八年级最短路径问题

八年级最短路径问题
八年级最短路径问题

八年级最短路径问题

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

初二最短路径问题归纳

初二最短路径问题归纳 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

最短路径问题专题学习【基本问题】 m n

在直线l 上求一点P ,使PB PA -的值最小. 【问题10】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之 差小于第三边.PB PA -≤ AB '. PB PA -最大值= AB '. 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23.6 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当 AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小 时,∠AMN +∠ANM 的度数为( ) l A B D E A B C A D E P B C D A M A B M N 第2题 第3题 第4

A .120 ° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =4 2 ,∠BAC =45°,∠BAC 的平分线交BC 于点D , M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重 合),且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分 别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________. 7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为 B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值 是______. 8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最 小值为 , 此时 C 、D 两点的坐标分别为 . 9.已知A (1,1)、B (4,2). y x B O A y x B A O 第6题 第

最新人教版八年级数学上册《最短路径问题》教学设计(精品教案)

13.4 课题学习最短路径问题 学习目标 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 教学过程 一、情境导入 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 二、合作探究 探究点:最短路径问题 【类型一】求直线异侧的两点与直线上一点所连线段的和最小的问题 例1:如图所示,在河a两岸有A、B两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修

建才能满足要求?(画出图形,做出说明。) 解析:利用两点之间线段最短进而得出答案. 解:如图所示:连接AB交直线a于点P,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短. 【方法总结】求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 变式训练:见《学练优》本课时练习“课堂达标练习” 第2题 【类型二】运用轴对称解决距离最短问题 例2:在图中直线l上找到一点M,使它到A,B两点的距离和最小. 解析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点. 【方法总结】利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.

人教版八年级上册13.4最短路径问题练习题

13.4课题学习最短路径问题 知识点: 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 同步练习: 1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. 2.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短, B A l 3..在图中直线l上找到一点M,使它到A,B两点的距离和最小.

4. 如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水. (1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方? 5. 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?

参考答案: 1. 2.这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点. 为了证明点C 的位置即为所求,我们不妨在直线上另外任取一点C ′,连接AC ′,BC ′,B ′C ′,证明AC +CB <AC ′+C ′B .如下: 证明:由作图可知,点B 和B ′关于直线l 对称, 所以直线l 是线段BB ′的垂直平分线. 因为点C 与C ′在直线l 上, 所以BC =B ′C ,BC ′=B ′C ′. 在△AB ′C ′中,AB ′<AC ′+B ′C ′, 所以AC +B ′C <AC ′+B ′C ′, 所以AC +BC <AC ′+C ′B . 3. 解:如图所示:(1)作点B 关于直线l 的对称点B ′; (2)连接AB ′交直线l 于点M . (3)则点M 即为所求的点. 4.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P , 则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12 AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求. (2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短. 5.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.

八年级上《最短路径问题》同步练习含答案

八年级上《最短路径问题》同步练习含答案 基础题 知识点最短路径问题 1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________. 2.已知,如图,在直线l的同侧有两点A,B. (1)在图1的直线上找一点P使PA+PB最短; (2)在图2的直线上找一点P,使PA-PB最长. 3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小. 4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?

中档题 5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置. 6.如图,在△ABC的一边AB上有一点P. (1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;

(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数. 7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点. (1)要使得△PEF的周长最小,试在图上确定点E、F的位置. (2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________. 8.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△周长最小,求∠AMN+∠ANM的度数.

人教版八年级数学上册13.4 课题学习 最短路径问题 (4)

13.4.课题学习《最短路径》教学设计 一、教材分析 1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。 2、目标和目标解析: (1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想. (2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想. 3、教学重、难点 教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题 教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题 突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决. 二、教学准备:多媒体课件、导学案

三、教学过程

基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的 必经线 路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的 同侧,如何在BC 上找到一点R ,使PR 与QR 的 和最小”. 问题5 造桥选址问题 如图,A 和B 两地在一条河的 两岸,现要在河上造一座桥MN.乔早在何处才能使从A 到B 的 路径AMNB 最短?(假定河的 两岸是平行的 直线,桥要与河垂直) 思维分析:1、如图假定任选位置造桥MN,连接AM和BN,从A 到B 的 路径是AM+MN+BN ,那么怎样确定什么情况下最短呢? 2、利用线段公理解决问题我们遇到了什么障碍呢? 思维点拨:改变AM+MN+BN 的 前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?(估计有以下方法) 1、把A 平移到岸边. 独立完 成,交 流经验 观察思考,动 手画图,用轴对称知识进 行解决 各抒己 见 合作与 体会转化思想, 体验轴对称知识的 应用 B A M N B A A B C P Q 山 河岸 大桥

八年级最短路径问题

最短路径问题 1、如图,在△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABD 的周长为15cm ,则△ABC 的周长是 (第1题) (第2题) 2、如图,△ABC 中,AB=BC ,D 是BC 边上一点,点A 在线段CD 的垂直平分线上,连接AD ,若∠B=50°,则∠BAD= 度。 3、如图,设△ABC 和△CDE 都是正三角形,且∠EBD = 62°,则∠AEB 的度数是为_________。 知识点一、最短路径 【知识梳理】 1、两定一动 (1)如图,点A 、B 在直线l 的两侧,在l 上求一点P ,使得PA +PB 最小。 (2)如图,点A 、B 在直线l 的同侧,在l 上求一点P ,使得PA +PB 最小。 第9题图D A B E C

2、三定一动 平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是。 3、一定两动型 如上图,点A是∠MON内部一点,在∠MON的两边OM、ON上各取一点B、C,与点A组成三角形,使△ABC的周长最小。 【例题精讲】 1、在平面直角坐标系中,点A(1,-2)与点B关于x轴对称,则点B的坐标是___________。 2、如图,∠AOB=30°,点P为∠AOB内一点,OP=8。点M、N分别在OA、OB上,则△PMN周长的最小值为__________。 (第2题)(第3题) 3、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且 A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是。 4、平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA-PB最大,则P点坐标_____。

八年级数学上册-13.4最短路径问题 教案

第十三章轴对称 13.4 课题学习最短路径问题【教材分析】 教学目标知识 技能 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用. 过程 方法 在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透感悟转化思想. 情感 态度 通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性. 重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题 难点如何利用轴对称将最短路径问题转化为线段和最小问题 【教学流程】 环节导学问题师生活动二次备课 情境引入如图所示,从A地到B地有三条路可供选择, 走哪条路最近?你的理由是什么? 前面我们研究过一些关于“两点的所有连 线中,线段最短”、“连接直线外一点与直线上 各点的所有线段中,垂线段最短”等的问题, 我们称它们为最短路径问题.现实生活中经常 涉及到选择最短路径的问题,本节将利用数学 知识探究数学史中著名的“将军饮马问题”. 教师出示问题,引导学生思 考、回答,引入课题。 自主探究 探究点一探索最短路径问题 活动一:相传,古希腊亚历山大里亚城里 有一位久负盛名的学者,名叫海伦.有一天, 一位将军专程拜访海伦,求教一个百思不得其 解的问题: 从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可 使他所走的路线全程最短? 精通数学、物理学的海伦稍加思索,利用 教师出示问题情境,激发学生 学习兴趣和探究欲望.

合 作 交 流 自 主 探 究 合 作 交 流 轴对称的知识回答了这个问题.这个问题后 来被称为“将军饮马问题”. 你能将这个问题抽象为数学问题吗? 追问1这是一个实际问题,你打算首先 做什么? 答:将A,B两地抽象为两个点,将河l抽 象为一条直线. 追问2你能用自己的语言说明这个问 题的意思,并把它抽象为数学问题吗? 答:(1)从A地出发,到河边l饮马,然 后到B地;(2)在河边饮马的地点有无穷多 处,把这些地点与A,B连接起来的两条线段 的长度之和,就是从A地到饮马地,再回到 B地的路程之和;(3)现在的问题是怎样找出 使两条线段长度之和为最短的直线l上的 点.设C为直线上的一个动点,上面的问题 就转化为:当点C在l的什么位置时,AC与 CB的和最小(如图). 问题2:如图,点A,B在直线l的同侧, 点C是直线上的一个动点,当点C在l的什 么位置时,AC与CB的和最小? 追问3:对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l上的任意一点C, 都保持CB与CB′的长度相等? 追问4:你能利用轴对称的有关知识,找 到上问中符合条件的点B′吗? 展示点评:作法: (1)作点B关于直线l的对称点B′; (2)连接AB′,与直线l交于点C. 则点C即为所求. 追问5、你能用所学的知识证明AC+ BC最短吗? 让学生将实际问题抽象为数 学问题,即将最短路径问题抽 象为“线段和最小问题” 学生尝试回答, 并互相补 充,最后达成共识: 教师引导学生,联想轴对 称知识解决,尝试作法,师生 共同矫正, 教师引导学生通过合作 交流完成证明;

八年级最短路径问题归纳小结

八年级最短路径问题归纳 小结 Last revision on 21 December 2020

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的) 中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】

AM +MN +NB 的值最小. B ,交直线l 于点N ,将N 点向左平移a 个单位得M . 【问题7】 作法 图形 原理 在1l 上求点A ,在2l 上求点B ,使PA +AB 值最小. 作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交2l 于A . 点到直线,垂线段最短. PA +AB 的最小值为线段P 'B 的长. 【问题8】 作法 图形 原理 A 为1l 上一定点, B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使 AM +MN +NB 的值最小. 作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N . 两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长. 【问题9】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最小. 连AB ,作AB 的中垂线与直线l 的交点即为P . 垂直平分上的点到线段两 端点的距离相等. PB PA -=0. 【问题10】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于第三边.PB PA -≤AB . PB PA -的最大值= AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点 即为P . 三角形任意两边之差小于第三边.PB PA -≤ AB '. PB PA -最大值= AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. PA +PB +PC 最小值= CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3B .6 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 A D E P B C

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: -①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. -③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题-求图中所有的最短路径. 【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题

】1作法图形【问题原理 A A 两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.B B,使上求一点P在直线l 值最小.PA+PB 【问题2】“将军饮马”作法图形原理 A A B'B关于作B l 的对称点两点之间线段最短.B

l l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为 P,使P在直线l 上求一点B' PA+PB 值最小. 3】作法图形原理【问题 P'l 1l 1 分别作点P 关于两直线的两点之间线段最短.M P PM +MN +PN 的最小值为对称点P'和P',连P'P',P l l l 、上2.M,P'''的长.N与两直线交点即为线段P 分别求点在直线l212N M 、N,使△PMN的周长P'' 最小. 4】作法【问题图形原理 l 1l1Q' Q关于直线分别作点Q 、P Q两点之间线段最短.MP l 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N ,使四边形N 、M PQMN P' 的周长最小. 【问题5】“造桥选址”作法图形原理范文

八年级数学最短路径问题

八年级数学最短路径问题 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小. 练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。 练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 提高训练 一、题中出现一个动点。 1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值. 例:如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

人教版八年级数学上册13.4 课题学习 最短路径问题(001)

第十一章三角形 11.1 与三角形有关的线段 11.1.1 三角形的边 学习目标:1.能利用轴对称解决简单的最短路径问题. 2.体会图形的变化在解决最值问题中的作用,感悟转 化思想. 重点:利用轴对称解决简单的最短路径问题 难点:利用轴对称解决简单的最短路径问题 一、知识链接 1.如图,连接A、B两点的所有连线中,哪条最短?为什么? 2.如图,点P是直线l外一点,点P与该直线l上各点连接的所 有线段中,哪条最短?为什么? 3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事 实? 自主学习 教学备注 学生在课前 完成自主学 习部分 1.问题引入 (见幻灯片 3)

(1)三角形的三边关系: ___________________________________; (2)直角三角形中边的关系: ______________________________ . 4.如图,如何作点A 关于直线l 的对称点? 一、要点探究 探究点1:牧人饮马问题 课堂探究 教学备注 配套PPT 讲授 2.探究点1新知讲授 (见幻灯片5-15) 实际问题:如图,牧马人从点A 地出发,到一条笔直的河边l 饮马,然后到B 地,牧马人到河边的什么地方饮马, 可使所走的路径最短? 数学问题:如图,点A 、B 在直线l 的同一侧,在直线l 上求作一点C,使AC+BC 最短.

想一想: 1.现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短? 2.如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等? 要点归纳:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C. 则点C 即为所求.如图所示. 你能用所学的知识证明你所作的点C使AC +BC最短吗? 证明:

人教版八年级数学13.4最短路径问题(包含答案)

13.4最短路径问题 知识要点: 1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置. 2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置. 一、单选题 1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在() A.在A的左侧B.在AB之间C.在BC之间D.B处 【答案】D 2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在() A.线段AB上B.线段AB的延长线上 C.线段AB的反向延长线上D.直线l上 【答案】A 3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是() A.B.C.

D. 【答案】D 4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是() A.30° B.36° C.50° D.60° 【答案】A 5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是() A.2.4B.4 C.4.8D.5 【答案】C 6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()

八年级数学最短路径问题复习过程

八年级数学最短路径 问题

八年级数学最短路径问题 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小. 练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。 练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 提高训练 一、题中出现一个动点。 1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值. 例:如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

人教版初二数学上册最短路径问题

13.4 课题学习最短路径问题 【教学目标】 教学知识点 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想. 能力训练要求 在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求 通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学. 【教学重难点】 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决. 【教学过程】 一、创设情景引入课题 如图所示,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?

师:前面我们研究过一些关于“两点的所有连线中,线段最短”、我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将继续研究最短路径问题。 (板书)课题13.4课题学习最短路径问题 学生思考教师展示问题,并观察图片,获得感性认识. 二、自主探究合作交流建构新知 追问1:观察思考,抽象为数学问题 这是一个实际问题,你打算首先做什么? 活动1:思考画图、得出数学问题 将A,B 两地抽象为两个点,将河l 抽象为一条直线. 追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数? 学问题吗. 师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).

人教版数学八年级上册-最短路径问题

最新人教版数学八年级上册最短路径问题1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB 最短,这时点C是直线l与AB的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.; 如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB 最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点. 为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下: 证明:由作图可知,点B和B′关于直线l对称, 所以直线l是线段BB′的垂直平分线. 因为点C与C′在直线l上, 所以BC=B′C,BC′=B′C′. 在△AB′C′中,AB′<AC′+B′C′, | 所以AC+B′C<AC′+B′C′, 所以AC+BC<AC′+C′B. 【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小. 分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′; (2)连接AB′交直线l于点M. (3)则点M即为所求的点. `

点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同. 警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址 选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决. 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.. 在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题. 【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水. (1)若要使厂部到A,B村的距离相等,则应选择在哪建厂 (2)若要使厂部到A,B两村的水管最短,应建在什么地方 分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点. (2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P 到A,B的距离相等.也可分别以A、B为圆心,以大于1 2AB为半径画弧,两弧交于两点,过这两点作直线,与EF的交点P即为所求. : (2)如图2,画出点A关于河岸EF的对称点A′,连接A′B交EF于P,则P到A,B的距离和最短.

初中数学八年级上册《最短路径问题》教学设计

13.4 课题学习 最短路径问题 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 一、情境导入 相传,古希腊有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 二、合作探究 探究点:最短路径问题 【类型一】 两点的所有连线中,线段最短 如图所示,在河a 两岸有A 、B 两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求?(画出图形,做出说明) 解析:利用两点之间线段最短得出答案. 解:如图所示,连接AB 交直线a 于点P ,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短. 方法总结:求直线异侧的两点与直线上 一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 【类型二】 运用轴对称解决距离最短问题 在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小. 解析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直线l 的交点M 即为所求的点. 解:如图所示:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′交直线l 于点M ;(3)点M 即为所求的点. 方法总结:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系求解. 【类型三】 最短路径选址问题 如图,小河边有两个村庄A ,B , 要在河边建一自来水厂向A 村与B 村供水. (1)若要使厂址到A ,B 两村的距离相等,则应选择在哪建厂(要求:保留作图痕迹,写出必要的文字说明)? (2)若要使厂址到A ,B 两村的水管最短, 应建在什么地方? 解析:(1)欲求到A 、B 两村的距离相等,即作出AB 的垂直平分线与EF 的交点即可,交点即为厂址所在位置;(2)利用轴对称求最短路线的方法是作出 A 点关于直线 EF 的

相关文档
最新文档