40W日光灯电子镇流器电路原理图和PCB图.doc

40W日光灯电子镇流器电路原理图和PCB图.doc

40W日光灯电子镇流器电路原理图和PCB图

荧光灯电子镇流器的工作原理分析

荧光灯电子镇流器的工作原理分析 工作原理 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来越被广泛使用。 电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 典型的电压馈电半桥式逆变电路如图所示。 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管VT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿;C2则通过VT2的基极-发射极放电,VT2导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b 的感应电势逐渐减小至零。VT2基极电位呈下降趋势,IC2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为: +VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1起到了限流的作用。

节能灯电路图

220V交流电源供电的电容限流式LED节能灯图 1、高亮LED应用电路图集 1.采用220V交流电源的电阻限流式小射灯或台灯 图1电路的特点是制作简单,根据本地区电源电压的高低,一般可用管子90-100只串联。管子的数量如果太少效率相对就较低。限流电阻R根据电源电压和管子的数量适当调整以控制发光管的电流,一般不要超过20mA。对于电源电压不稳定和波动较大的地区,发光管的电流也会跟着电压的波动而有所波动,这是它的缺点。限流电阻R的功率要求2W以上,以免发热损坏(发光管数量越少,R的阻值就要越大且功率也要越大)。本电路总耗电功率不足6W。如果用于制作射灯,则宜选用聚光型的发光管,如果用于制作一般照明台灯,则宜选用散光型的发光管。 / 2、2、采用恒流源电路的220V交流电源小射灯或节能照明灯 图2是采用恒流源的电路,虽然电路多用了几个元件,增加了一些成本,但使用效果要比只用电阻限流的电路好得多,即使电压波动较大,电路仍然能保持电流恒定不变,这对发光管的寿命是非常有利的,本电路中的主要元件三极管,要求其耐压要400V以上,功率也要10W以上的大功率管,如MJE13003、MJE13005等,并且要加上散热片,滤波电容C容量为4.7uF,耐压要有400V以上,发光管电流的大小由R2调整决定,为方便调整可用可变电阻调整后再换上相同阻值的固定电阻,本电路可带发光管数量少则十几只,最多可达到90多只,在此范围内的电流都能基本保持恒定不变。本电路使用发光管数量也不可太少,越少其效率也越低。本电路总耗电功率约6W。 3、采用220V交流电源的电容限流式节能照明灯 图3电路的优点是成本较低体积较小,电路的电流也相对恒定,通过管子的电流大小主要由C1决定。本电路具有完善的三重防冲击电流设计,能最大限度的保护发光管的安全。即R2防开灯时的大电流对整流管的冲击;电容C2起滤波并和R2、R3共同起防开灯时大

荧光灯镇流器原理

图1 电子镇流器实物图 根据实物绘制的电路原理图如图2所示。 20~40W电子镇流器原理与维修 图2 电路原理图 本电路由整流滤波电路、功率开关与驱动电路、镇流器与灯丝负载回路三部分组成。组成电路的各个元件的作用如下: ①整流二极管VD1~VD4和滤波电容器C1、C2串联组成桥式整流滤波电路,功能是将220V交流电经整流滤波后在C1、C2两端得到空载310V的直流电压,为后面的高频逆变电路提供工作电源。 ②功率三极管VT1、VT2,作为开关管使用,工作于饱和与截止状态,其开关速度要快。 ③电阻R1、R6是起振电阻,是为VT2初始导通提供偏置,从而激发VT1、VT2形成自激振荡。 同时电阻R1与电容C3并联组成降压启动电路,可在一定程度上减少过电压所带来的损失。为保证电容C3可靠工作,其耐压值应选择大于两倍的电源电压,C3耐压值为630V. ④二极管D5和D6,其作用是保护三极管VT1、VT2,并联在三极管基极和发射极之间可以大大削弱电荷存储效应,从而提高三极管开关速度。 ⑤变压器T起信号互感耦合作用。它是由单股芯线T1、T2、T3绕在磁环上形成的,由于开关管与其驱动电路部分是紧密联系相互依存,因此它们参数之间的关系在生产过程中比较难确定。此电路中T1为3圈、T2为3圈、T3为5圈。

⑥电容C4并接于VT2基极和发射极之间,可防止基极和发射极间电位突变,能在一定程度上保护三极管VT2. ⑦电阻R2、R3、R4、R5为保护电阻,用来保护三极管的,但是作用有限。 ⑧电容C5是启动电容,有隔直流通交流的作用,阻止310V的直流电压直接进入日光灯管,允许20kHz的高频交流电压通过。 ⑨扼流圈L、谐振电容C6组成串联谐振电路,其作用是起辉日光灯管和限制灯管工作电流。 电子镇流器的基本功能是将50Hz的工频电源转换成20kHz高频电源,而直接点亮日光灯管。其工作过程是:接通电源后,经整流滤波后的310V直流电压通过C3、R1并联再与R5串联,给VT2的基极提供一个窄电流脉冲使VT2首先导通。在VT2导通期间,电流流通路径是:+V→C5→灯管上端灯丝→C6→灯管下端灯丝→扼流圈L→变压器T3→VT2的集电极-发射极→地形成回路,对谐振电容C6充电。由于变压器T的线圈T3对T1和T2的感应耦合作用,T1上的感应电压将使三极管VT1导通,而T2上的感应电压将使VT2截止。在VT1饱和导通期间,电流流通路径是:谐振电容C6→灯管上端灯丝→C5→VT1的集电极-发射极→变压器T3→扼流圈L→灯管下端灯丝→C6,该电流流向即为C6的放电回路。借助于变压器T的耦合作用,使三极管VT1、VT2交替导通,输出方波脉冲电压,此电压通过扼流圈L、灯丝电阻、C6组成串联谐振,在C6两端产生一个高压脉冲,将日光灯管中的汞蒸气电离击穿形成导电通路而将灯管点亮。电路起振后,电容C4将通过二极管D6和三极管VT2迅速放电,以防止VT2无法退出饱和导通状态。当日光灯管被点亮后,其内阻急剧下降,该内阻并联于C6两端,故C6两端下降为正常的工作电压(约80V),维持日光灯管稳定的正常发光。

LED节能灯电路图

LED节能灯电路图--不需要外部开关的大功率LED灯具驱动电路图 随着新一代的新LED实现了较高的功率和效率,这些设备的应用逐渐扩展到了新的领域,如手电筒或车辆应用等。大功率LED与白炽灯泡及荧光灯管等共同应用于环境照明中。电流源是对LED供电的最佳方式。由于多数的能源,包括电池、发电机及工业主电源,越来越像电压源而不是像电流源,LED需要在其与电源之间插入某些电子电路。这种电路可以很简单,如同串联电阻器。但考虑到能源效率及其它因素,最好的是高效的电压馈入式电流源。对于电流大于0.35A的LED,感应式开关稳压通常是最佳选择。 本设计实例提供了一系列基于单电源集成电路开关稳压器电路,主要是为了提高效率和减小体积。电路设计师为了实现此目标,尽量减少使用较大的元件,如外接功率晶体管、开关、大电容、电流检测电阻,并采用持续的大密度光源尽可能扩展光照范围来维持电路正常运行。 图1、2、3中的电路适合采用三、四个碱性电池、镍氢电池(NiMH)或镉镍电池(Ni Cd)组成的电源供电。图4和图5中的电路可用于汽车,其配电系统的标称线路电压为12V、24V或42V。图4、5中的电路也可用于包括24V配电线路进行控制的工业系统和应急子系统及电信应用,其系统电源为–48V线路电压。 图一 这些电路的设计者们采用相同的概念:全面集成的单芯IC开关稳压器和微功耗运算放大器。运算放大器驱动IC上的1.25V反馈端子。尽管该节点针对的是标准电压稳压器的拓扑结构,运算放大器将其与小得多的电流检测电压及略有差异的电流调节器拓扑结构相匹配。这些电路都不需要使用外部电源开关。由于不需要平滑处理LED电流中的高频纹波,这种设计避免了开关稳压器中常用的较大值的滤波电容。所有电路的共同点是可以选择变暗功能,方法是在运算放大器的输入端引入可由电阻和电位器调节的偏置来实现。根据IC的不同,电阻及电位器可由内部稳压器的VD或CVL端子来供电。

电子镇流器的工作原理与常见故障修

电子镇流器的工作原理与常见故障修 一、概述 自GE公司的因曼博士(Inman)等在1938年发明了实际应用的荧光灯,到现在已有近70年的历史。虽然新型光源不断出现,但在一定的时间范围内,荧光灯作为主要照明光源的地位可能难以改变。在日光灯发展的过程中,廉价实用的电感镇流器和启辉器,解决了荧光灯的启动与限流问题,对荧光灯迅速发展和普及曾起到过积极推动作用。然而,时至今日,资源变得越来越紧张了,电感镇流器消耗太多的有色金属使人们一定要想办法用更廉价的电子产品来替代它,电子镇流器在上世纪八十年代应运而生,到目前已 经非常普及。 电子镇流器所用元器件少,电路简单,容易制造,并且市场需求量大,是电子爱好者开始创业时的首选产品,有条件的同学,如果打算出去后大干一场的话,也可以考虑先制造电子镇流器。据我所知在仙 桃市,就有几个人在专门制造电子镇流器。 本讲座开办的目的是让同学们关注灯具的变化,了解日光灯电子镇流器的工作原理,学会修理和制 造电子镇流器。 二、普通日光灯的缺陷 普通日光灯的缺陷除消耗有色金属太多外,其对电能的损耗也是不容忽视的。电感镇流器的绕组的欧姆损耗和铁芯的涡流损耗较大,约占灯功率损耗的15%左右。在荧光灯如此普及的今天,电感镇流器所消耗的总能量是十分巨大的。此外,电感镇流器的功率因数较低,一般为0.5左右,会造成电网的严重污染,电力部门不得不加大功率因数补偿电容,增加了电力成本。 三、电子镇流器的特点 电子镇流器的工作原理是将工频(50Hz或60Hz)电源变换成20~50KHz左右高频电源,直接点灯,无需其它限流器件。与电感镇流器相比,电子镇流器具有以下优点: 1、节能: 1)照明效率提高 普通荧光灯的工作频率为50Hz,其照明高效率因所谓的正电(或负电)降落的存在而很低,当电源频率在1000Hz以上时,这种正电(或负电)降落现象消失。而电子镇流器工作频率一般都在20一50kHz,不产生正电或负电电位跌落,这就是电子镇流器能提高照明效率的原因。 2)电子镇流器自身功率损耗低。 电子镇流器的自身消耗功率较难测量,经间接测量估算,工作点调整较好的电子镇流器,其自身消 耗一般都在灯功率的5%以下。 2、其它优点 由于应用了高频电感,电子镇流器体积小,重量轻;低电压可启动点燃灯管;无需启辉器;无频闪, 无噪声等等。 四、电子镇流器的组成与主流电路分析 1、电子镇流器的组成

电子镇流器的原理及维修

电子镇流器原理与维修 节能灯日渐普及,由于电子镇流器减少铁耗,节省能源,是灯光源发展的方向。节能灯的故障大部分出在电子镇流器。现介绍常见故障的修理方法。 由于线路直接与市电相通,有触电的危险,修理时最好准备一只隔离变压器,既安全又便于通电检查。 首先应进行外观检查,然后可通电检测。加电之前用万用表测A、B两点应有几十千欧的阻值;加电后A、B点应有300V直流电压,灯管应能起辉;若不亮应弄清故障点在触发电路或串谐起辉电路。用交流500V挡监测灯管两端有无交流电压,若有交流电压说明电路已起振,故障点在串谐起辉电路,可能是起辉电路漏电;若无交流电压,可能为起辉电容击穿短路或没有起振,应重点检查触发电路。图2中的C2、R1、D;图1中的R2、R3阻值增大或V2性能变差,提供的偏流不足不能使V2进入自激状态,只要适当调整阻值就会起振。C2漏电使双向二极管达不到转折电压,V2也不能进入振荡状态,可换一只双向二极管一试。触发管至b极串接的电阻增大,加上管子的β值偏低时就很难起振。 对三极管的要求:瓦数大的灯管配用三极管的PCM、ICM也要大些,两只三极管交替工作在饱和导通、截止状态,ICM要足够大才行。一般30~40瓦灯管均用MJE13005-7或BUT11A,并加有铝板散热器,以免夏天环境温度升高就可能超温损坏。常用的高反压管有2SC2482、DK52、DK53等,除2482外均可加装散热板,若是散热板与管子c极导通的就有高电压,要注意绝缘并防止极间短路。 几种典型故障分析: 1、灯管能起辉,但有明显闪烁,图1中C4、C5有一只容值减小;这两只电解电容既起电源滤波作用又参与振荡,容值减小充放电电流也要减小,会导致灯管闪烁。 2、灯管不起辉且仅为两端发亮(有时发红),大多是起辉电容击穿,时间一长灯丝要受损,这在双U型灯中最敏感。此外,图2中的滤波电容值减小到1μF以下或起辉电容容值过份偏小会出现滚转光圈(也叫螺旋光)并伴有闪烁。 3、30~40瓦直管日光灯的镇流器分两部分装于灯管两端,为方便更换灯管,灯丝与线路采用可拆卸式弹性连接(这点与U型节能灯不同)。应注意:装上灯管后要检查灯丝与线路可靠接通后,才通电,如果通电不亮再调整灯管,在调整过程中极易损坏三极管。因为电子镇流器工作在20kHz以上高频振荡工况下,灯丝是振荡回路的一部分,回路中的电感、电容都是储能元件,灯丝回路间断性通断,线路中势必出现幅值很高的尖脉冲,很容易击穿三极管。对于电感式镇流器日光灯通电后调整灯管是司空习惯的,而电子镇流器日光灯则应先关断电源再调整。 小瓦数炭膜电阻焊接时间不能太长,过份受热会使两端引线帽的压接处松动,阻值变大且不稳定;特别是在三极管b极串接电路中,就会出现间断性振荡,甚至击穿管子,且不易检查出故障点,最好用不小于1/4瓦的金属膜电阻。 附图3~图10为常见的日光灯电子镇流器测绘电路图(图9、图10待续)。

110V与220V节能灯电子镇流器线路的区别

110V节能灯电子镇流器的设计 关键字:EB(电子镇流器或电子安定器),倍压电路。 通常设计110V的EB比220V的EB难度要高点,尤其是高功率因数的,下面以几副常规的原理图引领大家进入文章的主题. 图1 220V通用线路 图2 100-110V倍压线路 图3 100-110V直接驱动线路A

图4 100-110V直接驱动线路A 为何110V的EB比220V的EB难度要高,最直接的影响是灯的启动问题,尤其是整灯在高温低压时,容易出现灯管不能成功启动,只有两边灯丝发红。原因是在高温时磁环和三极管的驱动能力降低,以至灯启动电压和灯启动电流供应不足而不能使灯管成功引燃。灯启动电压和启动电流供应不足也影响低温低压时灯的启动。另外,要想EB输出相同的功率,110V的EB的输出电流自然要比220V的输出电流大一倍,输出电流受控的关键点是EB的输出电感(也称扼流圈),此电感的选值太大,输出功率不足。选值太小,便会引至EB的工作频率严重超标,三极管的开关损耗会上升,引至管子发热。 在线路的拓朴上,以上四副原理图是一样的,都是串联谐振正反馈电路,只是有一些巧妙的地方和元器件的数值选取不同。此电路的最佳工作状态,必须符合: 式1 式中:Fw为工作频率。Fo为整个谐振电路的固有频率。以简单的词语说明就是:工作频率与输出电感和谐振电容的固有频率要相等,电路才能工作于最佳状态,此时负载电路等效于一个电阻,可提高整个EB 的效率,降低热损耗,整机性能上升。 图1是常规的220V原理图,图2是110V经过倍压的原理图。图3为110V双谐振电容直接驱动原理图,图4是双谐振电容与灯丝交叉的直接驱动原理图。 图1不适宜用在110电路当中,何解?是因为要维持确定的功率,输出电感L2必须选得很小,要符合上式,谐振电容C6将要选取得很大,而C6不能选取得太大,因为太大了,启动电压将降低。原因是:设有一高频电流流过灯丝,C6增大,等效于C6的电阻减小,C6两端的电压便下降,输出电感和灯丝的压降便上升,C6两端的电压下降,等于灯管电压下降,便很容易出现前文所述的高温不能启动问题。 因为这样,人们便研究出了如图2所示的倍压整流电路,D1,D1,C1构成倍压全波整流滤波电路,整流滤波后的电压可用下式表示: 式2 式中:V o为输出直流电压,Vin为输入交流电压。此电路的缺点是在120V以上的线路当中难以被采用,如127V的电子节能灯,原因?你可以按上式算一算120V的节能灯,在正110%的电压环境132V交流电压供给的情况下整流滤波后的电压有多高,耐压差一点的三极管受得了吗?还得提醒你:三极管在高温时它的最高耐压值比常温耐压值是会有小许下降的。当供电电压超过三极管最高耐压值,三极管便出现二次击穿,引起集电极和发射极短路。 图3中比图1增加了补偿电容C0,可有效的符合谐振公式(式1),令EB的效率提高了很多,启动性能也大为提高,是较为理想的直接驱动电路。此电路的磁环材料宜选用BS温度曲线较为平坦的2K或2.5K材料。三极管的集电极电流Ic和放大倍数β宜大些。此电路也有一个较大的缺点,就是当灯工作了一定时间后,灯管阴极完全老化,灯丝开路,EB电路因C0的接入仍然构成串联谐振正反馈电路,线路仍然工作,线路功率会比正常时大一倍,若此时EB不损坏,灯管两端发红,温度很高,足可以将固定灯管的塑料件溶掉。 图4是比图3更理想的直接驱动电路,采用双谐振电容与灯丝交叉的方法取得更好的启动性能,工作频

电子镇流器电路原理图及故障分析

电子镇流器电路原理图及故障分析 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来越被广泛使用。电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管VT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿;C2则通过VT2的基极-发射极放电,VT2导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b的感应电势逐渐减小至零。VT2基极电位呈下降趋势,IC2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为:+VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1起到了限流的作用。 因接错输出线,导致灯管工作电流波峰比(Ilcf)和灯丝电流波峰比(Ifcf)严重偏离正常值!这样会加重灯管快速黑头或整流效应!

LED节能灯电路

为了让广大的电子爱好者和电子DIY发烧友能够自己制作简易的LED节能灯,现博主特意为广大的朋友奉献一款LED节能灯的制作资料和LED灯的简易制作过程包含LED节能灯制作电路图,以下是38LED灯的制作电路图: 图1 图1是一款LED灯杯的实用电路图,该灯使用220V电源供电,220V交流电经C1降压电容降压后经全桥整流再通过C2滤波后经限流电阻R3给串联的38颗LED提供恒流电源.LED的额定电流为20mA,但是我们在制作节能灯的时候要考虑很多方面的因素对LED的影响,包括光衰和发热的问题,我们在做这种灯的时候因为LED的安装密度比较高,热量不容易散出,LED的温度对光衰和寿命影响很大,如果散热不好很容易产生光衰,因为LED的特性是温度升高电流就会增大,所以一般在做大功率照明时散热的问题是最重要的,将影响到LED的稳定性,小功率一般都采取自散热方式,所以在电路设计时电流不宜过大.图中R1是保护电阻,R2是电容C1的卸放电阻,R3是限流电阻防止电压升高和温度升高LED 的电流增大,C2是滤波电容,实际在LED电路中可以不用滤波电路,C2是用来防止开灯时的冲击电流对LED的损害,开灯的瞬间因为C1的存在会有一个很大的充电电流,该电流流过LED将会对LED产生损伤,有了C2的介入,开灯的充电电流完全被C2吸收起到了开灯防冲击保护.该电路是小功率灯杯最实用的电路,占用体积小可以方便的装在空间较小的灯杯里,现在被灯杯产品广泛的采用.优点:恒流源,电源功耗小,体积小,经济实用.但是在设计时降压电容要采用耐压在400V以上的涤纶电容或CBB电容,滤波电容要用耐压250v以上.此电路适合驱动20-40只20mA的LED. 图2是电路板图PCB

电子镇流器的工作原理

第二章电子镇流器的工作原理 2.1荧光灯简介 2.1.1气体放电灯的基本原理 所谓气体放电灯是指带有能量的电子碰撞气体原子造成气体放电的现象,利用此原理所造成的气体放电灯有多种,使用较多的是辉光放电与弧光放电两种。不论哪一种,其结构大同小异,一般包括阳极、阴极,灯管外壳,灯管内填充的气体。对于交流灯来说则无阴极与阳极之分,两电极可以交替作为阴、阳极之用。对于气体放电灯来说,当加至灯管阴极与阳极之间的电场足够大,便会使灯管放电,此放电过程可以分为三个阶段: 第一阶段:在外加电场的作用下,自由电子被加速。 第二阶段:加速的自由电子与灯管内的气体原子碰撞,使得气体原子呈现激发状态。 第三阶段:受激发的气体,能量激发到更高的能阶并返回基态,所吸收的能量以辐射光的形式释放出来。若电子碰撞气体原子的能量足够大,则会使气体原子产生电离,电离所产生的电子又在电场中加速造成再次电离,使得自由电子成倍数增加,称此为汤生雪崩效应(Thomson Avalanche Effect)。所以,只要外加电场持续存在,则上述的放电过程就不断的重复,也就不断的放光。由于电流的主要成分为电子,为了使放电电流持续进行,阴极必须不断的提供自由电子,提供自由电子的主要方式分别叙述如下: (1)热电子发射:当阴极的温度越高,则越多的电子得到足够的能量从阴极中发射出来,此种发射方式是弧光放电灯主要的发射形式。而T5荧光灯就属于弧光放电灯。 (2)正离子轰击发射:当电极之间的电位差足够大时,使得正离子的速度足够快,此速度足够快的正离子撞击阴极便会轰击出自由电子。因此,电极材料必须能承受正离子的轰击,否则会使得电极的材料大量飞溅,减短电极的寿命并造成灯管早期发黑的现象。辉光放电灯便是以正离子轰击发射为主要发射形式。 (3)场致发射:若外加电场足够大,使得阴极获得足够的能量而直接发射电子,此现象称为场致发射。在气体放电灯中,有时灯管上的电压并不高,但如果在电极附近很小的范围内形成很强的空间电荷层,则可能在此区域造成很强

LED节能灯电路图之一

Led节能灯电路图(一) LED通用照明应用及发展前景 LED除了广泛应用移动设备、中大尺寸液晶显示屏 ( LCD)背光及 LED标牌等领域外,如今也在越来越多地用于 LED汽车内部 / 外部照明,如前照灯、雾灯、尾灯、停车灯、仪表盘背光、车顶灯、阅读灯和氛围灯等,以及住宅照明和建筑物装饰照明等 LED通用照明。 LED通用照明应用覆盖范围广,低至 3W到 15W的 LED住宅照明,中等功率有如 15W至 75W 的商业及建筑物装饰性照明,高至 75W到 250W的户外及基础设施照明,典型照明产品有如 MR16/GU10灯、 E27/A19灯泡、镇流器、筒灯、 T8 灯管、街灯等。 LED通用照明应用极具发展前景。各种 LED通用照明灯具中,近期来看,LED灯泡(如A19 LED灯泡)的发展势头惊

人。据统计,2012 年全球 LED灯泡出货量达 7。35 亿只,2013年增长到 12。25 亿只; 2014年迎来 LED灯泡市场的引爆点, 2015年 LED灯泡平均价格将会降至 10美元以下,出货量预计将进一步增长至 39 亿只左右。 高能效驱动器是 LED通用照明的重点 要将 LED照明的节能功能发挥至最高,就需要高能效的LED驱动器。我们以 LED灯泡为例,典型的 LED灯泡包含LED阵列、驱动电路、散光罩、散热片和螺旋灯头等主要组件,见图 2 的左半部分。就驱动电路而言,高能效 LED驱动器 IC无疑是其中的重点。图 2 的右半部分显示了典型的LED灯泡驱动电路,其中使用的是典型的独立式 LED驱动器。 要发挥 LED通用照明的高能效优势, LED驱动器存在多重挑战。首先就是能效至关重要。以 LED灯泡为例,其形状固

电子镇流器工作原理及分类

电子镇流器的三种启动类型 1、热启动(Pre-heated Start): 欧洲地区又叫做柔性启动(Soft Start)、暖性启动(Warm Start)、或者北美地区又叫可程式启动(Programmed Start),此种设计方式系于灯管启动时,先给予灯丝预热或者加温,其最大特色为不受灯管开关点灭次数的影响,减轻灯管黑化现象,可以延长灯管的寿命,适合开关频率高的使用场所,或者维修困难的场所,如果配合使用调光电子镇流器,更必须使用含有预热式启动功能的电子镇流器,换而言之,预热启动式的电子镇流器对灯管的保护提供最佳的保证。 2、快速启动(Rapid Start): 这是一类非常特别的启动方式,在美国市场上比较普遍,其特点是从启动至灯管点灯使用过程中,一直在灯丝上保留一很低的电压,因此其耗电量比预热或者瞬时启动型多出1.5W 至2W,一般以串联设计居多,这种启动方式较适合气候较冷的地区。 3、瞬时启动(Instant Start): 其特性是利用高压启动灯管(启动电压约介于800V至1200V之间),点灯非常容易,但易造成灯管黑化,灯丝断裂,灯管寿命降低,其最大竞争优势是价格较低,适合用在开关次数不频繁的场所(每天开关次数约小于5次者比较适用) 镇流器/电子镇流器的常用术语 1、镇流器(安定器)损失值(Ballast Loss) 这一数值代表电子镇流器(电子安定器)本身所消耗的能源转换成热能而非光能,此数值可由总输出功率减去全部灯管所消耗的功率,一般而言,传统40W双灯之镇流器约消耗22W,而电子镇流器约为7W。 2、光输出比值(Ballast Factor) 这一数值可以看出使用电子镇流器光输出的相对效果,其值是由测得电子镇流器的光输出值,除以标准镇流器点灯下的光输出值,所求得百分比,一般而言,此一数值愈高,代表光输出效果愈佳,对电子镇流器而言,不得小于0.9,但也有为专门强调高输出值而设计的

电子节能灯电路原理图及维修方法

电子节能灯电路原理图及维修方法 09-10-15 09:14 发表于:《镇江HAM之家》分类:未分类 维修电子节能灯,首先要排除假故障。关灯后节能灯有间隙性的闪光,这并不是灯的质量问题。主要原因是电工线路安装不规范,将开关设在零线造成的。只要把进线端的零线与火线调换一下即可。使用了带氖灯的开关,关灯后仍然能形成微流通路,或借线安装双联开关的,会造成有时关灯后有闪光现象。 电子节能灯有玻罩型和裸露型。玻罩型又有球型、球柱型、工艺型等三个系列,前两个系列均有全透明、刻花、彩色刻花和乳白色4个品种。 它具有外形美观、安装时不易损坏灯管、耐碰撞等优点;裸露型则有H型、UH型、3U型、4U型、2D型及螺旋型等。按发光的颜色分,则可分为红、绿、蓝、黄(色温为2700K,属暖色光,类似于白炽灯的光色)、白(色温以6400K居多,属冷色光,类似于日光灯的光色);而色温为5000K的灯管因光色接近于自然光,对眼睛无刺激,更适合于学生和精细工作。本文介绍的电子节能灯电路见图1,印板图见图2。该电路已加有软启动(灯丝预热)电路,可延长灯管寿命。多应用于护目灯和外销灯具中。 维修电子节能灯,首先要排除假故障。关灯后节能灯有间隙性的闪光,这并不是灯的质量问题。主要原因是电工线路安装不规范,将开关设在零线造成的。只要把进线端的零线与火线调换一下即可。使用了带氖灯的开关,关灯后仍然能形成微流通路,或借线安装双联开关的,会造成有时关灯后有闪光现象。 维修电子节能灯时,为安全应用1:1隔离变压器隔离市电。 一、灯不能正常点亮的检修 1.常见为谐振电容C6击穿(短路)或耐压降低(软击穿),应换为耐压在1kV以上的同容量优质涤纶或CBB电容。 2.灯管灯丝开路。若灯管未严重发黑,可在断丝灯脚两端并联0.047μF/400V的涤纶电容后应急使用。 3.R1、R2开路或变值(一般以R1故障可能性较大),用同阻值的1/4W优质电阻代换。 4.三极管开路。如发现只有一只三极管开路,但不能更换一只,而应更换一对耐压在400V以上的同型号配对开关管。否则容易出现灯光打滚或再次烧管。 5.灯光闪烁不停。灯管若未严重发黑,检查D5、D6有无虚焊或开路,若D5、D6软击穿或滤波电容C1漏液及不良,也会使灯光闪烁不停。 6.灯难以点亮,有时用手触摸灯管能点亮或灯光打滚,这可能是C3、C4容量不足、不配对。

电子镇流器线路图资料

电子镇流器线路图大全1图片: 图片: 图片:

图片:

浅析新型逆变式电子镇流器工作原理与设计方法(组图) 发布日期:2005-2005-09-10文章来源:谢勇张纳敏照明工程师社区浏览次数:15387 摘要:介绍一种新型逆变式电子镇流器电路结构,该电子镇流器利用电感、电容和二极管构成的辅助电路实现输入电流波形的校正并使功率开关管工作在零电压开关状态,具有高功率因数、高工作效率、低波峰系数和电路结构简单的特点。分析了电路的工作原理,介绍了电路参数设计方法,给出了实验结果。 1 引言 由于电子镇流器具有较高的灯光效、高的功率因数、重量轻、无闪烁、无噪声和使用电压范围较宽(170~270V)等优点,在我国已得到广泛的应用。电子镇流器功率虽小,但使用量极大。因而其性能好坏直接影响到节电效果和对电网污染的程度。本文介绍的电子镇流器不但性能好,而且电路结构简单,成本低,具有较好的应用前景。 2 电路工作原理分析 2.1 电路结构 新型逆变式电子镇流器主电路如图1所示,图中CS为隔直电容,虚线所包围的部分为实现高功率因数而附加的电路,电感L为一个能量传输者传递着电流,同时也起着提高直流电压和电流波形校正的作用。两个电容Cx、CY为两个小型能量槽储存一部分能量,这两个能量槽在高频方式下完成充放电功能。两个二极管VDx、VDy引导电感电流进入电解电容C或负载回路。由于附加能量处理单元的作用,使整流二极管导通角增大到180°。电感L中的电流是一个高频振荡波形,其平均值电流跟随输入电压的波形,从而达到功率因数校正的目的。R1、C1、双向触发二极管VD4为触发启动电路。 2.2 工作过程 为了分析方便,输入电压和整流桥被等效成Urec(t)和VDr表示,其中Urec(t)=Uimㄧsinωtㄧ,Uim为输入电压峰值,ω为输入交流电压频率。灯负载回路等效成一个电流源电路,其电流表达式为io(t)=Iomsinωot(Iom为负载电流幅值,ωo为功率管开关频率)。由于逆变电路开关频率远比输入交流电压频率高,在分析过程的每一开关周期中可认为输入电压是近似不变的。又由于该逆变电路在输入电压峰值附近和输入电压瞬时值较低时的工作状态略有不同,分析时按两种情况讨论。对应的等效电路图及工作波形图分别如图2和图3所示。 第一种工作情况:这种工作情况对应于输入电压瞬时值较低时的工作状态。整个工作过程分五个阶段,此种情况下Ucx最大值低于电解电容C两端直流电压Udc,而且电感电流iL是断续的。

日光灯、启辉器、镇流器的各部分的原理、作用

日光灯、启辉器、镇流器的各部分的原理、作用 电源接通后,220V交流电经过镇流器,在镇流器互感的作用下产生约600V的高压,加在灯管上,灯管无反映,但并联在灯管另一边的起辉器,由于通过灯丝得到了600V的高压电,并加在了起辉器的两端,由于起辉器内部的氖泡承受不了600V的高压,击穿氖泡里的氖气,而发出红光,并发出热量,氖泡里的热敏触点,在热力的作用下,身展,并碰到另一个触点,接触上后,此时,氖泡处于短路状态,短路后,灯管的灯丝在短路的作用下,通电,发光,发热。由于,氖泡内短路,氖泡两端不在有电,不一会,氖泡里的热敏丝冷却,而收缩,触点断开。由于,起辉器内不的氖泡里的热敏丝断开,所以,灯管两端的灯丝得不到电压而停止发光发热,但灯管内不的水银蒸气未凉,在起辉器断开的同时,灯管里的水银蒸汽在热力的作用下,和600V高压的作用下,导通发光。发光后的灯管两端电压积聚下降,降到了110V左右。灯管在110V交流电的供应下,稳定的工作,而,起辉器由于电压降到了110V,内部的氖泡无法导通发光,所以,起辉器不在动作。到 此,日光灯的工作程序,全部完成。 如果一次未能启动灯管的话,起辉 器将反复的通断,直到灯管正常工 作位止。 镇流器的作用是:升压和稳压 起辉器的作用是:启动灯管 1.日光灯的启辉器的工作原理是 怎么样的?如果不用镇流器直接将 220V接上灯管 会有什么反应没? 答:刚接通灯具电源时全部电压加 在启辉器上,启辉器放电而发热双金属片弯曲 接通电源,接通后启辉器没有电压放电停止双金属片冷却断开,在断开的瞬间灯 管发光,起动后一半以上的电压降落在镇流器上,启辉器电压不足不能放电保持 断开状态 不用镇流器烧会烧毁灯管 2.启辉器 启辉器是老式的日光灯必需的一个元件。其构造是一个冲氖气的小灯泡,但里 面不是灯丝,是由双金属片做成的一个接触开关。起辉器在日光灯管电路中与 镇流器一同发挥作用。当日光灯管电路接通的时候,220付电压使氖气发出红色 的辉光,同时生热,双金属片受热变形,两灯柱由断开变成接通,接通瞬间电 路中的镇流器产生冲击电压,将日光灯管点亮。日光灯管点亮以后,所需要的 电压很低,具体是由镇流器控制的,这个电压不足以支持氖泡继续发光,于是 起辉器熄灭,双金属片冷却复原。 “启辉器”也叫“启动器”也叫“氖气启动器” 作用是当启动时加热灯丝,启动后电流中电子撞击电极时能产生足够的电子。当按下开关时, 让电流流经灯丝,待灯丝加热至能够产生足够的热电子时, 这些逃脱灯丝的电子,经灯管两端的电压(场)作用而加速=> 碰撞=> 游离更多电子=> 加速=> ...循环 於是原本不易导电的气体灯管,突然变成容易导电的游离气体。 於是放电过程开始进行了! 在加热的过程中,一直试图产生放电过程

节能灯电子镇流器工作原理

节能灯电子镇流器工作原理 这几年来,电子镇流荧光灯行业持续大发展,产品水平不断提高,中国在世界上作为节能灯大国的地位已经确立;中国还要进一步成为节能灯强国,这就需要对产品技术和相应的技术基础理论进行进一步的探索。在对灯用三极管损坏机理的深入研讨中,笔者感到这以前对荧光灯电子镇流工作原理的描述越来越满足不了需要,甚至其中还有谬误之处,有必要对其进行更深入仔细的研究探讨。为避免复杂的数学推导,本文用较多的实测波形图加以说明。 电子镇流器工作最基本的原理是把50HZ 的工频交流电,变成20-50KHZ 的较高频率的交流电,半桥串联谐振逆变电路中上下两个三极管在谐振回路电容、电感、灯管、磁环的配合下轮流导通和截止,把工频交流电整流后的直流电变成较高频率的交流电。但是,具体工作过程中,不少书刊上把谐振回路电容充放电作为主要因素来描述,甚至认为“振荡电路的振荡频率是由振荡电路充放电的时间常数决定的”。 我们感到谐振回路电容充电和放电是变流过程中的一个重要因素,但是,振荡电路的振荡频率却不能说就是由振荡电路的充放电时间常数决定的,电路工作状态下可饱和脉冲变压器(磁环)磁导率变化曲线的饱和点和三极管的存储时间ts 是工作周期的重要决定因素。 三极管开关工作的具体过程中,不少书刊认为“基极电位转变为负电位”使导通三极管转变为截止,”T1(磁环)饱和后,各个绕组中的感应电势为零”“VT1 基极电位升高VT2 基极电位下降”;我们认为实际工作情况不是这样的。 一、三极管开关工作的三个重要转折点: 1、三极管怎样由导通转变为截止——第一个转折点: 不管是图1 用触发管DB3 产生三极管的起始基极电流Ib,还是基极回路带电容的半桥电路由基极偏置电阻产生三极管VT2 的起始基极电流Ib,三极管的Ib 产生集电极电流Ic,通过磁环绕组感应,强烈的正反馈使Ic 迅速增长,三极管导通,那么三极管是怎样由导通转变为截止的? 图1 原理图

节能灯的维修电路图及原理分析

节能灯的维修电路图及原理分析 根据实物绘制的大海牌30W节能灯电原理见附图所示。供参考。 ??一、各部分电路原理分析市电源由D1~D4整流、C1滤波后.形成300V左右的直流电压。 ?? 由R6、C7、D9组成启动电路,整流后的直流电经过R6对C7充电,当C7两端电压充到D9的转折电压后,触发二极管D9导通,c7经D9向三极管T2基极放电,使T2导通后迅速达到饱和导通状态。 ?? 由T1、T2、C4、C2、高频变压器和L组成高频自激振荡电路,当T2导通,T1截止时电压向c4、c2充电。流经高频变压器初级线圈LA中的充电电流逐渐增大,当LA电流增大到一定程度时,变压器的磁芯达到饱和,C4上电荷不再增大,流过l.的电流开始减小。这时,次级线圈k、k的电压极性发生倒相变化,使Lc中感生电动势上负下正,LB中的感生电动势上正下负,这样就迫使T2由导通变为截止,T1由截止变为导通。C4开始放电,当放电电流增大到一定程度后,变压器磁芯又发生饱和,使LBk、Lc的电压极性又发生变化,LB上的感生电动势的方向为上负下正;Lc上的感生电动势的方向为上正下负,这又迫使T2由截止变为导通,T1由导通变为截止.这样T1、T2在高频变压器控制下周而复始地导通/截止,形成高频振荡,使灯管得到高频高压供电。 ?? 为了满足启动点亮灯管所需的电压,电路设置了主要由C2和L等元件组成的串联谐振电路。D6、D7的作用分别是防止反向峰值电压击穿T1、T2。R3、R4为负反馈电阻,用于T1、T2的过流保护。?? 二、检修经验 ?? 1.节能灯不亮 ?? 打开灯体即看到保险管已发黑。R1、R2(15Ω、限流电阻已烧毁;用数字万用表分别测量T1、 1.2c—e结已短路:经查D1、D2、D3、D4完好。针对这种情况,更换同种规格保险管及R1、R2、T1、T2后排除故障。 ?? 2.节能灯不亮(或灯丝微红)打开灯体,其他各元件外观无异常,只是C2电容变黑。该故障大多是由于C2的耐压值不够所引起的。只要将其更换为同容量的耐压为1200V以上的瓷片或CBB型电容器,故障即可排除。 ?? 3.节能灯不亮 ?? 打开灯体,拆下灯丝与线路板端子连接线.用万用表测量灯丝已断路(正常应为5-16Ω),更换灯管。 ?? 4.节能灯发光弱或闪烁 ?? 该类情况多数是C1电解电容接触不良或整流二极管D1、D2、D3、D4有虚焊造成的。其次是供电电压不足l87V。第三可能是T1、T2性能变差所致。另外,还应仔细检查灯卡口、灯座连线,灯丝引线连接。还应仔细检查印刷线路板、电子元器件有无断条、虚焊、脱焊、变形、膨起等,作为判断故障的依据。 ?? 三、改进 ?? 1.在T1、三极管加装散热片。2.在灯体上加开散热孔。这样可大大延长节能灯的使用寿命。 电子节能灯的维修电路图及原理分析 维修电子节能灯,首先要排除假故障。关灯后节能灯有间隙性的闪光,这并不是灯的质量问题。主要原因是电工线路安装不规范,将开关设在零线造成的。只要把进线端的零线与火线调换一下即可。使用了带氖灯的开关,关灯后仍然能形成微流通路,或借线安装双联开关的,会造成有时关灯后有闪光 现象。 电子节能灯有玻罩型和裸露型。玻罩型又有球型、球柱型、工艺型等三个系列,前两个系列均有全透明、刻花、彩色刻花和乳白色4个品种。它具有外形美观、安装时不易损坏灯管、耐碰撞等优点;裸露型则有H型、UH型、3U型、4U型、2D型及螺旋型等。按发光的颜色分,则可分为红、绿、蓝、黄(色温为2700K,属暖色光,类似于白炽灯的光色)、白(色温以6400K居多,属冷色光,类似于日光灯的光色);而色温为5000K的灯管因光色接近于自然光,对眼睛无刺激,更适合于学生和精细工作。本文介绍的电子节能灯电路见图1,印板图见图2。该电路已加有软启动(灯丝预热)电路,可延长灯管寿命。多应用于护目灯和外销灯具中。

照明电路常见故障及其检修

照明电路常见故障及检修 照明电路是由引入电源线连通电度表、总开关、导线、分路出线发生故障,发生故障时应逐步依次从每个组成部分开始检查。一般顺序是从电源开始检查,一直到用电设备。 一、照明电路的常见故障 照明电路的常见故障主要有断路、短路和漏电三种。 1、断路 相线、零线均可能出现断路。断路故障发生后,负载将不能正常工作。三相四线制供电线路负载不平衡时,如零线断线会造成三相电压不平衡,负载大的一相相电压低,负载小的一相相电压增高,如负载是白炽灯,则会出现一相灯光暗淡,而接在另一相上的灯又变得很亮,同时零线断路负载侧将出现对地电压。 产生断路的原因:主要是熔丝熔断、线头松脱、断线、开关没有接通、铝线接头腐蚀等。 断路故障的检查:如果一个灯泡不亮而其他灯泡都亮,应首先检查是否灯丝烧断;若灯丝未断,则应检查开关和灯头是否接触不良、有无断线等。为了尽快查出故障点,可用验电器测灯座(灯头)的两极是否有电,若两极都不亮说明相线断路;若两极都亮(带灯泡测试),说明中性线(零线)断路;若一极亮一极不亮,说明灯丝未接通。对于日光灯来说,应对启辉器进行检查。如果几盏电灯都不亮,应首先检查总保险是否熔断或总闸是否接通,也可按上述方法及验电器判断故障。 2、短路 短路故障表现为熔断器熔丝爆断;短路点处有明显烧痕、绝缘碳化,严重的会使导线绝缘层烧焦甚至引起火灾。 造成短路的原因:(1)用电器具接线不好,以致接头碰在一起。(2)灯座或开关进水,螺口灯头内部松动或灯座顶芯歪斜碰及螺口,造成内部短路。(3)导线绝缘层损坏或老化,并在零线和相线的绝缘处碰线。 当发现短路打火或熔丝熔断时应先查出发生短路的原因,找出短路故障点,处理后更换保险丝,恢复送电。 3、过载 过载:实际电量超过线路导线的额定容量。故障现象为:护熔丝烧断、过载部分的装置温度剧升。若保护装置未能及时起到保护作用,会引起严重电气事故。引起过载故障的主要原因有:导线截面小,计的线路和实际应用的情况不配套或由于盲目过量用电引起。电源电压过低,扇、洗衣机、电冰箱等输出功率无法相应减小的设备就会自行增加电流来弥补电压的不足,而引起过载。 4、漏电 漏电不但造成电力浪费,还可能造成人身触电伤亡事故。 产生漏电的原因:主要有相线绝缘损坏而接地、用电设备内部绝缘损坏使外壳带电等。 漏电故障的检查:漏电保护装置一般采用漏电保护器。当漏电电流超过整定电流值时,漏电保护器动作切断电路。若发现漏电保护器动作,则应查出漏电接地点并进行绝缘处理后再通电。照明线路的接地点多发生在穿墙部位和靠近墙壁或天花板等部位。查找接地点时,应注意查找这些部位。 (1)判断是否漏电:在被检查建筑物的总开关上接一只电流表,接通全部电灯开关,取下所有灯泡,进行仔细观察。若电流表指针摇动,则说明漏电。指针偏转的多少,取决于电流表的灵敏度和漏电电流的大小。若偏转多则说明漏电大,确定漏电后可按下一步继续进行检查。 (2)判断漏电类型:是火线与零线间的漏电,还是相线与大地间的漏电,或者是两者兼而有之。以接入电流表检查为例,切断零线,观察电流的变化:电流表指示不变,是相线与大地之间漏电;电流表指示为零,是相线与零线之间的漏电;电流表指示变小但不为零,则表明相线与零线、相线与大地之间均有漏电。

相关文档
最新文档