窑炉烟气中SO2的浓度在0.5%~1.0%,属于低浓度SO2烟气。因此采用传统的接触制酸法,经济和技术上难度很大。目前对于低浓度SO2烟气脱硫技术多种多样,按脱硫工艺可以分为干法、湿法和半干法;按生成物处置方法可以分为抛弃法、回收法和半回收法;按吸收剂的使用情况分为再生法和非再生法;以所采用的吸收剂又分为钙法、钠法、镁法、氨法、双碱法和水法等。以上分类方法各有自己的科学性和不足,本文以干法、湿法和半干法3大分类结合具体的方法加以说明。

2.1 湿法脱硫工艺

湿法烟气脱硫技术是烟气脱硫技术中最为成熟的一种技术,湿法脱硫的优点是硫氧化物的吸收反应速度;缺点是由于排烟温度降到60 °C左右,排烟的扩散效果差,需要大量的水。

2.1.1 石灰/石灰石——石膏法

这种方法在湿法中占有最主要的份额,是目前世界上最成熟、运行状况最稳定的脱硫工艺。利用石灰或石灰石作吸收剂,吸收净化烟气中的SO2,反应生成亚硫酸钙(CaSO3),再将这一产物氧化成石膏(CaSO4·2H2O)。

该工艺流程较复杂,需要专门的吸收剂制备车间、体积庞大的吸收塔氧化槽,投资较大,且有二次污染问题,但脱硫效率可达90%以上。

2.1.2 海水脱硫工艺

海水脱硫是近年来发展起来的一项新技术。该工艺利用天然的纯海水作为烟气中SO2的吸收剂,无需其它任何添加剂,也不产生任何废弃物,具有工艺简单、系统运行可靠、脱硫效率高等特点。

2.1.3 其它湿法工艺

除前述的传统方法外,还有MgO法、亚硫酸铵法、Wellman-Lord法、柠檬酸钠——磷酸钠法和千代田法、液相湿式生物还原法等。另外还有我国自主研发的技术,如:西安交通大学的液幕床式湿法脱硫技术、清华大学的液柱喷射式烟气脱硫系统、南京电力环境科学研究所的强化湿式石灰石烟气脱硫技术等,但都未得到完整的应用。

2.2 干法脱硫工艺

干法脱硫工艺的特点是,反应在无液相介入的完全干燥状态下进行,反应产物为干粉状。其主要优点是能处理大量的排烟,排出烟气的温度下降比较小,对烟囱周围地区来说,由于烟雾而引起的二次污染较少,用水量少。缺点是由于硫氧化物的吸收反应速度慢,因而排烟设备体积大,建设费用高。

2.2.1 荷电干式喷射脱硫法

该法的作用原理是,吸收剂以高速通过高压静电电晕充电区后,在其表面上形成静电荷,由于同种电荷相互排斥,使吸收剂颗粒很快在烟气中扩散,形成均匀的悬浮状态,从而增加与SO2反应的机会。此外由于离子的电晕,可增强其活性,缩短反应所需滞留时间,从而有效提高脱硫率。该法的优点是,脱硫工

艺简单有效,占地面积小,投资和运行成本低,因为是干法没有废水和腐蚀等问题;缺点是,脱硫率低,吸收剂利用率不足,维护较复杂。

2.2.2 电子束烟气脱硫技术

电子束烟气脱硫技术的基本原理是:燃煤烟气中的N2、O2和水蒸汽等,经过电子束照射后,吸收了大部分电子束能量,生成大量的反应活性极强的各种自由基如OH、O、HO2等。这些自由基可以氧化烟气中的SO2使之生成硫酸,再与事先注入的氨进行中和反应生成硫铵。

该工艺流程简单、运行维护方便,烟气负荷负载能力强,一次投资和运行费用低,无二次污染物产生,同时脱硫脱硝,脱硫率可达90%以上,系统简单、操作方便,对不同含硫量的烟气有较好的适应性。副产物硫酸铵和硝酸铵是可利用的氮肥实现了硫氮资源的综合利用。电子束烟气脱硫是靠电子束加速器产生高能电子的,因而需要大功率的电子枪,还需要防辐射屏蔽,且运行、维护技术要求高。

2.2.3 脉冲电晕放电烟气脱硫技术

脉冲电晕放电烟气脱硫技术是从电子束烟气脱硫技术发展而来的,其机制是依靠脉冲高压电源在普通反应器中形成等离子体,该法是利用等离子体产生的高能电子将HO-H及O-O键打开,使之成为自由基或活化粒子,这些自由基或活化粒子可与SO2及NO X反应。由于这些等离子体在常温下只提高电子的温度,而不提高离子的温度,故该法的能量效率比电子束法至少高2倍。此法可同时脱除烟气中的SO2、NO X及重金属,既具有电子束辐照法的全部优点,而且又大大降低了一次性投资。目前是具有良好应用前景和国内外广泛关注的技术。

2.3 半干法工艺

半干法烟气脱硫技术是把石灰乳雾滴喷入吸收塔,使其与烟气中的SO2反应生成CaSO3和CaSO4,由于烟气的加热作用,石灰乳中的水分很快蒸发,最终得到干燥状态的副产品。半干法脱硫工艺的特点是,反应在气、固、液三相中进行,利用烟气显热蒸发吸收液中的水分,使最终产物为干粉状,脱硫废渣一般抛弃处理。并且工艺流程简单、运行稳定可靠,投资较少,运行费用较低,电力消耗仅为湿法的25%~50%,脱硫效率可达80%~90%。但是,由于石灰作吸收剂,具有强烈的刺激性,在消化过程中会产生大量热量和蒸汽,会给人体和环境造成不良影响。

旋转喷雾干燥法就是一种半干法工艺,其原理是将30%的石灰浆(<100目)在高速旋转(12 000 r/min)的离心喷雾机作用下雾化成极细的雾滴,在吸收塔内与烟气中SO2反应生成CaSO3和CaSO4,同时雾滴被烟气显热干燥形成固体粉末,被除尘器收集。

3 烟气脱硝

目前国内氮氧化物的控制主要依靠低NO X燃烧控制技术 ,燃烧后的烟气脱硝技术在国内的研究和应用还相对较少。但随着国内近年来对氮氧化物污染的重视和相关法律法规的出台及实施,我国对烟气脱硝技术的研究加大。烟气脱硝技术有气相反应法、吸附法、液膜法、微生物法、电化学法等几类。

3.1 气相反应法

3.1.1 等离子体法

等离子体法有:电子束照射法、脉冲电晕法、直流电晕法、介质阻挡放电法、表面放电法等。

电子束照射法(EBA)和脉冲电晕法在前面烟气脱硫技术中均有介绍,它们是可以同时脱硫脱硝的技术,而且脱硝的有效性均比较高。但是,由于设备结构复杂,使用寿命短以及能耗过大等不足,使两种技术还只是停留在实验室阶段,离陶瓷工业的烟气治理还有一定距离。

3.1.2 还原法

还原法目前主要有:选择性催化还原法、选择性非催化性还原法和炽热碳还原法,是在催化或非催化条件下,用NH3、C等还原剂将NO X还原为无害N2的方法。

(1)选择性催化还原法(Selective Catalytic Reduction,SCR)

目前世界上工业应用最广的脱氮技术。它的基本原理是在适当的温度和催化剂存在下,以NH3为还原气体,利用氨的选择性,优先使 NO X还原。它的主反应如式(6)和式(7)。也可能发生氨的氧化反应,如式(8)和式(9)。

4NO+4NH3+O2→4N2+6H2O (6)

6NO2+8NH3→7N2+12H2O (7)

2NH3+2O2→N2O+3H2O (8)

4NH3+3O2→2N2+6H2O (9)

温度较低时还原反应占主导地位,所以要严格控制反应器的床温。反应的催化剂包括Pt-Rh、Pd等贵金属、碱金属氧化物或沸石等,脱硝率能达到90%以上。防止催化剂失效和控制尾气中的NH3残留是此技术的关键问题。而且该工艺设备投资大,所用催化剂昂贵,为大多数发展中国家所难以承受,同时存在氨泄漏、设备易腐蚀、易生成硫酸铵等问题。

(2)选择性非催化还原法(Selective Noncatalytic Reduction,SNCR)

此法的特点在于不使用催化剂,而在较高的温度下(850~1050 ℃)产生活化能,以NH3或脲基化合物(如尿素)作为还原剂使NO X转化为N2。主要反应如下:

6NO+4NH3→5N2+6H2O (10)

2NO+CO(NH2 )2+1/2O2→2N2+CO2+2H2O (11)相比SCR该技术具有实施简单,系统费用低廉的优点;但其脱硝率相对较低,氨消耗量大,SNCR系统逃逸的NH3不仅会使烟气中的飞灰容易沉积在锅炉尾部的受热面上,而且烟气中NH3遇SO3会产生(NH4)2SO4,容易造成空气预热器堵塞,并有腐蚀的危险。值得注意的是,近年的研究表明,用尿素作为还原剂时NO X会转化N2O,N2O会破坏大气平流层中的臭氧,除此之外,N2O还被认为会产生温室效应,因此产生N2O问题已引起人们的重视。

(3) SNCR与SCR混合烟气脱硝技术

SNCR与SCR混合烟气脱硝技术是把SNCR工艺的还原剂喷入炉膛技术同SCR工艺利用逃逸氨进行催化反应的技术结合起来,进一步脱除NO X。它是把SNCR工艺的低费用特点同SCR工艺的高效率及低的氨逃逸率进行有效结合。

3.1.3 低温常压等离子体分解法

低温常压等离子体分解法,利用超高压窄脉冲电晕放电产生的高能活性粒子撞击NO X分子,使其化学链断裂分解为O2和N2的方法。

3.2 吸附法

吸附法脱除NO X,常用的吸附剂有分子筛、活性炭、天然沸石、硅胶及泥煤等。其中有些吸收剂如硅胶、分子筛、活性炭等,兼有催化的性能,能将废气中的NO催化氧化成NO2,然后可用水或碱吸收而得以回收。吸附法脱硝效率高,能吸收NO X,但是因吸附量小,吸附剂用量多,设备庞大,再生频繁等原因,应用不广泛。

3.3 液膜法

液膜法净化烟气是美国能源部Pittsburgh能源技术中心(PETC)开发的,其原理是利用液体对气体的选择性吸收,使低浓度的气体在液相中富集。用于净化烟气的液膜不仅需要有选择性,同时对气体还必须具有良好的渗透性。研究表明25 ℃时纯水的渗透性最好,其次是NaHSO4、NaHSO3的水溶液。

3.4 微生物法

微生物净化含NO X废气的原理为:脱氮菌在有外加碳源的情况下,利用NO X作为氮源NO X还原成无害的N2,而脱氮菌本身得以生长繁殖。该项技术设备要求简单、投资及运行费用低且无二次污染,因而成为世界各国工业废气净化的热点课题之一。目前国内外微生物脱硝技术尚处于初始研究阶段。其原因一方面是由于对脱氮微生物的基础研究不够,致使工业放大有技术上的困难;另一方面,由于烟气的气量通常很大,且烟气中NO X的主要形式NO又基本不溶于水,无法进入液相介质中被微生物所转化,再加上微生物吸附NO的能力差,导致NO X的实际净化率较低。因此,目前对于陶瓷行业没有太大实际意义,今后微生物脱硝技术研究的关键是加强高效廉价吸附还原NO X的功能菌的选育和相关微生物固定载体及相关放大技术的研究。

3.5 电化学法

电化学法利用电子作为洁净的氧化还原反应参与物,直接地或间接地进行化学物质间的转换,不需要像化学过程中那样大量应用氧化剂或还原剂,且氧化剂或还原剂可以再生。Kleifges等采用连二硫酸盐S2O42

-作为媒质将NO还原为低价氮化合物,连二硫酸盐本身氧化为HSO

3-或SO

3

-,然后电解还原HSO

3

-或SO

3

-再生为连二硫酸盐。该法能以90%以上的转化率将NO转化为水溶性物质。但氧化还原媒质S

2

O42-是在电

解槽的阴极室中电化学还原HSO3-来得到的,阳极室中发生的反应未加以利用,不利于合理利用资源与降低能耗。

此外,还有微波技术、TiO2光催化法、氯酸氧化法等方法。

4 烟气除尘

我国烟气除尘装置制造技术经历了四个发展阶段,第一阶段主要是采用“干式旋风除尘装置”;第二阶段发展为“文丘里水膜除尘器”;第三阶段为“高压静电除尘”;第四阶段发展为“袋式除尘”。

干式除尘结构简单,投资少,除尘效率高,操作方便,但易造成二次污染;文丘里水膜除尘器是湿式除尘,除尘效率高,取材方便,抗腐蚀,耐磨性好,但需要一套灰水处理装置。若采用循环水闭式循环,其pH会越来越低,系统需要采取防腐措施。电除尘除尘效率高,处理烟气量大,阻力低,但其效率受粉尘的静电性能影响,外型庞大,投资昂贵,运行维护要求高。袋式除尘已成为一种新型高效除尘方式。发达国家无论工业锅炉和电站锅炉的烟气除尘都广泛采用袋式除尘,其除尘效率达到99%以上,是一种新型高效的除尘方式,但是它滤袋的寿命还有待提高。

5 结语

在我国,烟气的除尘、脱硫都有了比较成熟的技术,而脱硝技术的研究则处于研究试验阶段。从发展趋势来看如果不对NO X采取足够的重视NO X完全有可能取代SO2成为大气污染的主要物质。北京2008年即将主办奥运会,随着人们对环境的更加重视,以及科学发展观和构建社会主义和谐社会的要求,以后的烟气处理应该是脱硫、脱硝和除尘一体化的。国内外已经有学者在进行这方面的研究,整个陶瓷行业也应该顺应这一潮流,积极开发这种一体化装置。

《建筑卫生陶瓷工业窑炉节能技术要求》

《建筑卫生陶瓷工业窑炉节能技术要求》 编制说明 (征求意见稿) 《建筑卫生陶瓷工业窑炉节能技术要求》协会标准工作组 二零二零年十一月

(一)工作简况,包括任务来源、协作单位、主要工作过程、国家标准主要起草人及其所做的工作等 1.任务来源 根据中国建筑材料联合会《2020年第九批协会标准制定计划的通知》(中建材联标发[2020]70号)的要求,《建筑卫生陶瓷工业窑炉节能技术要求》被列为制定项目,统一纳入中国建筑材料协会标准体系,项目编号为:2020-79-xbjh,该标准由中国建材检验认证集团(陕西)有限公司负责起草,并牵头组织相关单位共同完成。协会标准制定完成后将由中国建筑材料联合会发布。 2.制定的目的和意义 我国建筑卫生陶瓷产量已连续多年位居世界第一,产量已占世界总产量半壁江山,而该行业又具有“高能耗、高排放”的问题。目前,建陶行业仍是一个典型的高能耗行业,能耗中约有60%来自烧成工序。窑炉是该行业能耗最多的热工设备,每年消耗着大量的资源。建筑卫生陶瓷窑炉年耗能折合标煤超过6000万吨,为陶瓷行业之首,日用陶瓷窑炉年耗能超过1000万吨标准煤,其他陶瓷窑炉年耗能近3000万吨标准煤。此外,建陶工业窑炉烧成过程中会排放大量的废烟气,烟气中含有大量的颗粒物、氮化物、氧化物和硫化物,加重了空气中“雾霾”的形成。据统计,陶瓷工业每年约产生NOx150万吨以上,SO2150万吨以上,粉尘80万吨以上,重金属及其化合物等污染物。 当前,国内外在建筑卫生陶瓷工业窑炉节能领域标准化方面研究较为欠缺,国内外窑炉节能技术水平存在一定差距。从各国实际情况中可发现,国外建陶工业窑炉发达国家如意大利、德国和日本等国家的陶瓷窑炉节能技术水平高于我国,窑炉能效利用率高于国内。如我国建陶工业窑炉的热效率与上述国家相比存在着一定差距,如美国达到50%以上,而国内窑炉厂商较好产品能达到40%以上,而一些中小型企业生产的产品在30%左右。与此同时,国内外在建陶工业窑炉节能领域标准化方面研究较为欠缺,尤其是国内此类相关标准缺乏。正因为缺乏相关标准的约束指引,间接促使国内建陶工业窑炉生产主要侧重于用户的需求进行“定制化”开发,偏向于产能的实现。一定程度上造成了建陶工业窑炉整体能耗高,节能意识差和行业无序发展等问题。因此,提出标准《建筑卫生陶瓷工业窑炉节能技术要求》,来提高该行业工业窑炉的热效率,为提升该行业工业窑

陶瓷工业窑炉煤改气节能技术改造可行性研究报告

目录 第一章总论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(2)第二章项目提出的背景和必要性(6)第三章生产工艺流程和节能减排改造方案(12)第四章建设规模与建设方案(20)第五章节能分析评价(26)第六章环境保护与减排效益(28)第七章劳动安全卫生与消防(32)第八章组织机构与劳动定员(35)第九章工程实施进度(38)第十章投资估算与资金筹措(39)第十一章财务评价(42)第十二章社会评价(49)第十三章结论与意见(51)附表及附件

第一章总论 1.1项目概况 1.1.1项目名称:陶瓷窑炉煤改气节能项目 1.1.2 建设单位:景德镇xxxx陶瓷集团有限公司 1.1.4 建设规模和主要建设内容 本项目不改变原有生产能力,主要是将原有8条陶瓷煤窑进行改造,实现“三个改变”:a.改变燃料结构,改燃煤为烧气;b.改变窑炉结构,由窑车式高耗能煤烧窑炉改造为现代节能型辊道式窑炉;c.改变烧成方式,将匣装隔焰烧炼改为无匣裸烧新工艺。根据产品品种的不同对原有8条窑炉进行合理调配改建。其中5条改为燃气辊道窑;3条改成12座燃气6米3梭式窑。 窑炉年工作日为330天,年总产量为5600万件。 1.1.5 总投资和资金筹措 估算总投资5246万元。其中:固定资产投资5121.7 万元,建设期利息124.3万元。 资金来源为:申请银行贷款2000万元,自筹3246万元。 1.1.6 建设期限:18个月。 1.1.7 项目主要效益预测 项目建成后,节能减排效果好。节约能源折合标准煤19140吨。减少排放烟尘2975吨/年;二氧化硫432吨/年;煤渣11572吨/年。

陶瓷制做工艺流程

陶瓷制做工艺流程 制模 雕型(厡形阶段) 木擳土(深灰色):是一种水性土,质地较细,可做不规则的雕模石膏(白色):质地较硬,适合作比较工整的雕模 油土(土黄色):不需保湿,常用来做poly的雕模或是厚度较薄易龟裂的浮雕。 此阶段须注意: 原型厚薄均匀,比例合理才能避免日后有开裂的问题浮雕之深浅、角度需适中便于分片,如有利角将造成卡模。转角要圆,避免利角造成开裂。 原型会比图稿尺寸大或高,由于每一种土因烧成温度不同都有其收缩比的关系陶土分类 烧成温度越高收缩比越高吸水率越低,与硬度也成正比 分片(样品模) 利用石膏将原形翻制成模具。 此阶段须注意 为避免模线问题,分片数愈少越好,分片时也须注意每片之间隙不可过大。 若曾上过钾肥皂(是一种隔离剂)需清洗干净,以避免日后发生针孔、气泡瑕疵。包case-意指大货生产时,为复制子模所需而翻制的母模(阳模,材质为超硬石膏) 利用母模可以再重复分片,即可产出后续许多子模。 此阶段须注意: 一个母模的寿命约3年,约可制造70-80个子模。 一个子模约可生产60~80个产品。(视纹路之复杂程度而定) 由于不断的重复生产使得石膏的吸水率越来越低,故一日中,灌制泥胚的时间一件比一件长。

为避免模线粗大,包case 时须注意,模具必须密合以避免泥浆由未密合之模线渗出造成模线太粗。 敲模即将模具分开。 成型- 分为以下数种方式: 1、手灌浆利用石膏模吸水特性,将接触石膏模壁面的泥浆水分吸干形成泥胚。多用于雕型比较立体或不规则的器型 此阶段注意事项第一次灌浆约静置25 分钟,即可将泥浆倒出。第二次灌浆之后静置时间需陆续增长,此因石膏吸水特性会因使用率的频繁而陆续降低,所以时间需再加长。一个子模一天大约可灌12 个就要休息。 13英寸以上的产品壁厚约为6~7mm—般大小的璧厚约留4mm 灌浆时须注意模具的密合度,以避免膜线或变形的问题。 2、手工成型分为手拉胚及手工雕塑,多用于较高级或线条较多的产品。 3、高压注浆利用高压灌注机将泥浆由上往下冲入模具中,所需时间较短,故产量高 (与手灌浆比较)。 只能用于上下开模的产品(深度不能太深)。例如:肥皂盘、餐盘。垃圾桶、漱口杯、或其它深底的产品不适用此种方式生产。(深度不可太深) 此阶段须注意: 表面凹陷:由于脱胚时泥浆未干形成表面凹陷。注浆缝合线- 两浆汇流时的线。 4、滚压利用不绣钢制模具,上模旋转移动将泥块滚制成型。多用于浅口对称器型、盘子、浅口碗等。 此阶段注意事项避免模具滚压时形成之波浪纹(泥纹)。由于模具费用较高所以多为大量生产时才会开模。 5、冲压 利用冲压不绣钢模具机器高速冲击泥块成型。多用于对称对象等基本器型,产量高(与手灌浆比较)。 此阶段注意事项由于模具费用较高所以多为大量生产时才会开模。变形:脱胚未干,或取出方式疏忽导致变形。 针孔:泥胚抽真空不彻底,残留空气形成针孔。或是模具内有石膏屑、灰尘,或隔离剂未清理干净导致泥胚于该点无法吸附而形成气泡。 变形:大盘类若底部脚小不够支撑盘子重量,可调整盘边之倾斜度可避免此问题。 整修、连接、打孔 连接附件接合点要与主体的弧度一致,并且接触面积要适当、干湿度要一致使其收缩比相同,以避免素烧时开裂。 对于较大的中空附件需让空气能顺利排出再接合。切边 将利角洗圆滑,避免开裂。(太利角因张力因素会再素烧时开裂)避免泥胚太湿时整修,使得各部位收缩比不均造成开裂。

陶瓷窑炉的分类

陶瓷窑炉的分类及特点 一、陶瓷窑炉分类 1、按构造型式分:梭式窑、隧道窑、辊道窑、推板窑、圆型(转盘窑)、钟罩窑 2、按供热方式分:煤窑、柴窑、电窑、燃气窑。煤窑、柴窑已被淘汰,清洁能源窑炉(电、燃气)已走向成熟阶段。 3、按烧成温度分:高温窑、中温窑、低温窑。 二、陶瓷窑炉介绍 1、梭式窑:是间歇烧成的窑,跟火柴盒的结构类似,窑车推进窑内烧成,烧完了再拉出来,卸下烧好的陶瓷。窑车如同梭子,故而称为梭式窑。 2、隧道窑:一般是一条长的直线形隧道,其两侧及顶部有固定的墙壁及拱顶,底部铺设的轨道上运行着窑车。燃烧设备设在隧道窑的中部两侧,构成了固定的高温带,烧成带,燃烧产生的高温烟气在隧道窑前端烟囱或引风机的作用下,沿着隧道向窑头方向流动,同时逐步地预热进入窑内的制品,这一段构成了隧道窑的预热带。在隧道窑的窑尾鼓入冷风,冷却隧道窑内后一段的制品,鼓入的冷风流经制品而被加热后,再抽出送入干燥器作为干燥生坯的热源,这一段便构成了隧道窑的冷却带。 3、辊道窑:辊道窑是连续烧成的窑,以转动的辊子作为坯体运载工具的隧道窑。陶瓷产品放置在许多条间隔很密的水平耐火辊上,靠辊子的转动使陶瓷从窑头传送到窑尾,故而称为辊道窑。 4、倒焰窑:燃烧所产生的火焰都从燃烧室的喷火口上行至窑顶,由于窑顶是密封的,火焰不能继续上行,在走投无路的情况下,就被烟囱的抽力拉向下行,经过匣钵柱的间隙,自窑底吸火孔进支烟道,主烟道,最后由烟囱排出。 5、推板窑:又称推板式隧道窑,是一种连续式加热烧结设备,按照烧结产品的工艺要求,布置所需的温区及功率,组成设备的热工部分,满足产品对热量的需求。把烧结产品直接或间接放在耐高温、耐磨擦的推板上,由推进系统按照产品的工艺要求对放置在推板上产品进行移动,在炉膛中完成产品的烧结过程。 三、陶瓷窑炉选择 1、对于日产量在20M3以下,且产品种类较多,烧成温度各异,由于其本身产量难以满足隧道窑的生产量,推荐采用快速烧成梭式窑。 2、对于日产量等于或大于20M3,但其釉色复杂,如窑变结晶釉需一定的恒温及冷却时间,可采用传统梭式窑或电热梭式窑;如果窑变釉或结晶釉只是部分,可以选用快速窑,快速窑不是只快,也可以放慢。慢,温差可控制很小。但慢的节能效果差。 3、对产量较大、高度较高、重量较重、温度较高、釉色单一,可选用台车式隧道窑。如高温日用陶瓷,卫浴陶瓷。 4、对温度在1300℃以内,产量较大的艺术陶瓷、日用陶瓷、卫浴陶瓷,建议采用辊道窑,或大型快速梭式窑。

工业窑炉节能技术措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.工业窑炉节能技术措施正 式版

工业窑炉节能技术措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 工业窑炉的能好受许多方面因素的影响,但是节能的主要措施一般都离不开优化设计、改进设备、回收余热利用、加强检测控制的生产管理等方面。 工业窑炉各项节能改造所节约的是煤炭和石油资源,还可以获得较好的温室气体CO2的减排效果,有益于缓解全球气候变暖,还可以减少酸雨气体SO2和NOX与总悬浮颗粒物的排放,有利于改善地区的生态环境。 工业窑炉节能改造的内容很多,主要有热源改造、燃烧系统改造、窑炉结构改

造、窑炉保温改造、烟气余热回收利用以及控制系统节能改造等项。 一、热平衡测试 节能必须有科学的计量对比测试方法。目前公认的测试方法是热平衡测试。通过对窑炉的现场热工测定,全面地了解窑炉的热工过程,计算窑炉收入和支出的能量、供给能量、有效能量及损失能量的平衡关系,从而了解炉窑的热工状况,判断其能量有效利用程度,查明各项损失的分布情况,分析炉窑运行工况,及时调整运行工艺参数,使其达到运行的最佳状态,同时找出节约能源的有效途径,明确节能方向,为提高窑炉等能源利用效率提供科学依据,达到节能的目的。

陶瓷窑炉烟气处理技术

陶瓷窑炉烟气处理技术 随着国民经济的不断发展,我国陶瓷工业也得到了迅猛发展。2005年我国陶瓷产量:日用陶瓷175亿件,建筑陶瓷35 m2,卫生陶瓷约9 000万件,产量均居世界第一,约占世界的2/3,形势一片大好。但其带来的负面影响——窑炉烟气污染也越来越突出。 我国大气中90%的SO x、85%的CO2、80%的RO x(粉尘)和50%的NO x污染均来自陶瓷窑炉、蒸汽锅炉以及其他各种工业窑炉[1]。据资料统计,目前仅在日用陶瓷、建筑陶瓷生产领域中就有3 000余座燃煤窑炉,达到窑炉总数的70%,因此处理陶瓷窑炉烟气污染就成为了目前应该研究的方向。 笔者结合陶瓷窑炉烟气的污染物形成机制,对目前窑炉烟气的处理技术和发展方向进行了综述。 1 陶瓷窑炉烟气污染产生的机制 陶瓷窑炉烟气中有害物质可分为两类:一类是气相化学物质,另一类是固相的烟尘,都是造成大气污染的主要物质。 1.1 气相化学物质的产生 燃煤产生的气相化学物质主要有SO X和NO X。 (1) SO X是由煤、粘土中的硫化物杂质在800 ℃左右被氧化所致。 在陶瓷生产中不仅燃烧的燃料中含有硫化物杂质,而且原料也有一些含硫的杂质,如:黄铁矿(FeS2)、Fe2(SO4)3、CaSO4、Na2SO4等。这些杂质存在于陶瓷坯体中,在烧成的过程中,要进行一系列氧化还原反应。 (2) NO X的产生类型有3种: a、热力型NO X,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NO X被称为热力型NO X(T -NO X)。 b、燃料型NO X,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用下易产生NH3或HCN氧化生成NO X。 c、快速型NO X,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成的氮氧化物。快速型NO X生成量很少,可不予考虑。 1.2 固相烟尘的产生 煤被加热350~600 ℃时,大量释放出以碳氢化合物为主的挥发分,进入炉膛空间。但是在低温缺氧条件下,挥发分不可能正常燃烧,发生裂化、脱氢、叠合、环化而生成含碳量多的苯环物质——碳黑;不完全燃烧生成环烃物质——烟炱;还可能因还原反应而分解出游离的碳粒;由烟气带出的飞灰和未燃尽的煤炭颗粒微尘;这些物质总称烟尘。全世界每年约有1亿t烟尘排放到空气中,如不及时处理,不仅会污染环境,而且会损害人类的健康。 2 烟气脱硫(FGD)

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

35种废气处理工艺流程图要点

35种废气处理工艺流程图 简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分,达到保护环境、净化空气的一种环保设备。 处理原理:

稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。

多介质催化氧化工艺 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

节能技术(重点)

节能技术 第一章热能、电能利用节能技术:第一、锅炉节能技术 一、(1)加强燃料管理与实现动力配煤,节约用煤:动力配煤根据用户对煤质的特定要求,将不同种类、不同性质的若干种煤按照一定的比例,经过筛选、破碎掺配加工成混煤,使其成为认为加工的“新煤种”。这种“新煤种”的化学组成、物理特性和燃煤特性与各原单一煤种均有不同,合理配比可以达到改善性质、特性互补、劣煤优用、有利燃烧、减少污染物排放的目的。(2)加强水质管理,减少结垢和排污:锅炉水处理会减少锅炉结垢,降低排污热损失。 二、(1)锅炉节能的目的:主要是提高锅炉热效率,降低燃料消耗,减少热损失和污染物。(2)锅炉常用分类方法:不同的分类方法可以将锅炉分成不同的类别,各种分类方法分成的锅炉类别不能混淆。按使用燃料种类不同分为燃煤锅炉、燃油锅炉、燃气锅炉等;按蒸发受热面中工质流动的方式可分为自然循环锅炉、强制循环锅炉和直流锅炉;按主蒸汽压力高低可分为低压锅炉、中压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉、超临界压力锅炉和超超临界压力锅炉等;按燃烧方式不同可分为层燃炉、室燃炉、流化床炉和旋风炉。(3)加强运行调整,减少各项热损失 锅炉运行时存在着种种热损失,找出引起热损失的原因,提出减少各项热损失的措施,就可以提高锅炉热效率,以节约能源。锅炉输入热力主要来源于燃料燃烧放出的热量。为了便于分析,将燃料在锅炉内燃烧输入的热量分为两部分,一部分为锅炉的有效利用热,其余的即为各项热损失。锅炉的热效率表示锅炉设备有效利用热量Q1与输入热量Qr之比的百分数,即:η= Q1/Q r×100%。为了确定锅炉的热效率,就需要建立在正常运行工况下,锅炉热量的收支平衡关系,通常称为锅炉的热平衡。在锅炉机组稳定运行的热力状态下,1Kg燃料带入锅炉内的热量、锅炉的有效利用热量和热损失之间有如下热平衡关系。Qr=Q1+Q2+Q3+Q4+Q5+Q6 KJ/Kg将上式两边都除以Qr,则锅炉的热平衡可以用占输入热量的百分比来比表示。100%=q1+q2+q3+q4+q5+q6显然,要提高锅炉热效率,必须设法降低各项热损失。 1、减少排烟热损失q2.排烟热损失时指高温烟气排入大气而损失的热量。排烟损失由尾部排烟温度、烟气量与漏入系统内的冷空气量综合决定的。因此,降低排烟损失,就要减少炉膛的空气系数和各烟道的漏风量以及降低排烟温度。 2、减少气体未完全燃烧热损失q3。对燃煤锅炉而言,这项损失主要取决于排烟处的一氧化碳含量和空气系数。 3、减少固体未完全燃烧热损失q4。未燃尽而残留的固定碳常存在于灰渣、飞灰与落煤之中。 4、减少散热损失q5.散热损失大小取决于散热表面的面积、温度和环境条件。因此,散热损失与锅炉容量有关,也与锅炉有无省煤器、空气预热器等受热面有关。锅炉容量越大,其与外界接触的面积相对地变小,散热损失减小。通常小型锅炉的散热损失较大,有尾部受热面(如省煤器、空气预热器)的锅炉散热损失较大。 5、减少灰渣物理热损失q6。灰渣物理热损失是指炉渣所带走的热损失。通常层燃炉的灰渣量较大而且温度高,需要考虑灰渣物理热损失。 (4)燃煤锅炉的两个主要节能措施1、运行调整。运行调整主要是降低排烟损失和合理配风。锅炉降低排烟损失,合理配风的目标,就是要根据负荷要求,恰当地供给燃料量,不断寻求并力争控制最佳空气系数,达到完全燃烧。 在理论上达到完全燃烧所需要的空气量,称为理论空气量。但在实际条件下,根据燃料品种、燃烧方式及控制技术的优劣,往往需要多供给一些空气量,称为实际空气量。实际空气量与理论空气量之比,称为空气系数。 但是最佳空气系数无法从理论上进行准确计算,只能依靠试验研究和实践经验来优选。通常对于气体燃料由于它能与助燃空气达到良好的混合,较小的空气系数便可以实现完全燃烧;对于固体燃料,因为它与助燃空气在表面接触燃烧,不能直接进入内部混合,空气系数相对较大;对于液体燃料,一般采用雾化燃烧,雾化微粒与空气混合比固体燃料好,但比气体燃料差,空气系数介于固体和气体燃料之间。即使同一种燃料,由于可燃成分、燃烧方式与控制技术的差异,空气系数也不完全相同。2、节能改造。节能改造主要包括六条措施:給煤装置改造;炉拱改造;燃烧系统改造;层燃锅炉改造成循环流化床锅炉;控制系统改造;采用节能新设备。 第二、工业窑炉节能技术 一、在工业生产中,利用燃料燃烧产生的热量,或将电能转化为热能,从而实现对工件或物料进行熔炼、加热、烘干、烧结、裂解和蒸馏等各种加工工艺所用的热工设备,称为工业窑炉。工业窑炉主要由炉衬、炉架、供热装置(如燃烧装置、电加热元件)、预热器、炉前管道、排烟系统、炉用机械等部分组成。 二、(一)工业窑炉的分类:工业窑炉的种类繁多,用途各异。实际应用中一般是按其某些主要特征来进行分类的。按工艺特点分为加热炉和熔炼炉;按所使用能源种类分为燃料炉和电加热炉;按工作温度高低分为高温炉、中温炉、低温炉;按热工操作制度分为连续式工作窑炉和间歇式工作窑炉;按炉型特点分为室燃炉、步进炉、竖炉等;按工作制度分为辐射式工作制度窑炉、对流式工作制度窑炉和层式工作制度窑炉。 (二)工业窑炉节能改造的主要内容七个方面:热源改造、燃烧系统改造、窑炉结构改造、窑炉保温改造、烟气余热

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

工业窑炉节能技术

工业窑炉节能技术 姓名:张毅 专业:动力机械及工程

一绪论 1.1采用先进技术,使工业窑炉不断改造升级 窑炉的更新改造应该以优质、高效、节能、环保、安全、智能化、多工种、工序联动及自动化为主。水泥预分解技术是最具现代化、规模化的水泥生产方法,在世界各国被普遍采用,成为当代水泥生产方式的主流。该技术以悬浮预热和预分解为核心,利用现代流体力学、燃烧动力学、反应动力学、热工学、计算流体力学数值预测技术、粉体工程学和工程测试技术等现代科学理论和技术,并采用计算机信息及网络化技术,具有高效、优质、节能、节约资源等特点,符合可持续发展的要求。 在工业窑炉燃烧技术节能方面,通过将高温空气燃烧技术、富氧燃烧技术、脉冲燃烧节能技术、水煤浆燃烧技术和流化床燃烧技术等先进燃烧技术应用于工业锅炉中,可显著提高燃烧热效率。 2.1 推进工业窑炉余压热利用 我国工业窑炉主要以煤炭为燃料,以电能为动力,是典型的耗能大户。一般工业窑炉烟气带走的热量占燃料炉总供热量的30%~70%,充分回收烟气余热是节能的主要途径。通常烟气余热利用途径有:1)装设预热器,利用烟气预热助燃空气和燃料;2)装设余热锅炉,生产热水或是蒸汽,以供生产或生活;3)利用烟气作为低温炉的热源或用来预热冷的工件或炉料。 二工业窑炉节能基本原理 2.1 工业窑炉的分类 工业窑炉是指加热或熔化金属或非金属的装置而言,加热或熔化金属的装置称为工业炉,加热或熔化非金属的装置称为窑炉。工业窑炉是工业加热的关键设备,同时工业窑炉又是高能耗设备。目前,全国工业窑炉年能耗约占总能耗的25%,占工业总能耗的60%。目前工业窑炉根据行业分类主要如图2.1.

工业窑炉简介

目录 目录 (1) 工业炉窑简介 (2) 一、工业窑炉简述: (2) 二、工业炉窑历史、现状 (3) 三、行业发展趋势 (4) 四、窑炉的工作原理、参数、工艺条件 (4) 4.1原理 (4) 4.2工业窑炉的参数 (5) 4.3工业窑炉的工艺条件 (6) 五、工业窑炉节能现状 (6) 5.1 热源改造,燃烧系统改造 (6) 5.2 窑炉结构改造 (7) 5.3 余热回收与利用 (10) 5.4 控制系统节能改造 (12)

工业炉窑简介 一、工业窑炉简述: 窑炉是用耐火材料砌成的用以煅烧物料或烧成制品的设备。按煅烧物料品种可分为陶瓷窑、水泥窑、玻璃窑、搪瓷窑、石灰窑等。前者按操作方法可分为连续窑(隧道窑)、半连续窑和间歇窑。按热原可分为火焰窑和电热窑。按热源面向坯体状况可分为明焰窑、隔焰窑和半隔焰窑。按坯体运载工具可分为有窑车窑、推板窑、辊底窑(辊道窑)、输送带窑,步进梁式窑和气垫窑等。按通道数目可分为单通道窑、双通道窑和多通道窑。一般大型窑炉燃料多为重油,轻柴油或煤气、天然气。窑炉通常由窑室、燃烧设备、通风设备,输送设备等四部分组成。电窑多半以电炉丝、硅碳棒或二硅化钼作为发热元件。其结构较为简单,操作方便。此外,还有多种气氛窑等。 在具体行业,窑炉还有更多细分类型,如水泥回转窑、玻璃池窑、钢铁的高炉和转炉,化工行业的一些设备也可归为窑炉。但通常意义上的工业窑炉,范围主要指金属和无机材料的煅烧设备。 窑炉大致分为箱式、井式、梭式、网带式、回转式、窑车式、推板式隧道电阻炉、真空炉、气体保护炉、超高温管式推板炉(碳管炉)、钨钼粉焙烧炉、还原炉等各种高、中、低温工业窑炉,工作温度200~2500℃。可用于ZnO压敏电阻器、避雷器阀片、结构陶瓷、纺织陶瓷、PTC&NTC热敏电阻器、电子陶瓷滤波器、片式电容、瓷介电容、厚膜

日用瓷与建筑陶瓷生产工艺流程

日用陶瓷与建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧

密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。 粘土通常分为: (1)高岭土——也称瓷土,为高纯度粘土,烧成后呈白色,主要用于制造瓷器。 (2)陶土——也称微晶高岭土,较纯净,烧成后略呈浅灰色,主要用于制造陶器。 (3)砂质粘土——含有多量细砂、尘土、有机物、铁化物等,是制造普通砖瓦的原料。 (4)耐火粘土——也称耐火泥,此种粘土含杂质较少,熔剂大

VOCs常见废气处理工艺方案

1.生物除臭工艺 BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42— 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细

菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) BCE系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。 设备操作简单实现自动控制 工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。排放产物人畜无害,属环境友好性技术,无二次污染。 2.低温等离子体技术 低温等离子体除臭设备适用行业

工业窑炉节能技术

第二节工业窑炉节能技术 一、概述 在工业生产中,利用燃料燃烧产生的热量,或将电能转化为热能,从而买现对工件或物料进行熔炼、加热、烘干、烧结、裂解和蒸馏等各种加工工艺所用的热工设备,称为工业炉窑。工业窑炉主要由炉衬、炉架、供热装置(如燃烧装置、电加热元件)、预热器、炉前管道、排烟系统、炉用机械等部分组成。 目前,工业炉窑广泛应用于国民经济各行各业,如冶金、建材、化工、轻工、食品和陶瓷等行业。其品种多、耗能高、影响大,是工业加热的关键设备。其加热技术的发展与高效节能技术的采用,对于提高产品质量、降低生产成本、合理利用能源、改善劳动条件、实现文明生产等都有很大影响。 工业窑炉的类型繁多,在不同的行业需要满足不同的应用背景和生产工艺要求。工业窑炉一般应满足如下要求: (1)炉温、气氛易于控制,保证热加工产品质量达到工艺要求; (2)炉子生产率高; (3)热效率高,单位产品能耗低; (4)使用寿命长,砌筑和维护方便,筑炉材料消耗少; (5)机械化、自动化程度高; (6)基建投资少,占地面积小月、便于布置; (7)对环境污染少,劳动条件好。 在实际应用中,应根据不同的工业窑炉和具体生产工艺要求,从设计、施工、运行操作和维护管理等各方面综合考虑,力求尽可能达到上述的基本要求。 目前,我国工业窑炉年耗煤达3亿多吨,约占我国工业用煤的40%。水泥、墙体材料窑炉每年消耗煤炭约2.24亿t,其中水泥窑约7 800座,年耗煤1.6亿t,平均能效比国外先进水平低20%以上;墙体材料窑炉约10万座,年耗煤6 400万t,平均能效比国外先进水平低30%以上。钢铁工业窑炉每年消耗煤炭约6 600万t,其中球团工序回转窑生产线20多条,平均能效比国外先进水平低50%以上;石灰热工窑炉约350座,平均能效比国外先进水平低10%;耐火材料热工窑炉约1 900余座,平均能效比国外先进水平低10%~20%。 我国工业窑炉存在的主要问题是:技术水平低,装备陈旧落后、规模小;能耗高,大部分缺乏除尘脱硫污染控制设施,污染严重;运行管理水平低,管理粗放。 我国工业窑炉的节能潜力巨大,例如:钢铁厂余热资源据估计相当于1 000多万吨标准煤,其中65%是可以回收的,而目前只回收了总量的10%,仍有约500多万吨标准煤的能量可以回收利用。因此,如果全国的工业窑炉能够平均节能10%,则年节约的能源相当于1亿tee。 随着全球经济、资源和环境一体化趋势的发展,我国的工业炉窑技术及装置水平面临极

陶瓷工业窑炉能耗现状及节能技术

陶瓷工业窑炉能耗现状及节能技术 一.陶瓷工业窑炉概况 陶瓷工业窑炉按样式分:辊道窑、隧道窑、梭式窑。按热源分:燃油窑、燃气窑、电窑、微波窑。陶瓷产品主要分为:建筑陶瓷、日用陶瓷、卫生陶瓷、特种陶瓷。 建筑陶瓷具有薄、平、规则的特点,全部采用辊道窑快速烧成。日用陶瓷根据产品的各自特点,小而薄的可采用辊道窑烧成;大而不规则的则采用隧道窑烧成。卫生陶瓷大多体型大,不规则,厚度不一多采用隧道窑或梭式窑生产。特种陶瓷根据产品的样式以及物理化学要求大多采用电辊道窑、燃气梭式窑或微波窑烧成。 二.能耗因素 影响陶瓷窑炉能耗的因素有: 1.窑炉样式。隧道窑、梭式窑的窑车具带走的热量占窑炉 总耗热的20%左右。国内辊道窑能耗在450—1200Kcal/kg 瓷,隧道窑的能耗在1000Kcal/Kg瓷以上。 2.窑炉结构。窑墙的保温蓄热性能、窑顶结构对于气体流动 的影响、各种管道分布的合理性及对热量的利用率的影响。 3.窑炉尺寸。窑炉宽度增加1m,单位制品的能耗大概减少 2.5%。窑炉越长,窑头排烟带走的热量就越少。窑炉越高, 散热面积越大,能耗越大。

4.窑炉燃料。同样的温度要求下,洁净燃料所需的空气量和 产生的烟气量少,排烟带走的热量就少。微波、电热、燃气、燃油、燃煤窑炉的能耗依次增大。 5.窑炉材料。窑体材料的热导率越低,窑体散热越少,材料 越轻,窑体蓄热越少。 6.窑炉控制。目前国内大多采用计算机自动监测控制系统, 合理调节窑内温度、压力、气氛,从而减少燃料消耗;合理调节风机和传动电机频率,减少无用功。 7.窑炉烧嘴。目前国内新建窑炉大多采用高速预混式节能烧 嘴,该烧嘴可调节空气过量系数,高速,减少宽断面温差。 8.窑炉余热的回收利用。目前国内陶瓷窑炉基本都采用直接 热回收利用的方式,如:加热空气、干燥坯体等,动力回收的很少。 9.产品。产品的原料、规格、性能的不同,烧成参数也不同, 能耗自然也不同,产品烧成温度降低100℃,单位产品热耗可降低10%。目前广东外墙砖的能耗大概为530—1000Kcal/Kg瓷,仿古砖480—700Kcal/Kg瓷,抛光砖530—800Kcal/Kg瓷,日用卫生陶瓷大概为1000—2000Kcal/Kg瓷。 三.几种常见窑炉的能耗或节能成果。 辊道窑: 辊道窑因其机械自动化程度高、结构简单、产量大深受

工业锅炉、窑炉、节能减排技术途径和关键问题.doc

工业锅炉及窑炉节能减排技术途径与关键问题分析 当前我国的燃煤工业锅炉、窑炉普遍存在技术落后、效率低下、污染严重、监管难度大等问题,节能潜力超过1亿t煤,是煤炭节能减排技术的重点。实现工业炉窑燃煤节能是一个系统工程,关键是依靠燃煤技术和运行控制技术的进步,法规政策的促进和保障作用,社会化服务有助于推动新技术发展,先进的节能技术必会带来可观的经济和社会效益。 1 工业燃煤锅炉及窑炉现状分析 据统计,我国现有燃煤工业锅炉总数接近55万台,总容量达169万蒸吨(118.4万MW),平均单台装机容量仅2.4 MW,其中约85%为燃煤锅炉,耗煤量约4亿t/a。目前,每年锅炉产量约2-3万台,其中约1/4用于新增需求。燃煤工业锅炉装备水平普遍较低、系统技术落后,平均热效率约60%,比国外低20%-25%,计算节煤潜力约1.2亿t/a;污染治理及运行水平差,每年向大气排放SO2600多万t,烟尘800多万t,CO21.64亿t,灰渣8700多万t,是城市主要大气低空污染源,直接影响城区空气质量,总体污染仅次于电站锅炉,在许多城市工业锅炉污染甚至超过了电站锅炉。 目前全国共有16万座以上燃煤工业窑炉,主要集中在建材、冶金、化工及陶瓷等行业,年耗煤量即达到3亿t。工业燃煤窑炉平均热效率仅40%左右,比国外先进水平低10%-30%。主要用于水泥、砖瓦、石灰等生产,普遍规模小、装备陈旧、技术落后、运行管理粗放,缺乏除尘脱硫措施,总体能源效率比发达国家低30%-50%;在钢铁行业采用的工业窑炉有用于球团工序的迥转窑、石灰热工窑炉、耐火材料热工窑炉(如竖窑、隧道窑、梭式窑、迥转窑,还有少量倒焰窑)等,热效率一般在25%-50%之间,约有30%左右的节能潜力;另外,我国还有相当一部分燃油、燃气的炉窑,其中许多面临无油无气可烧的局面。工业窑炉带来的能源利用效率低下、环境污染严重问题已经成为影响我国经济社会发展的制约因素。 燃料煤质量不稳定、燃烧装置与多变煤质不匹配、不能根据煤质的变化适时调整操作状态、污染物排放缺乏经济而有效的控制手段等诸多问题,是造成燃煤工业锅炉和窑炉热效率低下、污染排放严重的主要原因。其根本所在是缺乏对狭小空间中各种燃煤过程及复杂耦合规律等方面的基础研究。通过开展相应的基础研究,继而开发出高效、洁净的燃煤技术及配套技术,经初步分析可使工业锅炉、窑炉热效事至少平均提高10%,总节煤量约达1.2亿t/a;仅节煤所减少的S02排放约200万t/a、减少灰渣排放2800万t/a、减少 CO2排放约2.9亿t/a;同时可减少大量运力。 近年来,国内一些城市和地区采取了热电联供、锅炉大型化或集中供热、清洁燃料(天然气、液化石油气等)替代等措施,一定程度上缓解了燃煤污染。但是,随着工业化和城镇化建设快速发展,燃煤工业锅炉、窑炉数量和燃煤量仍然很大。由于我国以煤为主、油气资源相对短缺的能源资源特点,预计燃煤工业锅炉、窑炉今后还将长期、大量被应用于各个领域。 我国工业锅炉、窑炉燃煤技术及运行状态大大低于其他领域现代工业技术水平,其低效率和高污染问题亟待改变,已经引起政府管理部门、科技界和企业界的极大关注。国家发展和改革委员会制定的《节能中长期专项规划》中,已将燃煤工业锅炉(窑炉)节能改造列为“十一五”十大重点节能工程之一,并制定了工程示范实施方案,目前正在进行前期准备工作。研究、开发工业锅炉(窑炉)高效、洁净燃煤技术是实施国家节能重点工程的现实需要。 2 工业锅炉及窑炉燃煤节能技术途径 全面提高燃煤锅炉、窑炉的热效率及控制污染物排放,必须立足我国煤种、煤质多变的现状,一方面需稳定和提高燃煤质量,另一方面需针对狭小燃烧空间开发先进的高效低污染燃烧技术和开发适应煤质变化的自动控制调整技术,进而实现整体燃烧技术系统的优化。

陶瓷工业窑炉烟气一体化治理研究

陶瓷工业窑炉烟气一体化治理研究  夏 清 曾光明 李彩亭 叶 昌 (湖南大学 长沙 410012) (湖南轻工业高等专科学校 长沙 410007) 摘 要 分析了燃煤窑炉在陶瓷工业中存在的必然性,阐述了陶瓷工业燃煤窑炉产生大气污染的机理,研究出一种除尘、消烟、脱硫一体化的陶瓷燃煤窑炉烟气净化装置。 关键词 燃煤窑炉 烟气 除尘 消烟 脱硫 净化装置  概述 陶瓷工业是高能耗、高资源消耗、产生高污染的行业,尤其是对大气环境的污染非常严重。这是由于经过成形、上釉的半成品,必须通过高温烧成才能获得瓷器的一切特性。陶瓷窑炉使用的燃料多种多样,而煤占燃料总消耗量的2/3,燃气窑炉排放的烟尘很少很少,燃油窑炉排放的烟尘不多,黑烟、粉尘污染远低于燃煤窑炉。但对一个陶瓷企业而言,窑炉及燃料的选择需考虑多方面的因素,涉及问题较广,并非完全取决于烟尘生成量的多少。重(渣)油是用原油经常压或减压蒸馏提取馏分后的残油,重油作为一种经济、安全、热值高的燃料在工业窑炉上利用较多,然而,由于我国炼油技术不断提高,企业使用的重油越来越差(粘度高、雾化困难,燃烧性能不好),从而也影响了它在陶瓷窑炉中的广泛使用。轻柴油是动力燃料,用作窑炉燃料,生产成本相对较高。气体燃料作为一种洁净燃料,是窑炉的最佳燃料也是陶瓷工业燃料的发展方向,但采用天然气和焦炉煤气要受地方限制,采用发生炉煤气,则要建煤气发生站,投资巨大,对气化用煤又有严格要求,且三废处理也是一大难题。我国是一个陶瓷生产大国,但不是生产强国。这体现在中小企业居多,如果都要求使用燃气或燃油窑炉燃烧洁净燃料,这是不大现实的。虽然燃煤会产生烟尘污染,劳动强度大,但由于燃煤窑炉建造费用和燃料成本低,并且我国煤炭资源丰富,分布广泛,可以就地取材,所以对广大中小陶瓷企业,特别是乡镇企业,今后很长一段时间内,仍将使用燃煤窑炉,这也符合我国当前的能源政策。据资料统计,目前仅在日用陶瓷,建筑陶瓷生产领域中就有3000余座燃煤窑炉,达到窑炉总数的70%,另外在这些陶瓷企业中服务生产的锅炉也是燃煤的,也产生很多的烟尘,加重了烟气对环境的危害。 陶瓷燃煤窑炉主要有倒焰窑、推板窑、隧道窑3种类型,燃烧室的结构基本相同,都采用简单传统的梁状水平、倾斜炉栅,燃煤方式属于加煤层状燃烧,它们最大的缺点在于燃烧过程不稳定,燃烧条件不充分,不完全燃烧损失大。对烧成产品而言,需采用有匣烧成,否则,产品的表观质量根本无法保证。对环境而言,产生的污染很大。燃煤窑炉已成为当地大气污染的主要污染源,严重危害人们的身体健康和人类生存环境。特别是些老瓷区,林立的烟囱整日喷出的是滚滚浓烟,使“天不蓝、水不清、山不绿”,目前已成为环境污染的重灾区。因此必须对此进行治理。 1 燃煤窑炉产生烟气污染的机理 陶瓷工业窑炉烟气中有害物质可分为两类:一类是气相化学物质,如SO x、NO x等,另一类是固相的烟尘。都是造成大气污染的主要污染物质之一。 SO x是由煤、粘土中的硫化物杂质在800℃左右被氧化所致。 FeS2+O2 350~450℃ FeS+SO2← 4FeS+7O2 500~800℃ 2Fe2O3+4SO2← 烧成过程中形成的NO x包括由燃料中固定氮生成的和由大气中氮生成的。这些气相物质是酸雨的主要来源。每座窑每小时排SO2量6.43~9.35㎏。SO2量与燃料的含硫量大小有直接关系。固体或液体燃料完全燃烧生成的二氧化硫量可用下式计算: SO2=2×(SB/100)(㎏/h) 式中:S———燃料中的含硫量,%; B———燃料消耗量,㎏/h。 烟尘不仅妨碍植物的光合作用,影响气候和危害建筑物,还使人类的心血管疾病、呼吸道疾病和肺癌的发病率与死亡率增加。陶瓷燃煤窑炉大都采用挥发分含量较高的烟煤为燃料,人工加煤。烟煤在简单的梁状倾斜炉栅上进行层状燃烧,燃料层结构如图1所示。上部是加入的新煤层,中部是灼热燃烧的焦炭层,下部是灰渣层,空气从炉栅之间缝隙吸入助燃,燃烧由下往上进行。刚加煤时,新煤覆盖在燃烧着的焦炭上,下面受高温火焰和灼热焦炭的加热,上面受炉膛高温炉壁的热辐射, 国家自然科学基金(49201015)、教育部优秀年轻教师基金、湖南省优秀中青年科技基金资助项目

相关文档
最新文档