我国非金属矿物材料发展现状与趋势

我国非金属矿物材料发展现状与趋势
我国非金属矿物材料发展现状与趋势

非金属矿物材料的研究内容及其发展趋势

矿物材料是指以天然矿物或岩石为主要原料,经不以提纯金属和化工原料为目的加工改造所获得的材料,或者能直接应用其物理、化学性质的矿物或岩石。根据矿物材料的定义和加工改造特点,将矿物材料分为天然矿物材料、深加工矿物材料和复合、合成矿物材料等

三大类。90年代以来,非金属矿物材料的研究与开发上出现了喜人的形势。

1深加工矿物材料的性质研究与应用技术

将非金属矿物或岩石进行超细、超纯、改型、改性等深加工处理改造,是改变非金属矿物或岩石性质的有效方法,也是非金属矿增值的重要途径,如散装膨润土$30/t,而有机膨润土$2400~3600/t;重晶石散装未经磨碎者$40/t,而药物级达$2560/t;石墨原矿$500/t,石墨密封材料$7000/t,增值13倍,而石墨乳$10000/t,增值20倍。

我国在深加工方面虽然起步甚晚,但近年来取得了可喜成果。通过引进、消化、吸收和开发,已研制出一批超细粉碎设备,如超微气流粉碎机的产品细度、能耗等主要技术指标已接近和达到国外同类设备水平;BQF型超音速内循环气流粉碎机适用于干法超细粉碎,细度可达1um;CP型超细磨生产能力可达60kg/h;PQ75O型气流粉碎机生产能力为200kg/h。此外,在粘土矿物高活性、高分散深加工工艺、高岭石剥片技术和膨润土改性研究,以及粘土生物材料工程等方面均取得了重要进展。

2复合矿物材料的性质研究与应用技术

任何一种矿物材料都有它自身的优点,同时也有其自身的弱点。复合矿物材料能够取长补短,因而得到广泛应用。例如保温材料就是由一种或数种热导率低的矿物原料与粘结物质配制而成的一种常见的复合矿物材料。中国科学院广州地球化学所利用天然矿物为原料研制成功了高温辐射和隔热防腐涂料。这实际是一种用于加热器件装置中的金属一非金属复合材料闭。

当今受到人们重视的另一种复合矿物材料是采用玻璃纤维、硼纤维、sic纤维等为基体纤维与基体树脂枯接剂复合而成的高性能复合材料。另外,许多梯度功能材料也属于复合矿物材料。梯度功能材料可以说是提出最晚、概念最新、发展最快的新材料之一。在这一领域研究中,武汉工业大学与国外合作,在金属一陶瓷系热应力缓和型梯度材料等方面取得了较大进展阁。

3合成矿物材料的性质研究与应用技术

矿物或岩石经高温、高压等加工处理后,在物相、结构、成分等发生变化的同时,性质也发生变化。据此,可以合成具有不同性质和用途的矿物材料。例如,利用硅藻土、粉石英、

膨润土、火山灰等生产微孔硅酸钙制品,具有容重小、导热系数低、无腐蚀、平整美观等优点,广泛用于电力、化工、石油、冶金用管道及热工设备保温以及建筑保温材料,这方面的技术在国内已日趋成熟。再如,中国科学院地质所在国内外首先研制成功了青刚玉新产品,其硬度和耐磨性等性能与刚玉相似,却有更好的质量价格比。中国科学院长沙大地构造所采用天然矿物原料合成了具有高抗热震性能的特种耐火材料,在陶瓷窑具等方面有广阔的开发应用前景。中国科学院地球化学所等单位利用开采铝土矿的废料为原料合成莫来石,利用贵州的钡矿物和粘土矿物合成钡长石特种耐火材料等[3j。此外,一些单位还利用火山物质为主要原料制造保温、吸音、隔热材料—泡泡玻璃,利用玄武岩制造硅酸盐岩棉等方面取得重要进展。

4纳米矿物材料的性质研究与应用技术

纳米科技诞生于90年代初期,不久即引起了科技界的广泛兴趣,并相继出现了冠以“纳米”为字首的分支学科,如纳米材料学、纳米矿物学、纳米生物学、纳米电子学、纳米机械学等。纳米材料学是纳米科技与材料学相结合的产物。由于有些纳米材料是由天然矿物超细深加工而成,所以这部分也可归属于深加工矿物材料大类,或称为纳米矿物材料。

纳米科技研究和应用0.1~100nm粒子的原子现象及其特征。前人的研究结果证明,当

物质的几何尺寸大小达到纳米级时,该物质的物理、化学性质(如颜色、脆性、韧性、熔点、比热、热膨胀系数、磁性、光性、声波、化学活性和溶解度等)会发生一系列的变化。这种变化叫做纳米效应。也有人把纳米微粒看作继物质三态(气态、液态、固态)之后的第四态[6j。由于纳米材料具有不同于传统材料的独特性能而成为当前材料科学、物理界、化学界研究的国际前沿。若能在矿物材料研究中注意引进纳米学的思想,那么将给矿物材料的研究带来意想不到的成果,为新型矿物材料的研制开辟新的途径。目前,我国已开始在纳米级粘土微粒、SiO2微粒和纳米级金微粒等方面进行研制及应用。

5碳质矿物材料的性质与应用技术

碳质矿物材料是矿物材料学另一个值得高度重视的前沿领域。国际上很热门,有人称之为“黑旋风”。其实碳质矿物材料并不一定都是黑色,它可以从透明到黑色,也有各种颜色。更重要的是,它具有最全面的物化性质,也具有最广泛的用途,是一种应用前景十分广阔的全材料。例如,硬度最低的良导体石墨和硬度最大的绝缘体金刚石都是碳质材料家族中的成员。当前最引人注目的是金刚石薄膜超硬材料和碳纤维复合材料。

大家知道,金刚石是迄今发现的所有矿物中最硬的。若能在刀具表面形成金刚石薄膜,对于延长刀具使用寿命、提高产品加工精度都是至关重要的。因此,国内不少单位采用各种

方法进行了金刚石镀膜理论与工艺技术研究,取得了一定进展。例如,中国科学院长沙大地构造所用直流弧光放电热等离子技术进行金刚石薄膜的化学气相合成和金刚石镀膜制品的研制、应用取得了令人鼓舞的成果。

碳纤维是当前应用最广并最具特殊价值的一类纤维。它制成的复合材料是高性能复合材料,经济价值很高,1987年产值达200多亿美元,据Fitzer测算,到1996年碳纤维产量将增长4倍,是近10年来发展最快的一种材料圈。

碳纤维复合材料迅速发展的原因主要有三:一是碳资源丰富;二是可以循环使用,无污染、无毒害,是最清洁的材料;三是碳纤维具有一系列的优异性能,可说是近于全面的多形式的优异性能。在力学性能方面以美国UCC公司生产的产品为例,其抗张强度高达5099.SN/cm2,刚度模量达3x105kg/mm2,应变值>1%;热稳定性优良,燃点4020士50K,低热膨胀系数(10一6级),化学稳定性好,抗腐蚀,不溶于酸碱,相对密度小(l.8-2.1)。这些性质是金属材料以及其它材料无可比拟的。用碳纤维制成的复合材料几乎可以成为工业生产、科学技术以及人民日常生活必需的所有材料,即是一类“全材料”。可以用碳纤维复合材料替代金属或其它材料(如陶瓷、水泥、木材等)做成各种制品,如器件、器材、用具,也可以制成承力构件,如飞机机翼、机身,美国军用飞机F-15、F-4、F-5A和商用机DC-10、L-1011使用碳纤维复合材料后,不仅性能特异,不反射雷达波,且替换部件比原部件重量减轻15%-30%,飞行速度提高10%;汽车上的20%~60%部件可以用碳纤维材料制作,包括载重片弹簧、驱动轴等承力构件,汽车自重可减轻70%,提高车速,节省汽油,mpq值(每加仑汽油行驶英里数)从1978年的18提高到1985年的27.5。碳纤维复合材料还用来制作压力容器、贮能设备、建筑和家具等。目前碳纤维主要生产国是日本、美国、德国、英国和俄罗斯等发达国家,在我国几乎处于空白状态。

6资源的二次利用与废弃物质的资源化

随着矿产资源的逐年减少和矿渣、尾砂、烟尘等废弃物质对环境影响不断加剧,资源的二次利用与废弃物质的资源化间题也日益受到人们的重视。近年来,这方面的研究显得比较活跃,取得了较好的经济效益和社会效益,并成为非金属矿物材料较重要的发展方向之一例如,我国各煤矿都有大量的煤砰石堆放,污染环境,占用大片土地。煤炭科学研究院西安分院等单位将以高岭石为主要成分的煤歼石进行锻烧、提纯、改性、超细及剥片等深加工处理,开发锻烧高岭土、全煤研石超内燃烧空心砖等非金属矿物材料产品。我国现有尾矿库达420个,库容内储存量已达7x108m3,而且还以每年700~800万吨的速度递增,真是“尾”满为患。

中南工业大学等单位采用湖南某矿山尾矿砂为主要原料开发CaO-A1

20

3

-Si0

2

:系统的尾砂微晶

玻璃,取得了初步的成果。贵州某厂每年排放上万吨刚玉烟尘,中国科学院地球化学所开展了刚玉烟尘开发建材、钾肥产品和有用元素回收等综合利用研究,进展较为顺利。此外,燃煤电厂排放粉煤灰中的空心微珠(特别是漂珠),由于其质轻、粒细、成分和性质特殊,目前已制成轻质漂珠砖,其最大特点是随着温度升高,导热系数和递增率比耐火纤维和传统的轻质耐火材料小,是一种新型节能耐火材料制品,目前已在国内许多地区建成漂珠砖生产线。

非金属矿物填料的作用和地位

非金属矿物填料的作用和地位 中国粉体技术网无机矿物填料的主要作用是增量、增强和赋予功能。 (1)增量 添加廉价的无机矿物填料以降低制品的成本,例如,在塑料、橡胶、胶黏剂等中填充碳酸钙(包括重质碳酸钙和轻质碳酸钙)以降低有机树脂或高聚物的用量;在纸张中填充碳酸钙、滑石粉以减少纸浆或纸纤维的用量。这种无机矿物填料也被称为增量填充剂。 (2)增强 提高高聚物基复合材料,如塑料、橡胶、胶黏剂等的力学性能(包括弹性模量、拉伸强度、刚性、撕裂强度、冲击强度、摩擦系数、耐磨性等)。无机矿物填料的增强主要取决于对其粒度或比表面积和颗粒形状。粒径小于5um的超细无机矿物填料和硅灰石、透辉石、透闪石、石棉等针状无机矿物填料及云母、滑石、高岭土、石墨等片状无机矿物填料具有一定和不同程度的增强或补强功能。一般来说,各种填料的增强效果顺序为:纤维填料>片状填料>球状填料。反之,各种填料在基料中的流动性顺序大致为:球状填料>片状填料>纤维填料。 (3)赋予功能 无机矿物填料可赋予填充材料某些功能,如塑料和橡胶制品的尺寸稳定性、阻燃或难燃性、耐磨性、绝缘性或导电性、隔热或导热性、隔声性、抗菌性等;涂料的耐湿擦洗性、耐磨性、耐腐蚀性、耐候性、遮盖力、净化空气、调湿性等;纸品的优良吸墨性和印刷性等。此时,无机矿物填料的化学组成、晶体结构、光热、电、磁等性质以及比表面积和颗粒形状起重要的作用。无机矿物填料主要赋予复合材料的功能见表1-1。 表1-1赋予功能效果和相应的填料 无机矿物填料的地位

矿物填料在现代材料工业,如塑料、橡胶、胶黏剂、化纤、涂料、造纸、胶凝材料、建材等工业中具有重要地位,而且随着新材料工业,特别是复合材料工业的发展日益显得突出和重要,主要原因如下。 (1)它是在保证使用性能要求的前提下降低材料生产成本最有效的原料或辅料。由于无机矿物填料,特别是作为普通增量填料的碳酸钙、陶土、滑石粉等价格较低,而作为塑料制品、橡胶制品、胶黏剂、化纤、纸浆等基料的树脂价格显著高于无机矿物填料,因此,在这些制品中填充一定量的无机矿物填料可以在满足相关产品标准,保证使用性能要求的前提下,显著降低材料的生产成本。 (2)它是获得具有独特功能复合材料最方便和有效的填料。现代科技、经济和社会的发展对材料的功能性要求越来越高。单一的原料和配方越来越难以满足日趋提高的使用要求。对于高聚物基复合材料,如塑料、橡胶、胶黏剂来说,从高分子合成角度开发具有独特功能的全新结构的高分子化合物有时是难以实现的,有时则可能耗资巨大,耗时很长,而采用矿物填料填充改性常常是比较方便和易于实现的。 (3)它是综合利用矿产资源、替代或节约树脂的重要材料。现代发展最为迅速的高分子材料是以树脂为基料的非金属材料,而合成树脂的原料是石油。非金属矿是储量丰富、部分与金属矿和固体燃料矿共生的矿产资源,将其综合利用并加工成矿物填料用于填充到树脂中生产高聚物基复合材料,在降低材料成本和赋予材料一定功能的前提下,还可以节约大量石油。目前塑料制品中无机矿物填料的用量平均已达到10%以上,部分塑料制品中矿物填料的用量已达到30%以上。以2007年我国塑料制品产量6000万吨左右计算,节省树脂600万吨/年以上,可以大量节约石油资源。 (4)它是提高材料或制品技术含量、增加其附加值的最适宜填料。无机矿物填料来源广、品种多,可以加工成适应不同应用要求的功能填料,可以提升填充材料的产品技术含量从而增加其附加值。例如,在塑料制品中填充经过表面处理的超细碳酸以提高其韧性;添加片状结构的滑石和针状结构的硅灰石可以提高其强度;添加经过表面改性的超细氢氧化铝和氢氧化镁可以替代有机阻燃剂赋予其优良的阻燃性能;在建筑涂料中添加煅烧高岭土可以提高涂膜的强度和耐湿擦洗性;在纸品中填充滑石和碳酸钙可以提高其白度、平整度和印刷性;在橡胶中添加超细片状高岭土可以提高其强度和气体阻隔性等。由于可以根据材料性能的要求从成分、结构、表面性质等方面性质等方面选择无机矿物填料,能满足不同应用的要求,可以在某一方面和几个方面显著提高填充材料或制品的技术含量,因此可以显著增加填充材料的附加值。 因此,可以说无机矿物填料为新型功能材料,特别是复合材料的发展提供了广阔的发展空间。了解更多请访问中国粉体技术网或关注本网微信公众号bjyyxtech。

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

矿物材料

第一二章习题 1.非金属矿物材料的精细加工制备包括哪些?天然矿物材料精细加工的目的是什么? 非金属矿物材料的精细加工制备包括:超细粉粹与分级、矿物原料的纯化、高温物理化学处理、结构改性处理、表面改性处理、矿物材料的化学制备、新型陶瓷粉体的制备。 目的:(1)矿物材料的纯化为,达到改善矿物材料的技术物理性能的目的。产物保留原矿物的单一矿物特性、构造、化学成分;2)赋予产物新的技术物理性能:原料矿物的结构、矿物组成、表面化学性质发生不同程度的改变。 2.在细磨和超细磨过程中,因机械作用导致的机械化学反应指什么?主要表面在哪三方面? 机械化学变化:因机械载荷作用导致的固体物料晶体结构和表面物理化学性质的变化(包括晶格畸变、晶格缺陷、颗粒无定形化、多晶转变、表面自由能增大等) 。在细磨和超细磨过程中,因机械作用导致的机械化学反应主要表现为三个方面: (1)矿物晶体结构的变化:由于超细过程中强烈的机械化学作用,引起矿物的晶体结构,尤其是颗粒表面结构发生变化,例如位错、缺陷、重结晶,甚至使表面转为非晶态层。 (2)矿物物理化学性质的变化:经过细磨和超细磨后,由于矿物颗粒的内能和表面能的增加以及机械激活作用的影响,使矿物的吸附能力、溶解性和表面电性等均有不同程度的改变。 (3)在局部承受较大应力或反复应力作用的区域产生化学反应:在超细粉碎过程中,矿物颗粒因反复承受应力并受到机械激活作用,有时会在颗粒变细的同时发生化学反应,例如由一种固态物质转变为另一种固态物质,或者因矿物分解释放出气体产物,因晶体结构发生变化或外来离子进入晶体结构而改变矿物的化学组成。 3.超细粉体分级的必要性是什么? 分级的必要性:(1)矿物材料的超细粉体在精密陶瓷、涂料、生物工程、电子及尖端技术领域均有广泛应用。现代科技的发展迫切需要超细而且粒度分布范围窄小的粉体,有时甚至要求达到单一粒径。但是机械粉碎得到的粉体粒度分布较宽,往往在0.1μm到数十μm之间,因此需要对其进行分级,以满足对超细粉体的高标准要求。 (2)精密分级设备与超细粉碎设备配套使用,及时将符合粒级要求的产品分出,可以防止产品的过度粉碎(或称过磨),提高粉碎效率,降低能耗。 4.简述矿物原料的纯化手段。 (1)物理纯化:在经由物理分离纯化矿物原料时,原料的组成矿物之间的空间分布特征发生改变,但各矿物的化学成分、晶体结构均未被触及,所实现的仅仅是杂质组分与目的矿物在空间位置上的相互分离。传统的矿物机械加工,包括矿物原料的粉粹、分级以及目的矿物的分选富集(如浮选、电选、磁选、重选等),均属于物理纯化作用。

国内外大数据产业发展现状与趋势研究

龙源期刊网 https://www.360docs.net/doc/366974222.html, 国内外大数据产业发展现状与趋势研究 作者:方申国谢楠 来源:《信息化建设》2017年第06期 大数据作为新财富,价值堪比石油。 进入21世纪以来,随着物联网、电子商务、社会化网络的快速发展,数据体量迎来了爆炸式的增长,大数据正在成为世界上最重要的土壤和基础。根据IDC(互联网数据中心)预测,2020年的数据增长量将是2010年的44倍,达到35ZB。世界经济论坛报告称,“大数据为新财富,价值堪比石油”。随着计算机及其存储设备、互联网、云计算等技术的发展,大数据应用领域随之不断丰富。大数据产业将依赖快速聚集的社会资源,在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,成为引领信息技术产业发展的核心引擎、推动社会进步的重要力量。 大数据产业发展现状 全球大数据产业发展概况 目前,大数据以爆炸式的发展速度迅速蔓延至各行各业。随着各国抢抓战略布局,不断加大扶持力度,全球大数据市场规模保持了高速增长态势。据IDC预测,全球大数据市场规模 年增长率达40%,在2017年将达到530亿美元。美国奥巴马政府于2012年3月宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志;2015年发布“大数据研究和发展计划”,深入推动大数据技术研发,同时还鼓励产业、大学和研究机构、非盈利机构与政府一起努力,共享大数据提供的机遇。目前,美国大数据产业增长率已超过71%,大数据在美国健康医疗、公共管理、零售业、制造业等领域产生了巨大的经济效益。英国政府自2013年开始就注重对大数据技术的研发投入,2015年投入7300万英镑用于55个政府的大数据应用项目,投资兴办大数据研究中心,通过大数据技术在公开平台上发布了各层级数据资源,直接或间接为英国增加了近490亿至660亿英镑的收入,并预测到2017年,大数据技术可以为英国提供5.8万个新的工作岗位,或将带来2160亿英镑的经济增长。法国2011年推出了公开的数据平台 date.gouv.fr,以便于公民自由查询和下载公共数据;2013年相继发布《数字化路线图》、《法国政府大数据五项支持计划》等,通过为大数据设立原始扶持资金,推动交通、医疗卫生等纵向行业设立大数据旗舰项目,为大数据应用建立良好的生态环境,并积极建设大数据初创企业孵化器。日本在《日本再兴战略》中提出开放数据,将实施数据开放、大数据技术开发与运用作为2013-2020年的重要国家战略之一,积极推动日本政务大数据开放及产业大数据的发展,零售业、道路交通基建、互联网及电信业等行业的大数据应用取得显著效果。韩国政府高度重视大数据发展,科学、通信和未来规划部与国家信息社会局(NIA)共建大数据中心,大力推动全国大数据产业发展。根据《2015韩国数据行业白皮书》统计显示, 数据服务市场规模占韩国总行业市场规模的47%,位列第一;数据库构建服务以41.8%的占有

非金属矿物材料的加工与应用

[行业发展] 非金属矿物材料的加工与应用 郑水林 (中国矿业大学北京校区化环系,北京 100084) [摘 要]非金属矿物材料应用范围广泛,市场前景看好。本文着重介绍了非金属矿物材料的加工技术,包括颗粒制备与处理、材料的复合及加工技术等。 [关键词]非金属矿物材料;加工;复合;应用 [中图分类号]TB321 [文献标识码]A [文章编号]1007-9386(2002)04-0003-05 1 21世纪的产业发展与非金属矿物材料 “非金属矿物材料”是指以非金属矿物和岩石为基本或主要原料,通过物理、化学方法制备的功能性材料或制品,如机械工业和航空航天工业用的石墨密封材料和石墨润滑剂、石棉磨擦材料、高温和防辐射涂料等;微电子工业用的石墨导电涂料、显像管石墨乳、熔炼水晶等;以硅藻土、膨润土、海泡石、凹凸棒石、沸石等制备的吸附、助滤和环保材料;以高岭土(石)为原料制备的煅烧高岭土、铝尖晶石、莫来石、赛隆、分子筛和催化剂;以珍珠岩、硅藻土、石膏、石灰石、蛭石、石棉等制备隔热保温防火和节能材料及轻质高强建筑装饰材料;以碎云母为原料生产的超细云母填料、颜料以及云母纸和云母板等;以膨润土为原料制备的凝胶及有机膨润土等。 非金属矿石是人类利用最早的矿物材料。从原始人使用的石斧、石刀到现在以非金属矿为原料制备的各种非金属矿物新材料,人类在利用非金属矿物原(材)料方面走过了从简单利用到初步加工后利用,再到深加工和综合利用的漫漫历程。现代科技革命和产业发展,尤其是高技术和新材料产业的发展开创了广泛应用非金属矿物材料的新时代,非金属矿物原(材)料加工业已被视为21世纪的朝阳工业。 以信息、微电子、生物、航空航天、海洋开发以及新材料和新能源为主的高技术和新材料产业将在21世纪进一步发展壮大,这些高技术和新材料产业与非金属矿物(原)材料密切相关。例如,石墨、云母、石英、锆英石、金红石、高岭土、滑石、叶蜡石、长石、金刚石等与微电子及信息技术及其产业有关;氧化硅、石墨、云母、高岭土、硅灰石、硅藻土、滑 石、方解石、夕线石、石英、红柱石、蓝晶石、石棉、菱镁矿、石膏、珍珠岩、叶蜡石、金刚石、石榴子石、蛭石、电气石、绿泥石等与新材料技术及其产业有关;石墨、重晶石、膨润土、石英等与新能源有关; 沸石、麦饭石、硅藻土、凹凸棒石、海泡石、膨润土、蛋白土、珍珠岩、高岭土、麦饭石等与生物技术及产业有关;石墨、石棉、云母、石英等与航空航天技术与产业有关。因此,高技术和新材料产业是21世纪初非金属矿深加工技术和非金属矿物材料发展的重要机遇之一。 进入21世纪,化工、机械、能源、汽车、轻工、冶金、建材等传统产业将引入新技术和使用新材料,进行技术革新和产业升级,这些技术进步与产业升级与非金属矿物材料或深加工产品密切相关。例如,造纸工业的技术进步和产品结构调整需要大量高纯、超细的重质碳酸钙、高岭土、滑石等高白度非金属矿物颜料和填料;高分子材料(塑料、橡胶、胶粘剂等)的技术进步以及工程塑料、塑钢门窗等高分子基复合材料的兴起需要数以百万吨计的超细和活性碳酸钙、高岭土、滑石、针状硅灰石、云母、透闪石、二氧化硅、氢氧化镁、氢氧化铝等功能填料; 汽车面漆、乳胶漆等高档油漆以及防腐蚀和辐射、道路发光、吸波等特种涂料需要大量的珠光云母、着色云母、超细和高白度碳酸钙、超细二氧化硅和玻璃微珠、针状超细硅灰石、超细和高白度煅烧高岭土、有机膨润土等非金属矿物颜料、填料和增粘剂; 冶金工业的技术进步和产品结构调整需要高品质的以夕线石、红柱石、 [收稿日期]2002-05-24 [作者简介]郑水林,男,45岁,博士,教授。 3

玻璃材料的应用现状与发展趋势

玻璃材料的应用与趋势 内容摘要:随着建筑多元化的发展,建筑玻璃的已经成为建筑多样化和建筑功能化的关键组成部分,尤其是最近几年,建筑用深加工玻璃的品种、数量也得到了很大的发展,产品质量有了很大的提高。但是一些建筑使用的深加工玻璃出现了如钢化玻璃自爆、中空玻璃漏气等多种问题,造成很大的损失。当今世界玻璃制造商们在开发钢化玻璃新技术方面,均向能源、材料、环保、信息、生物等五大领域的发展和需求奋进。 关键词:玻璃材料的应用现状,玻璃材料的发展趋势 一 .世界建筑的发展对玻璃的要求变化 从20世纪60年代,随着第一个玻璃幕墙出现开始,建筑幕墙一直占据着建筑市场的主导位置并引领着建筑行业技术的发展。到目前,建筑对玻璃的要求经过了从白玻、本体着色玻璃、热反射镀膜到低辐射镀膜玻璃的变化。玻璃的颜色也由无色、茶色、金黄色到兰色、绿色并最后向通透方向的发展变化。 二.建筑玻璃的主要应用品种及特点 1、钢化玻璃 它是利用加热到一定温度后迅速冷却的方法,或是化学方法进行特殊处理的玻璃。一般是在原来普通的浮法玻璃基础上,经过将玻璃加热到软化点温度再经过淬火处理,使玻璃内部中心部位具有张应力

而玻璃表面部位具有压应力并达到均匀应力平衡的玻璃产品。钢化玻璃的品种包括化学钢化也称离子钢化和物理钢化两种;化学钢化玻璃的特点是由于采用颗粒较大的离子如钾离子置换玻璃表面的钠离子,在约400度的温度下经过一定的工艺制作完成;化学钢化玻璃可以切割、热弯等,但经过高温加工后的玻璃强度会受影响;化学钢化玻璃的初始强度可以达到原片的6-7倍,但是随着使用时间加长,性能会衰减;由于离子置换的特殊性,多数使用在超薄的玻璃上。物理钢化玻璃的特点是强度高,一般强度可以达到普通平板玻璃的4倍左右 2、夹层玻璃 夹层玻璃是由一层玻璃与一层或多层玻璃、塑料材料夹中间层而成的玻璃制品,中间层是介于玻璃之间或玻璃与塑料材料之间起粘结和隔离作用的材料,使夹层玻璃具有抗冲击、阳光控制、隔音等性能;夹层玻璃的特点是安全—即使破碎,也不会对人造成伤害。缺点是降低采光性能、玻璃自重增加。 3、镀膜玻璃 镀膜玻璃俗称热反射玻璃,包括阳光控制镀膜玻璃和低辐射镀膜玻璃(Low-E)玻璃两个品种。镀膜形成的原理是在原片玻璃表面镀上金属或者金属氧化物/氮化物膜,使玻璃的遮蔽系数降低,又称低辐射玻璃,是一种对波长范围4.5μm-25μm的远红外线有较高反射比的镀膜玻璃。低辐射镀膜玻璃还可以复合阳光控制功能,称为阳光控制低辐射玻璃。镀膜玻璃主要有两个系列的品种,一种是在线镀

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

非金属矿物制品行业概述

第一章非金属矿物制品行业概述 1定义 一般认为,非金属矿,即非金属矿物材料,是指以非金属矿物和岩石为基本或主要原料,通过深加工或精加工制备的具有一定功能的现代新材料,它是无机非金属材料的一种,如功能填料和颜料、摩擦材料、密封材料、保温隔热材料、电功能材料、吸附催化材料、环保材料、胶凝与流变材料、聚合物/纳米黏土复合材料、建筑装饰材料等。而非金属矿物制品则是以这些非金属矿物材料经过进一步加工形成的产品。例如我们常见的建筑材料、玻璃、人造金刚石、磨料磨具、石棉制品等。 2 发展历史 3 特征 现代非金属矿物制品具有以下主要特征: 1、原料或主要组分为非金属矿物或经过选矿或初加工的非金属矿物。 2、一般来说,与同样用非金属矿物为原料生产的硅酸盐材料(水泥、玻璃、陶瓷等)以及无机化工产品(如硫化钡、氯化钡、碳酸锶、氧化铝等)不同,非金属矿物没有完全改变非金属矿物原料或主要组分的物理、化学特性或结构特征。 3、非金属矿物制品是通过深加工或精加工制备的功能性制品。因此,非金属矿物制品具有一定的技术含量和明确的用途,不能直接应用的原矿和初加工产品不属于非金属矿物制品的范畴。当然,深加工或精加工是一个相对的概念,随着科学技术的发展和社会的进步,其内涵也将发生变化。 4 分类

非金属矿物制品一般按照不同的特征分为如下几类:①水泥制品和石棉水泥制品业。包括水泥制品业、砼结构构件制造业、石棉水泥制品业、其他水泥制品业等。②砖瓦、石灰和轻质建筑材料制造业。包括砖瓦制造业、石灰制造业、建筑用石加工业、轻质建筑材料制造业、防水密封建筑材料制造业、隔热保温材料制造业、其他砖瓦、石灰和轻质建筑材料制品等。③玻璃及玻璃制品业。包括建筑用玻璃制品业、工业技术用玻璃制造业、光学玻璃制造业、玻璃仪器制造业、日用玻璃制品业、玻璃保温容器制造业、其他玻璃及玻璃制品业等。④陶瓷制品业。包括建筑、卫生陶瓷制造业、工业用陶瓷制造业、日用陶瓷制造业、其他陶瓷制品业等。⑤耐火材料制品业。包括石棉制品业、云母制品业、其他耐火材料制品业等。⑥石墨及碳素制品业。包括冶金用碳素制品业、电工用碳素制品业、其他石墨及碳素制品业等。⑦矿物纤维及其制品业。包括玻璃纤维及其制品业、玻璃钢制品业、其他矿物纤维及其制品业等。⑧其他类未包括的非金属矿物制品业。包括砂轮、油石、砂布、砂纸、金钢砂等磨具、磨料的制造,晶体材料的生产等。 5用途 非金属矿物制品是人类利用最早的。原始人使用的石斧、石刀等都是用无机非金属矿物或者岩石材料制备的。但是,在现代科技革命和新兴产业发展之前的人类文明进化过程中,基本上是以金属材料为主导,随着现代科技进步、人类生活水平的提高和环境保护意识的觉醒,开创了应用非金属制品的新时代。 目前,非金属矿物制品广泛应用于化工、机械、能源、汽车、轻工、食品加工、冶金、建材等传统产业以及航空

浅谈大数据发展现状及未来展望

浅谈大数据发展现状及未来展望 中国特色社会主义进入新时代,实现中华民族伟大复兴的中国梦开启新征程。党中央决定实施国家大数据战略,吹响了加快发展数字经济、建设数字中国的号角。国家领导人在十九届中共中央政治局第二次集体学习时的重要讲话中指出:“大数据是信息化发展的新阶段”,并做出了“推动大数据技术产业创新发展、构建以数据为关键要素的数字经济、运用大数据提升国家治理现代化水平、运用大数据促进保障和改善民生、切实保障国家数据安全”的战略部署,为我国构筑大数据时代国家综合竞争新优势指明了方向! 今天,我拟回顾大数据的发端、发展和现状,研判大数据的未来趋势,简述我国大数据发展的态势,并汇报我对信息化新阶段和数字经济的认识,以及对我国发展大数据的若干思考和建议。 一、大数据的发端与发展 从文明之初的“结绳记事”,到文字发明后的“文以载道”,再到近现代科学的“数据建模”,数据一直伴随着人类社会的发展变迁,承载了人类基于数据和信息认识世界的努力和取得的巨大进步。然而,直到以电子计算机为代表的现代信息技术出现后,为数据处理提供了自动的方法和手段,人类掌握数据、处理数据的能力才实现了质的跃升。信息技术及其在经济社会发展方方面面的应用(即信息化),推动数据(信息)成为继物质、能源之后的又一种重要战略资源。 “大数据”作为一种概念和思潮由计算领域发端,之后逐渐延伸到科学和商业领域。大多数学者认为,“大数据”这一概念最早公开出现于1998年,美国高性能计算公司SGI的首席科学家约翰·马西(John Mashey)在一个国际会议报告中指出:随着数据量的快速增长,必将出现数据难理解、难获取、难处理和难组织等四个难题,并用“Big Data(大数据)”来描述这一挑战,在计算领域引发思考。2007年,数据库领域的先驱人物吉姆·格

(汽车行业)汽车车身新材料的应用及发展方向

(汽车行业)汽车车身新材料的应用及发展方向

汽车车身新材料的应用及发展趋势 现代汽车车身除满足强度和使用寿命的要求外,仍应满足性能、外观、安全、价格、环保、节能等方面的需要。在上世纪八十年代,轿车的整车质量中,钢铁占80%,铝占3%,树脂为4%。自1978年世界爆发石油危机以来,作为轻量化材料的高强度钢板、表面处理钢板逐年上升,有色金属材料总体有所增加,其中,铝的增加明显;非金属材料也逐步增长,近年来开发的高性能工程塑料,不仅替代了普通塑料,而且品种繁多,在汽车上的应用范围广泛。本文着重介绍国内外在新型材料应用方面的情况及发展趋势。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。当下的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车X公司和宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之壹;冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进壹步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性和高强度的结合,特别适用于壹些形状复杂而强度要求高的冲压零件。 轻量化迭层钢板 迭层钢板是在俩层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。和具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。铝合金 和汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众X公司的新型奥迪A2型轿车,由于采用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合。这种结构不仅使车身的扭转刚度提高了60%,仍比同类车型的钢制车身车重减少50%。由于所有的铝合金都能够回收再生利用,深受环保人士的欢迎。根据车身结构设计的需要,采用激光束压合成型工艺,将不同厚度的铝板或者用铝板和钢板复合成型,再在表面涂覆防具有良好的耐腐蚀性。 镁合金 镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

(整理)中国非金属矿产现状与趋势.

中国非金属矿产现状与趋势 摘要:我国非金属矿产的分布比较广泛,种类繁多,储量丰富,多种非金属矿的储量居世界首位,但大多数的矿产资源不能被充分利用和开采,因此我国的非金属矿产资源的现状和趋势应该如何发展成为当今社会和工业所面临的严峻问题,我国应该对非金属矿的开采和应用走可持续发展的道路,使我国的非金属矿产业及经济能够持续稳定的向前发展。 关键词:非金属矿;资源;矿产; Abstract: my non-metallic mineral distribution between broad, diverse, rich variety of non-metallic mineral reserves, ore ranking first in the world, but most of the mineral resources cannot be fully utilized and mining, therefore our non-metallic mineral resources and how to become a trend in today's society and industries are facing serious problems, should non-metallic mineral mining and sustainable development of the road, the country's non-metallic mining industry and economic sustainability and stability. Keywords: Nonmetalliferous ore;resources; minerals; 一、我国非金属矿产资源特点及分布 石膏矿区 我国已探明的石膏矿区达169处。主要有山东省大汉口、内蒙古自治区鄂托克旗、湖北省应城、山西省太原、宁夏回族自治区中卫、甘肃省天祝、湖南省邵东、吉林省浑江、四川省峨边等矿床。储量600亿吨以上,居世界首位。

国内外焊接材料的应用及发展趋势

国内外焊接材料的应用 及发展趋势 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

国内外焊接材料的应用及发展趋势 沈阳工业大学材料科学与工程学院 摘要:焊接材料是焊接行业中一个重要分支。随着焊接技术的发展,国内外焊接材料的生产和使用也得到了长足的进步。本文简单介绍国内外的钢材、焊接材料的应用状况,进而分析了焊接材料的应用领域,总结出我国焊接的材料发展中存在的问题及应对策略。 关键词:焊接材料;应用;发展趋势 1国内外钢材及焊接的应用现状 钢产量是衡量一个国家综合经济实力的重要指标,钢铁工业是中国工业进程中的支柱产业。表1为世界主要国家的钢产量数据。从表中数据可以发现,从2001年开始我国的钢产量已经跃居全球第一,从2001年到2008年钢产量已经提高了3倍多,这样的增速明显高于其他国家。这主要是由于中国的经济持续高速增长,拉动了钢铁工业的快速发展,带动了中国钢铁的生产和消耗。但与中国钢产量全球第一形成鲜明的对比的是中国也是钢材进口大国,尤其是特种性能、高强度钢材的大量进口,因此中国钢材巨大产量,并没有给中国带来巨大的经济效益。

(数据来源:中国钢材贸易网) 焊接是一种将材料永久性连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件。在生产制造中都不同程度地应用焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。焊接技术包括焊接材料、设备和工艺等相关内容,而其中焊接材料是焊接技术发展的基础,所以焊接材料的应用和发展影响着焊接技术的发展。 钢材产量和快速升高又拉动了中国焊接材料产业的强劲发展,钢材的产量、品质及发展趋势直接决定了焊接行业的可持续发展及焊接技术的发展方向。2006年,按国际钢材协会统计,全世界钢产量12.39亿吨,按有 关资料综合测算,焊材的消费量应为钢材总量的0.6%--1.6%,全世界焊接材料约为600多万吨,因此,2006年中国钢产量占全世界钢产量的34%[2],中国焊接材料产量占全世界焊接材料产量的50%左右。但是中国焊接材料的种类和分布不是很平衡[3,4],见表2-表3。

金属材料的应用现状及发展趋势分析

金属材料的应用现状及发展趋势分析 在进行金属材料的应用现状及发展趋势分析之前,先简要介绍一下金属材料。金属材料是最重要的工程材料之一。按冶金工艺,金属材料可以分为铸锻材料、粉末冶金材料和金属基复合材料。铸锻材料又分为黑色金属材料和有色金属材料。黑色金属材料包括钢、铸铁和各种铁合金。有色金属是指除黑色金属以外的所有金属及其合金,如铝及铝合金、铜及铜合金等。工程结构中所用的金属材料90%以上是钢铁材料,其资源丰富、生产简单、价格便宜、性能优良、用途广泛。钢有分为碳钢和合金钢,铸铁又分为灰口铸铁和白口铸铁。 一、金属材料的应用现状 金属材料的结构及其性能决定了它的应用。而金属材料的性能包括工艺性能和使用性能。工艺性能是指在加工制造过程中材料适应加工的性能,如铸造性、锻造性、焊接性、淬透性、切削加工性等。使用性能是指材料在使用条件和使用环境下所表现出来的性能,包括力学性能(如强度、塑性、硬度、韧性、疲劳强度等)、物理性能(如熔点、密度热容、电阻率、磁性强度等)和化学性能(如耐腐蚀性、抗氧化性等)。 金属材料具有许多优良性能,是目前国名经济各行业、各部门应用最广泛的工程材料之一,特别是在车辆、机床、热能、化工、航空航天、建筑等行业各种部件和零件的制造中,发挥了不可替代的作用。 (1)、在汽车中的应用。缸体和缸盖,需具有足够的强度和刚度,良好的铸造性能和切削加工性能以及低廉的价格等,目前主要用灰铸钢和铝合金;缸套和活塞,对活塞材料的性能要求是热强性高,导热性好,耐磨性和工艺性好,目前常用铝硅合金;冲压件,采用钢板和钢带制造,主要是热轧和冷轧钢板。热轧钢板主要用于制造承受一定载荷的结构件,冷轧钢板主要用于构型复杂、受力不大的机器外壳、驾驶室、轿车车身等。还有汽车的曲轴和连杆、齿轮、螺栓和弹簧等,都按其实用需要使用的了不同的金属材料 (2)、在机床方面的应用。机床的机身、底座、液压缸、导轨、齿轮箱体、轴承座等大型零件部,以及其他如牛头刨床的滑枕、带轮、导杆、摆杆、载物台、手轮、刀架等,首选材料为灰铸铁,球磨铸铁也可选用。随着对产品外观装饰效果的日益重视,不锈钢、黄铜的

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

纳米材料的应用及发展前景

纳米材料的应用及发展前景 摘要 纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。本文概要的论述了纳米材料的发现发展过程,并简述了纳米材料在各方面的应用及其在涂料和力学性能材料方面的发展前景。 关键词:纳米材料、纳米技术、应用、发展前景 一、前言 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1 纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展

相关文档
最新文档