【免费下载】青蒿素生物合成

【免费下载】青蒿素生物合成
【免费下载】青蒿素生物合成

青蒿素生物合成

10生物技术(2)班 曾庆辉 201024112211

青蒿素是我国科研人员从传统中医药黄花蒿中提取出来并自主研发的一种抗疟疾特效药[1]。20世纪70年代,我国科技工作者从黄花蒿中分离提纯出一种抗疟活性单体——青蒿素,以后又确定了它的分子结构和构型。1986年我国自主研发的蒿甲醚油针剂、青蒿琥酯钠盐的水针剂以及青蒿素栓剂等抗疟疾药作为一类新药在我国批准生产。1995年蒿甲醚率先被收入国际药典,这是我国首次得到国际认可的自主研发新药。目前,青蒿素系列抗疟药已有5种新药(青蒿素、青蒿琥酯、蒿甲醚、双氢青蒿素、复方蒿甲醚)共9种剂型上市并在世界各国销售,每年挽救了数百万重症疟疾患者的生命。除了独特的抗疟作用外,青蒿素系列药物还具有抗血吸虫、肺吸虫、红斑狼疮、皮炎以及免疫调节,抗流感等多种疗效[2]。但是,目前国际抗疟药市场上青蒿素类药物只占有很少的份额,其原因主要在于青蒿素原料缺乏。由此,有研究者另辟蹊径,设想通过生物合成青蒿素。时至今日,青蒿素的生物合成已经取得一定进展,介绍如下:早在20世纪80年代,中国科学院上海有机化学研究所汪猷院士领导的研究小组就利用放射性同位素标记的2-14C-青蒿酸与青蒿匀浆(无细胞系统)保温法证明,青蒿酸和青蒿B 是青蒿素的共同前体[3]。青蒿素生物合成途径仅见于青蒿,但其“上游”途径为真核生物所共有,可望通过“下游”途径重建,在真核微生物(如酵母)中全合成青蒿素。过去10年来,青蒿素合成基因被国内外研究团队陆续克隆并导入酿酒酵母细胞,已成功合成青蒿酸及双氢青蒿酸等青蒿素前体。由于酵母缺乏适宜的细胞环境,尚不能将青蒿素前体转变成青蒿素。因此,青蒿依然是青蒿素的唯一来源,凸显出继续开展青蒿种质遗传改良的必要性。同时,青蒿素生物合成的限速步骤尤其是终端反应机制已基本得到阐明,有助于开展青蒿素形成与积累的环境模拟及仿生,从而为彻底缓解青蒿素的供求矛盾创造先机[4]。若以双氢青蒿酸为青蒿素的直接前体,则青蒿素生物合成过程如下:首先是从乙酰辅酶A 经异戊烯基焦磷酸(IPP)、二甲基烯丙基焦磷酸(DMAPP)、法呢基焦磷酸到紫穗槐-4,11-二烯的合成途径,其中DMAPP 与IPP 受IPP 异构酶(IPPI)催化发生互变,二者再被法呢基焦磷酸合成酶(FDS)作用生成法呢基焦磷酸,并在紫穗槐二烯合酶(ADS)催化下闭环产生紫穗槐-4,11-二烯;其次是从紫穗槐-4,11-二烯到双氢青蒿酸的合成途径,紫穗槐-4,11-二烯在细胞色素P450单加氧酶(CYP71AV1)催化下,经连续氧化依次生成青蒿醇、青蒿醛和青蒿酸,其中青蒿醛受青蒿醛双键还原酶2(DBR2)催化而还原成双氢青蒿醛,后者再在青蒿醛脱氢酶1(ALDH1)催化下氧化成双氢青蒿酸。双氢青蒿醇转变成双氢青蒿醛由ALDH1/CYP71AV1催化,其逆反应则由双氢青蒿酸还原酶1(RED1)催化,最后是从双氢青蒿酸到青蒿素的合成途径,双氢青蒿酸经过未知的多个非酶促反应最终生成青蒿素。此外,青蒿酸可能经多步反应合成青蒿素B 后再转变成青蒿素[5]。

青蒿素的生物合成主要任务有:①青蒿素前体合成工程菌的构建。在这里为了便于叙述,将上述青蒿素生物合成过程分为“上游”、“中游”和“下游”三个途径,分别是从乙酰辅酶A 到法呢基焦磷酸的“上游”途径、从法呢基焦磷酸到双氢青蒿酸的“中游”途径和从双氢青蒿酸到青蒿素的“下游”途径。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

青蒿及其他高等植物与酵母等真核微生物合成法呢基焦磷酸的酶促反应完全相同(循甲羟戊酸途径),因而只需在酵母中额外增加一个青蒿素合成代谢支路,就能让酵母全合成青蒿素。目前,中游途径的酶促反应已通过导入青蒿ADS ,CYP71AV1,CPR ,DBR2和ALDH1等基因至酵母而得以完全重建,但下游途径的反应条件在酵母中则尚未建立。回溯到2003年,美国Keasling 小组将青蒿ADS 基因经密码子优化后导入大肠杆菌中表达,同时用酵母萜类合成途径代替大肠杆菌萜类合成途径,首次在细菌体内合成出青蒿素的第一个关键前体——紫穗槐-4,11-二烯,在6L 发酵罐中培养60 h 的产率达到450 mg/L [6]。2006年,他们将ADS 基因连同CYP71AV1和CPR 基因同时导入酿酒酵母中表达,培育出世界上第一株生产青蒿酸的酵母工程菌,经代谢途径修饰与优化,其产率已达153 mg/L [7]。加拿大Covello 小组于2008年将新克隆的青蒿DBR2基因连同ADS ,CYP71AV1和CPR 基因一同导入酿酒酵母,率先培育出合成双氢青蒿酸的酵母工程菌,其中双氢青蒿酸产率为15.7 mg/L ,青蒿酸产率11.8 mg/L [8]。中国医学科学院及北京协和医科大学药物研究所的程克棣小组将青蒿 ADS 基因按酵母偏爱密码子优化并导入酿酒酵母后,也培育出产紫穗槐-4,11-二烯的酵母工程菌[9]。瑞典卡尔马大学的Brodelius 小组将ADS 基因导入酵母中,分别获得质粒表达及染色体整合表达的产紫穗槐-4,11-二烯酵母工程菌,其中质粒表达酵母工程菌培养16d 后的紫穗槐-4,11-二烯,产量为0.6 mg/L [10]。

然而,到目前为止,国内外还没有一个研究小组将酵母工程菌中的青蒿素前体转变成青蒿素,其原因可能是酵母不具备青蒿素合成所需要的细胞环境。这里面临着一个策略选择,即在微生物中合成青蒿素前体后是改用化学方法半合成青蒿素,还是继续探索让微生物将青蒿素前体转变成青蒿素的方法?现在看来, 国外选择的是前者,并且已先期启动产业化进程。不过,从工艺、成本、环境影响等方面考虑,实现青蒿素的微生物全合成无疑有着更大的应用价值。

②高产青蒿素转基因青蒿植株的培育。这一步骤首先要寻找高产青蒿素转基因青蒿培育的有效途径。青蒿素是一种次生代谢产物,它在青蒿中的积累量很小,而且不同地区生态类型的差异很大。中国科学院植物研究所叶和春研究小组最早开展转基因青蒿研究,他们将重组法呢基焦磷酸合成酶基因(FPS)导入青蒿,以增加 FPS 基因的拷贝数目,期望增大青蒿素生物合成途径的碳流(“开源法”),由此获得青蒿素含量比对照高3~4倍的转基因青蒿发根(0.2%~0.3%)[11]及比对照高2~3倍的转基因青蒿植株(0.8%~1%)[12][13]。类似地,印度科学家用重组羟甲基戊二酰辅酶 A 还原酶基因(HMGR)培育转基因青蒿植株, 其青蒿素含量提高22.5% 将反义鲨烯合酶基因(asSS)导入青蒿,以阻断竞争青蒿素生物合成的类固醇分支途径(“节流法”),获得类固醇含量比对照(0.08%鲜重)下降近一半(0.04%~0.05%鲜重)及青蒿素含量比对照(0.45%干重)提高近3倍(1.23%干重)的转基因青蒿植株[14]。上海交通大学唐克轩小组利用发夹RNA 介导的RNA 干扰技术阻断类固醇合成途径,使转基因青蒿中的青蒿素含量达到3.14%干重,比对照提高3.14倍[15]。最近, 中国科学院植物研究所的研究小组利用β-石竹烯合酶 cDNA 反义片段抑制青蒿的倍半萜合成支路,通过减少β-石竹烯对紫穗槐-4,11-二烯的竞争,使青蒿素含量提高50%以上[16]。在今后的研究中,可以考虑将“开源”与“节流”两种方法结合起来,也许能收、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

到更好的效果。一种更有前景的创意是将青蒿中更多的非青蒿素合成途径剔除或者仅保留青蒿素合成途径及其他必要的代谢途径,从而通过合成生物学创造出自然界不存在的新型代谢网络。③通过调节激素及发育基因表达促进青蒿素合成。细胞分裂素可刺激叶片生长,而青蒿素主要由青蒿叶片合成。因此,提高青蒿中的细胞分裂素水平有可能促进青蒿素的合成。叶和春小组曾将异戊烯基转移酶基因(ipt)导入青蒿,结果使细胞分裂素水平提高2~3倍,青蒿素含量增加30%~70%。④利用异种植物创建青蒿素生物合成新支路。美国肯塔基大学的Chapel 小组将青蒿ADS 基因及鸟类FPS 基因导入烟草中表达,经叶绿体信号序列引导,ADS 和 FPS 被转运至叶绿体,并合成紫穗槐-4,11-二烯,产量达到25μg/g 鲜重,如果将来能将青蒿素合成途径“搬到”叶绿体内,那么这种独特的“叶绿体催化”方法可能比常规的“细胞质催化”方法更能获得高产青蒿素。荷兰Bouwmeester 小组利用烟草表达青蒿ADS ,FPS 和HMGR 基因,获得产紫穗槐-4,11-二烯的转基因烟草。但是,当继续导入CYP71AV1基因后,却未检测到预期产物青蒿酸,而只检测到青蒿酸-12-β-双葡萄糖苷,产量达到39.5 mg/kg 鲜重,推测其为烟草葡萄糖基转移酶的催化产物。加拿大Covello 小组将青蒿ADS 和CYP71AV1基因导入烟草后,只检出紫穗槐-4,11-二烯和青蒿醇,未检出青蒿酸。若再导入DBR2和ALDH1基因,也只检出双氢青蒿醇,未检出双氢青蒿酸。由此可见,尽管在青蒿以外的植物中重建青蒿素合成途径是可行的,但在产物(如青蒿酸糖苷)的后处理上可能会面临较多的技术困难。在青蒿素的生物合成过程还有几个关键问题需要注意:①青蒿素合成基因表达具有时空特异性,利用实时荧光定量PCR 技术追踪分析了青蒿素合成基因的发育及组织表达模式,结果显示,各基因的表达水平在8月份开花前达到高峰,其中青蒿素特异合成ADS mRNA 和CYP71AV1 mRNA 升幅最大,为最低水平的12和15倍。处于盛花期的青蒿在根、茎、叶、花各个组织中都能检测到青蒿素合成基因的表达,叶片中ADS mRNA 水平较其他组织高2倍左右。我们采用组织化学染色法和分光光度法对CYP71AV1启动子-GUS 融合基因转化烟草在正常和胁迫条件下的表达进行定性及定量检测,结果表明:在脱水、4℃和紫外辐射条件下,转基因烟草的GUS 活性提高1.4~2.7倍。瑞典及荷兰科学家的研究结果表明,ADS ,CYP71AV1,DBR2和ALDH1等青蒿素合成基因在花芽及嫩叶中的表达水平比其他组织(老叶、茎、根、发根培养细胞)高

40~500倍,而对青蒿素合成有负调节作用的双氢青蒿醛还原酶基因(RED1)则只在发根培养细胞中高表达。

②内外环境因素促进青蒿素的合成与积累。早在2000年,叶和春小组就证明,植物病原真菌可以不同程度地促进体外培养青蒿发根中青蒿素的积累,其中大丽花轮枝孢处理发根后的青蒿素含量比对照提高45%[17]南京大学谭仁祥小组也证实,来自真菌的寡聚糖激发子可使青蒿素含量从7 mg/g 干重提高到13 mg/g 干重,而寡聚糖激发子与一氧化氮供体硝普钠共用,则青蒿素含量升高至12~22mg/g 干重。叶和春小组还发现,外源性赤霉酸可以通过反馈抑制赤霉酸合成,将碳源分流到青蒿素合成途径,导致青蒿素含量增高,同时青蒿酸含量降低,表明从青蒿酸到青蒿素是青蒿素合成的限速步骤之一。

③青蒿素产量与单线态氧水平高度相关。以往研究表明,青蒿收获后干燥、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

及重金属(铅)、盐胁迫处理青蒿均有利于青蒿素的积累,推测极端环境胁迫尤其是氧化胁迫可能与青蒿素合成有着十分密切的关系,但始终缺乏活性氧参与青蒿素生物合成的证据。我们研究发现,转基因青蒿植株经过冷处理后,单线态氧的释放比对照植株明显增强, 同时青蒿素含量从1.23%增加到1.66%,转基因青蒿植株干粉经15个月贮存后青蒿素含量升至2.35%。我们采用mRNA 定量扩增技术系统地研究了低温[18]、衰老、水杨酸及茉莉酸甲酯等内外环境因素对青蒿素生物合的影响,结果发现青蒿素合成mRNA 水平升高、酶类合成增加、青蒿素含量提高均与单线态氧大量释放同步发生,从而为单线态氧参与调节青蒿素生物合成提供了直接证据。④单线态氧来自青蒿叶绿体并可诱导青蒿素合成基因表达。拟南芥的条件性 flu 突变体在由黑暗转光照的交替中可激发叶绿体产生单线态氧并且由核基因组编码的叶绿体蛋白Executer 1和Executer 2负责单线态氧信号从叶绿体向细胞核的逆向转导。最近,我们还发现,Executer 1基因与抗氧化酶(谷胱甘肽过氧化物酶、谷胱甘肽-S-转移酶)基因均受萜类合制剂处理后激发的单线态氧的共调控(未发表结果).关于内源性与外源性单线态氧在青蒿素合成中的作用,我们利用类胡萝卜素合成抑制剂证明,叶绿体释放的单线态氧可作为“逆向信号转导分子”诱导核内编码的青蒿素合成相关基因表达。相反,我们在培养基中添加单线态氧光敏发生剂孟加拉玫红(rose Bengal)并照光或通入次氯酸钠与过氧化氢反应产生单线态氧后,不仅显著降低青蒿素含量,而且导致大量未知产物合成[19]。以上结果表明,单线态氧催化的非酶促反应可能是青蒿素生物合成的限速步骤,而单线态氧来源于细胞内而不是细胞外,内源性单线态氧不仅能上调青蒿素合成基因表达,而且可催化双氢青蒿酸转变成青蒿素。综上所述,青蒿素的生物合成研究是增加青蒿素供给的重点方向之一。青蒿素及其衍生物的生物合成受到多种限速酶所调控,且一些编码限速酶基因的表达可能具有高度的组织和时空特异性。因此,通过导入过量表达的限速酶基因或抑制其它分支途径的反义基因,可提高转基因器官或植株中青蒿素及其衍生物的含量。同时,在相关的微生物(内生细菌、真菌)中导入青蒿素合成酶基因,可望为应用转基因微生物发酵工业化生产青蒿素奠定基础。

参考文献

[1]陈思安,韩颂,赵敏.产青蒿素作物黄花蒿的研究现状及展望[J].黑龙江医药,2010,6(23):891-894.

[2]王建平.青蒿素的应用及其作用机制.医药化工[J],2008,11:11-14.

[3]汪猷, 夏志强, 周凤仪, 等. 青蒿素生物合成的研究: 青蒿素和青蒿素 B 生物合成中的关键性中间体青蒿酸. 化学学报, 1988, 46:1152–1153

[4]曾庆平, 鲍飞,青蒿素合成生物学及代谢工程研究进展,第 56 卷 第 27 期,2289 ~ 2297。

[5] Teoh K H, Polichuk D R, Reed D W, et al. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Ar-temisia annua. Botany, 2009, 87: 635–642

[6] Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Bio-technol, 2003, 21: 796–802

[7] Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006,440: 940–943

[8] Zhang Y, Teoh K H, Reed D W, et al. The molecular cloning of artemisinic aldehyde ?11(13) 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

reductase and its role in glandular tri-chome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem, 2008, 283: 21501–21508

[9] Kong J Q, Wang W, Wang L N, et al. The improvement of amorpha-4,11-diene production by a yeast-conform variant. J App Microbiol,2009, 106: 941–951

[10] Lindahl A L, Olsson M E, Mercke P, et al. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomycescerevisiae. Biotechnol Lett, 2006, 28: 571–580

[11] Wallaart T E, Pras N, Beekman A C, et al. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of Artemisia annua of

different geographical origin: Proof for the existence of chemotypes. Planta Med, 2000, 66: 57–62

[12] Chen D H, Ye H C, Li G F. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua: Transgenic plants via Ag-robacterium tumefaciens-mediated transformation. Plant Sci, 2000, 155: 179–185[13] Han J L, Liu B Y, Ye H C. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Ar-temisia annua. J Integr Plant Biol, 2006, 48: 482–487[14] Aquil S, Husaini A M, Abdin M Z, et al. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis intransgenic Artemisia annua plants. Planta Med, 2009, 75: 1453–1458[15] Yang R Y, Feng L L, Yang X Q, et al. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med, 2008, 74: 1510–1516[16] Zhang L, Jing F, Li F, et al. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of arte-misinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem, 2009, 52: 199–207)[17] .Chen J L, Fang H M, Ji Y P, et al. Artemisinin biosynthesis enhancement in transgenic

Artemisia annua plants by downregulation of the

[18],叶和春, 李国风, 等. 真菌诱导子对青蒿发根细胞生长和青蒿素积累的影响. 植物学报, 2000, 42: 905–909

[19]曾庆平, 赵昌, 尹录录, 等. 青蒿素合成 cDNA 与新 EST 的克隆及其低温诱导表达的定量分析. 中国科学 C 辑: 生命科学, 2008, 38:147–159

、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

青蒿素的发现,提取及一系列发展应用教案

青蒿素的发现,提取及一系列发展应用 1.时代背景:时代背景.mp4 世界上影响人数最多的疾病并非现在深受关注的艾滋病,而是一种堪称“历史悠久”的疾病——疟疾,也就是俗称的“打摆子”,同时,它也是当今除艾滋病外,上升趋势最为显著的一种传染病,每年2~3亿人感染此病,200多万人死亡。19世纪从南美洲金鸡纳树皮中得到的奎宁曾成为最有效的药物,治愈了众多的疟疾患者。20世纪第二次世界大战后模仿奎宁基本结构而合成的一批新药如氯喹、伯喹也曾救治过无数的病人。但是20世纪60年代出现抗药性疟原虫后,以往常用的抗疟药(如氯喹、磺胺、奎宁等)的效果便不复存在,以至于造成了无药可医的局面,特别在东南亚、非洲地区情况更为严重。青蒿素类药物的出现以其副作用低且不易产生抗药性而被誉为“治疗疟疾的最大希望”。 2. 什么是青蒿素时代背景.mp4 ◆分子式为C15H22O5,分子量282.33,组分含量:C 63.81%,H 7.85%,O 28.33%。 ◆无色针状晶体,味苦。 ◆在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,在水中几乎不溶。

青蒿素(Artemisinin)又名黄蒿素,是一种具有过氧桥的倍半萜内酯类化合物。分子式为C15H22O5,分子量为282.34,具有过氧键和δ-内酯环,有一个包括氧化物在内的1,2,4-三恶烷结构单元,在自然界中是非常罕见的,它的分子中包括7个手性中心。青蒿素为无色针状结晶,熔点为156~157℃,易溶于氯仿、丙酮、乙酸乙酯和苯,

可溶于乙醇、乙醚,微溶于冷石油醚,几乎不溶于水。因其具有特殊的过氧基团,对热不稳易受湿、热和还原性物质的影响而分解。 3.为什么要选用青蒿治疗疟疾? 疟疾是一个非常古老的疾病。我们的先人对它还是有一定办法的。在晋代葛洪所著的《肘后备急方》中就有关于疟疾的治疗方药,原文如下:青蒿一握,以水二升渍,绞取汁,尽服之。意思是,用一把青蒿,以二升的水浸渍以后,绞扭青蒿,取得药汁,然后一次服尽。可别小看这几句话,它说明,我们的古人对于青蒿截疟已经有了很深入的认识。 4.验证青蒿素对疟疾的治疗效果实验: 为什么在实验室里青蒿的提取物不能很有效地抑制疟疾呢?是提取方法有问题?还是做实验的老鼠有问题? “青蒿一握,以水二升渍,绞取汁,尽服之”为什么这和中药常用的高温煎熬法不同?原来古人用的是青蒿鲜汁!温度!这两者的差别是温度!很有可能在高温的情况下,青蒿的有效成分就被破坏掉了。改用沸点较低的乙醚进行实验,她在60摄氏度下制取青蒿提取物。接下来在实验室里,青蒿提取物对疟原虫的抑制率达到了100%!

青蒿素相关试题

屠呦呦获医学诺奖给中学化学教育的几点启示 启示1:学科方法胜于学科知识 青蒿素的成功发现可以说运用化学进行物质研究的成功范例。化学研究物质的一般思路为:哪些物质中含所要提取的物质;如何获得纯净的该物质;该物质的结构如何;该物质可能有哪些性质;能否在关键的点位植入需要的基团;工业上如何大规模生产该物质,等等。青蒿素的发现遵循了这个思路。评审委员会称屠呦呦的获奖是为了奖励她对药物的一种孜孜不倦地寻找过程。 启示2:观念的渗透是学科方法的核心 传统提取青蒿素的煎熬法致使有效成分在高温下被破坏了。屠呦呦一改传统的煎熬法,改用沸点较低的乙醚进行提取实验,她在60摄氏度下制取了青蒿提取物,取得了较好的效果。我们知道,条件的控制是化工生产的核心思想,屠呦呦改用乙醚的成功,说明化学的一些观念在她的心里深深地扎下了根。正是这一观念的运用是她获得诺奖的关键。评审委员会认为,屠呦呦提出用乙醚来提取,对于发现青蒿素的抗疟疾作用和进一步研究青蒿素起了很关键的作用。 启示3:失败是学生最大的权利,但失败能否成功在于坚持和反思 “也是1971年10月4日,那是第191号样品。”在190次失败之后,1971年屠呦呦课题组在第191次低沸点实验中发现了抗疟效果为100%的青蒿提取物。190次失败的痛楚才换来成功的喜悦。所以,在学科教学中要允许学生犯错,给学生机会犯错,但也要让学生悟错、知错、改错。 启示4:任务驱动不可或缺 1967年,一个由全国60多家科研单位、500多名科研人员组成的科研集体,悄悄开始了一项特殊的使命,代号“523”,志在帮助北越政府“打击美帝”,研究的指向正是——防治疟疾新药,因为1960年代的东南亚战场上,疟原虫已经对奎宁类药物产生了抗性。如果没有这场“政治任务”,也许青蒿素的发现与使用要延后许多年。现在,对于抗癌药物的研制是否也来一场“任务驱动”呢?是否也可以集中几十个有实力的研究机构进行集中研究呢?青蒿素的研究是针对病毒,抗癌药的研制也是针对“癌细胞”这种病毒。这些研究机构是否从青蒿素的研究发现史得到一些启示呢?

青蒿素的化学全合成.总结

青蒿素的合成与研究进展 摘要:青蒿素是目前世界上最有效的治疗疟疾的药物之一,存在活性好、毒副作用小、市场需求大、来源窄等特点。目前,青蒿素的获取途径主要有直接从青蒿中提取、化学合成和生物合成。本综述将针对近年来青蒿素的发展特点及合成方法进行论述。 关键词:青蒿素;合成方法;研究进展 青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用1;具有影响人体白血病U937细胞的凋亡及分化的作用2;还具有部分逆转MCF-7/ARD细胞耐药性作用3;还具有抑制人胃癌裸鼠移植瘤的生长的作用4;还具有一定的抗肿瘤作用5等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。6。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床

医学研究奖和2015年诺贝尔医学奖。 1 青蒿素的理化性质及来源 青蒿素的分子式为C15H22O5, 相对分子质量为282. 33。是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三烷结构单元,它的分子中还包括7个手性中心,合成难度很大。中国科学院有机所经过研究,解决了架设过氧桥难题,在1983年完成了青蒿素的全合成。青蒿素也有一些缺点, 如在水和油中的溶解度比较小, 不能制成针剂使用等。 2 青蒿中提取青蒿素 青蒿素是从菊科植物黄花蒿中提取出来的含有过氧桥的倍半萜内酯类化合物,在治疗疟疾方面具有起效快、疗效好、使用安全等特点。目前主要的提取方法有溶剂提取法、超临界提取法、超声波萃取法、微波萃取法、其他萃取法等。2.1有机溶剂萃取青蒿素 水蒸气蒸馏(steam distillation,SD)法由于其具有设备简单,操作安全,不污染环境,成本低,避免了提取过程中有机溶剂残留对油质造成影响等特点,是有效提取中药挥发油的重要方法。有机溶剂提取法是目前青蒿中许多有效成分的提取目前仍然常用的方法,常用的溶剂有醇类(甲醇、乙醇

青蒿素提取制备工艺技术范文

1、卤代青蒿素母核、卤代青蒿素衍生物、卤代双氢青蒿素、卤代脱羰青蒿素以及医药用途 2、从生产双氢青蒿素废弃母液中提取双氢青蒿素的工艺方法 3、含青蒿素及青蒿素类衍生物和Bcl-2抑制剂的药物组合物及其应用 4、含有芹菜素及芹菜素类衍生物和青蒿素及青蒿素类衍生物的药物组合物及其应用 5、一种将双氢青蒿素醚类衍生物转化为双氢青蒿素的方法 6、青蒿素及其衍生物二氢青蒿素、蒿甲醚、蒿乙醚、青蒿琥酯在制药中的应用 7、含有索拉非尼和青蒿素及青蒿素类衍生物的药物组合物及其在制备治疗癌症的药物中的应用 8、青蒿素及次甲基青蒿素的提取方法 9、含有青蒿素及青蒿素类衍生物和组蛋白去乙酰化酶抑制剂的药物组合物及其应用 10、一种稳定的青蒿素及青蒿素衍生物药物组合物 11、青蒿素及青蒿素衍生物口腔崩解片 12、一种从分离青蒿素后的废弃母液中高效转化青蒿素的方法 13、利用青蒿提取青蒿素的残渣制备青蒿素的方法 14、紫穗槐-4,11-二烯到青蒿素和青蒿素前体的转化 15、一种测定青蒿素浸膏中青蒿素含量的高效液相色谱方法 16、以双氢青蒿素为原料制备青蒿素10位醚类衍生物的简单大生产工艺 17、青蒿素透皮贴剂基质、制备方法及其青蒿素透皮贴剂 18、一种黄花蒿等中药材及含青蒿素成分样品中青蒿素含量的测定方法 19、青蒿素相关性内过氧化物与携带铁的蛋白质之间的共价缀合物及其使用方法 20、鉴定产生青蒿素的植物的引物和筛选方法 21、青蒿素及其脂溶性衍生物乳剂的制备方法 22、溴代二氢青蒿素 23、一种含有青蒿素的药物组合物的质量控制方法 24、青蒿素提取的方法 25、一种提取青蒿素的方法 26、核糖核酸酶和青蒿素的联用 27、多孔微球硅胶表面青蒿素分子印迹聚合物及其制备和应用方法 28、硅胶颗粒表面青蒿素分子印迹聚合物及其制备和应用方法 29、[(10S)-9,10-二氢青蒿素-10-氧基]苯甲醛缩氨基(硫)脲系列物及其制备方法和用途 30、含有胍基的青蒿素类衍生物及其应用 31、一种复方青蒿素类哌喹微丸及其制备方法 32、快速提制青蒿素的方法 33、青蒿素衍生物的新应用 34、静脉注射用缓释青蒿素及其衍生物脂肪乳的配方及制备 35、一种硼氢化还原制备双氢青蒿素专用反应釜 36、青蒿素中间体、合成方法和用途 37、一种丝瓜络表面青蒿素分子印迹吸附材料的制备方法及应用 38、一种由青蒿酸制备青蒿素的方法 39、青蒿素衍生物及其药用盐用于制备治疗急性白血病的药物 40、青蒿素衍生物及其药用盐用于制备治疗急性髓细胞性白血病的药物 41、转DBR2基因提高青蒿中青蒿素含量的方法 42、青蒿素衍生物及其药用盐用于治疗制备白血病的药物 43、复方青蒿素多相脂质体注射液及其制备方法

fy青蒿素结构与性质-高考化学复习测试题20160115

“青蒿素”结构与性质-高考化学复习测试题 编制:冯涌(QQ:1078875886) 青蒿素是我国药学家屠呦呦根据中医典籍从主要生长于我国的青蒿中提取的治疗疟疾的有效成分。下图是屠呦呦在瑞典发表诺贝尔奖主题演讲时的画面,她的左边是诺奖主题演讲会的主持人卡罗林斯卡学院传染病学教授Jan Andersson先生,他在屠呦呦演讲的半个小时里双膝轮换一直跪在地上,为屠呦呦举着话筒。 Ⅰ.称取14.1mg青蒿素样品,如下图,在足量氧气中完全燃烧后,依次通过高氯酸镁和氢氧化钠固体粉末,燃烧产物被完全吸收,两种固体分别增重9.9mg和33.0mg 。 1 (1)计算确定青蒿素分子的最简式; (2)能不能由此确定青蒿素的分子式?

Ⅱ.已知青蒿素中含有过氧键官能团(也称过氧基)。称取1.41g青蒿素,完全溶解后在100mL容量瓶中定容、摇匀,取出25.00mL置于锥形瓶中,加入少量硫酸、足量的KI 和4滴淀粉溶液,锥形瓶中溶液呈蓝色。向锥形瓶中滴入0.1250mol/L的Na2S2O3溶液20.00mL,蓝色恰好消失。计算: (1)该青蒿素溶液可能的浓度; (2)青蒿素分子的最小摩尔质量。 Ⅲ.下面左图是主要生长在我国的植物青蒿茎和叶背面的照片,右图是某研究室通过晶体衍射测定得到的有关青蒿素分子结构中一些主要共价键的键长数据(单位:pm),图中元素符号右下角的数字是相应原子的编号。 (1)写出青蒿素的分子式。现代化学快速、精确测定相对分子质量的仪器名称是。 (2)试分析在青蒿素分子中可能形成双键的原子及其编号。 (3)青蒿素的药用机理复杂。试根据化学原理推测青蒿素能杀灭疟原虫最关键的原子及其编号。 Ⅳ.根据上述结构判断下列有关青蒿素的说法不正确的是: A.含有醚键 B.由于青蒿素几乎不溶于水,水浸青蒿对治疗疟疾毫无作用 C.用乙醇浸取,挥发浓缩后可以结晶析出 D.受热易分解 E.能与碱反应 Ⅴ.双氢青蒿素的疗效更好。青蒿素经还原剂处理,原来的双键加氢,得到双氢青蒿素。写出双氢青蒿素的结构简式,并从理论上分析制备双氢青蒿素的困难所在。

青蒿素综述

青蒿素综述 刘兵情 (井冈山大学11级药本(1)班学号:111116023) 摘要:青蒿素类抗疟药物的发现是全球抗疟药物发展史上继奎宁之后的又一里程碑[1], 是目前治疗疟疾的特效药.本文简要介绍青蒿素的发现过程、药源、生物合成、应用前景和青蒿素及其衍生物药理活性,重点在于介绍青蒿素生物合成过程。 关键词:青蒿素发现过程药源生物合成药理活性前景 引言:青蒿素是在科研计划组织下,全国多部门、多学科专家尽心协作、相互 配合取得的重大成果,是继承发扬我国传统医药宝库的成功范例[2]。青蒿素主要有抗疟、抗孕、抗纤维化、抗吸血虫等药理作用[3]。青蒿素生物合成三个阶段分为从乙酰辅酶A 到法呢基焦磷酸的“上游”途径、从法呢基焦磷酸到双氢青蒿酸的“中游”途径和从双氢青蒿酸到青蒿素的“下游”途径,其中上游途径青蒿及其他高等植物与酵母等真核微生物完全相同,因而只需在酵母中额外增加一个青蒿素合成代谢支路, 就能让酵母全合成青蒿素。而中游的酶促反应在酵母中已经完全建立,下游途径的反应条件在酵母中则未建立[4]。而且青蒿素及其衍生物在抗肿瘤和葡萄膜炎免疫治疗上也具有应用前景 。 一.青蒿素药物来源 1967 年北京《5·23 抗疟计划》付诸实施, 1969 年1 月北京中医研究院加入 5·23 计划,任命屠呦呦为科研组组长, 在全国多个研究单位协作下, 组织植物化学与药理学等专业200 多人参加, 并与中医药工作者密切合作[5].从追索我国历代抗疟方剂入手, 科研组调查了 2 000 种中草药制剂, 从中选出可能具抗疟活性的达640 种. 余亚纲梳理开列了有808 个中药的单子,其中有乌头、乌梅、鳖甲、青蒿等[6]共用约200种国产草药制成380 多种抽提物, 再筛查它们对小鼠疟疾模型的疗效,但实验不易获得明显结果[7]军事医学科学院用鼠疟模型筛选了近百个药方,青蒿提取物的抑制率虽达60%~80%, 而效力不够稳定[6]继后, 研究组经余亚纲和顾国明复筛, 肯定了青蒿的抗疟作用[8]他们也研究了中药常山,其抗疟作用虽强, 但呕吐的副作用亦强而妨碍推广应用. 转折点出现在黄花蒿的抽提物. 传统中药青蒿包括两个品种: 学名黄花蒿(Artemisia an-nua L.)的抽提物能对小鼠疟原虫的生长显示良好的抑制作用;而学名青蒿(Artemisia apiaceaHance)则无任何抗疟作用[7][9],继后的实验中, 上述结果未能重复, 这同中医文献的记载相矛盾. 为解开此疑惑, 再深入查阅古代医学文献, 最后在晋朝葛洪著《肘后备急方》中找到“青蒿一握, 以水二升渍, 绞取汁, 尽服之”的抗疟记录. 惯常煎熬中药的高温抽提法已破坏了抗疟的活性组分;温度高于60 ℃将使青蒿素完全分解. 在较低温度下进行青蒿抽提后, 获得了很满意的效果[7][9][10]

【免费下载】青蒿素生物合成

青蒿素生物合成 10生物技术(2)班 曾庆辉 201024112211 青蒿素是我国科研人员从传统中医药黄花蒿中提取出来并自主研发的一种抗疟疾特效药[1]。20世纪70年代,我国科技工作者从黄花蒿中分离提纯出一种抗疟活性单体——青蒿素,以后又确定了它的分子结构和构型。1986年我国自主研发的蒿甲醚油针剂、青蒿琥酯钠盐的水针剂以及青蒿素栓剂等抗疟疾药作为一类新药在我国批准生产。1995年蒿甲醚率先被收入国际药典,这是我国首次得到国际认可的自主研发新药。目前,青蒿素系列抗疟药已有5种新药(青蒿素、青蒿琥酯、蒿甲醚、双氢青蒿素、复方蒿甲醚)共9种剂型上市并在世界各国销售,每年挽救了数百万重症疟疾患者的生命。除了独特的抗疟作用外,青蒿素系列药物还具有抗血吸虫、肺吸虫、红斑狼疮、皮炎以及免疫调节,抗流感等多种疗效[2]。但是,目前国际抗疟药市场上青蒿素类药物只占有很少的份额,其原因主要在于青蒿素原料缺乏。由此,有研究者另辟蹊径,设想通过生物合成青蒿素。时至今日,青蒿素的生物合成已经取得一定进展,介绍如下:早在20世纪80年代,中国科学院上海有机化学研究所汪猷院士领导的研究小组就利用放射性同位素标记的2-14C-青蒿酸与青蒿匀浆(无细胞系统)保温法证明,青蒿酸和青蒿B 是青蒿素的共同前体[3]。青蒿素生物合成途径仅见于青蒿,但其“上游”途径为真核生物所共有,可望通过“下游”途径重建,在真核微生物(如酵母)中全合成青蒿素。过去10年来,青蒿素合成基因被国内外研究团队陆续克隆并导入酿酒酵母细胞,已成功合成青蒿酸及双氢青蒿酸等青蒿素前体。由于酵母缺乏适宜的细胞环境,尚不能将青蒿素前体转变成青蒿素。因此,青蒿依然是青蒿素的唯一来源,凸显出继续开展青蒿种质遗传改良的必要性。同时,青蒿素生物合成的限速步骤尤其是终端反应机制已基本得到阐明,有助于开展青蒿素形成与积累的环境模拟及仿生,从而为彻底缓解青蒿素的供求矛盾创造先机[4]。若以双氢青蒿酸为青蒿素的直接前体,则青蒿素生物合成过程如下:首先是从乙酰辅酶A 经异戊烯基焦磷酸(IPP)、二甲基烯丙基焦磷酸(DMAPP)、法呢基焦磷酸到紫穗槐-4,11-二烯的合成途径,其中DMAPP 与IPP 受IPP 异构酶(IPPI)催化发生互变,二者再被法呢基焦磷酸合成酶(FDS)作用生成法呢基焦磷酸,并在紫穗槐二烯合酶(ADS)催化下闭环产生紫穗槐-4,11-二烯;其次是从紫穗槐-4,11-二烯到双氢青蒿酸的合成途径,紫穗槐-4,11-二烯在细胞色素P450单加氧酶(CYP71AV1)催化下,经连续氧化依次生成青蒿醇、青蒿醛和青蒿酸,其中青蒿醛受青蒿醛双键还原酶2(DBR2)催化而还原成双氢青蒿醛,后者再在青蒿醛脱氢酶1(ALDH1)催化下氧化成双氢青蒿酸。双氢青蒿醇转变成双氢青蒿醛由ALDH1/CYP71AV1催化,其逆反应则由双氢青蒿酸还原酶1(RED1)催化,最后是从双氢青蒿酸到青蒿素的合成途径,双氢青蒿酸经过未知的多个非酶促反应最终生成青蒿素。此外,青蒿酸可能经多步反应合成青蒿素B 后再转变成青蒿素[5]。 青蒿素的生物合成主要任务有:①青蒿素前体合成工程菌的构建。在这里为了便于叙述,将上述青蒿素生物合成过程分为“上游”、“中游”和“下游”三个途径,分别是从乙酰辅酶A 到法呢基焦磷酸的“上游”途径、从法呢基焦磷酸到双氢青蒿酸的“中游”途径和从双氢青蒿酸到青蒿素的“下游”途径。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

诺贝尔生理医学奖青蒿素相关高中生物试题

2015年诺贝尔生理医学奖青蒿素相关高中生物试题 屠呦呦获2015年诺贝尔生理医学奖,这是国人的骄傲,我们第一时间采编了抗疟药青蒿素相关高中生物试题。 1.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。在野生植物中提取青蒿素治疗疟疾,这体现了野生生物的( ) A. 直接使用价值 B. 间接使用价值 C. 潜在使用价值 D. A与B的总和 【答案】A 2.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。青蒿素是从植物黄花蒿的组织细胞中所提取的一种代谢产物,其作用方式目前尚不明确,推测可能是作用于疟原虫的食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡。从上述的论述中,不能得出的是( ) A.疟原虫对外界食物的获取方式主要是胞吞,体现了细胞膜的流动性特点B.细胞质是细胞代谢的主要场所,如果大量流失,甚至会威胁到细胞生存C.疟原虫寄生在寄主体内,从生态系统的成分上来看,可以视为分解者 D.利用植物组织培养的方式,可以实现青蒿素的大规模生产 【答案】C 3.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。但是青蒿中青蒿素的含量很低,且受地域性种植影响较大。研究人员已经弄清了青蒿细胞中青蒿素的合成途径(如图实线框内所示),并且发现酵母细胞也能够产生青蒿素合成的中间产物FPP(如图虚线框内所示)。请回答问题: (1)在FPP合成酶基因表达过程中,完成过程①需要酶催化,完成过程②需要的物质有、、等,结构有。 (2)根据图示代谢过程,科学家在设计培育能生产青蒿素的酵母细胞过程中,需要向酵母细胞中导入、等基因。

青蒿素的工业生产流程

青蒿素的工业生产流程 吉财2013122691 青蒿是我国的传统中药,民间用于消暑、退热、治感冒等,青蒿还具有抗疟、抗血吸虫、抗病毒与增强机体免疫等作用。在我国数百名科学工作者的协作中,从青蒿中提取了它的抗疟有效成分,一种新型倍半萜内酯,后命名为青蒿素,青蒿素为无色针状结晶,分子式为 C15H22O5,其结构式如图1 ,熔点为156-157℃,易溶于氯仿、丙酮、乙酸乙酯 和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎 不溶于水。因其具有特殊的过氧基团,对热不稳定, 易受湿、热和还原性物质的影响而分解[1] 。国内外 大量的理化试验、药理研究和临床应用表明青蒿素 是抗疟的有效成分,认为青蒿素的发现是抗疟研究 史上的重大突破,并成为世界卫生组织推荐的抗疟 药品,特别是对脑型疟疾和抗氯喹性疟疾有很好疗 效[2]。近年来青蒿素的抗疟活性在世界范围内被广泛关注,在疟疾流行地区青蒿素的需求量增加。此后又发展了一系列现已作为正式抗疟药物的青蒿素的衍生物,此时我国研制的青蒿素类抗疟药物以高效、安全、对抗药性疟疾有特效而风靡全球,1995年蒿甲醚被WTO列入国际药典,这是我国第一个被国际公认的独创新药。青蒿素的化学结构十分独特,自上市至今20多年,尚未发生抗药性的病例。 1 仪器、试剂与材料 50ml圆底烧瓶、回流冷凝管、721型分光光度计(上海分析仪器厂)、分析天平(上海精科天平厂)、微量移液管(上海求精玻璃仪器厂)、电热恒温水浴锅、恒温烘箱、干燥器、柱层析、硅胶薄层板(由青岛海洋化工厂生产,薄层层析板用硅胶G加0.3%CM C-Na制备而成。显色剂为2%香草醛--浓硫酸(1:1)混合液。喷雾后,电吹风加热显色)等。乙醚、乙醇、氢氧化钠、乙酸乙酯、异丙醇、石油醚均为分析纯。青蒿的原材料及其标准样由海裕药业提供。 2 方法与步骤 2.1提取 称取100g青蒿叶粉(过30目筛),加入8倍石油醚(800毫升,沸程60—90℃),水浴55℃搅拌回流提取5小时,第二次提取加入6倍石油醚(600毫升,沸程60—90℃),水浴55℃搅拌回流提取3小时,第三次提取加入4倍石油醚(400毫升,沸程60—90℃),水浴55℃搅拌回流提取2小时,得滤液一、二、三,分装,渣子回收尽石油醚重复使用。

青蒿素的发现及发展历程

青蒿素的发现及发展历程 青蒿素是从中药青篙中提取的高效、速效抗疟药。作用于疟原虫红细胞内期,适用于间日疟及恶性疟,特别是抢救脑型疟均有良效。其退热时间及疟原虫转阴时间都较氯喹短,对氯喹有抗药性的疟原虫亦有效。 上个世纪60年代世界风云突起,东西方冷战进而发生一系列“热战”。美国为寻求与苏联的均势介入越南战争。当时交战双方面临的最大问题不是枪林弹雨而是传染病:倒在枪林弹雨中的士兵远没有因为疟疾而失去战斗力的人数多。这一地区自古以来就是所谓“瘴气”之地,三国时期诸葛亮南征孟获、唐朝时期李宓攻打南诏、清乾隆年间数度进击缅甸都因疟疾而受挫,元史列传第四十三有云“及至未战,士卒死者十已七八”。经过如此多的战争,这里的疟原虫似乎也比其他地区的同类更为强壮,当时疗效最好的药物氯喹已经无效。寻找更好的治疗药物成为当务之急。 中国为支援越南,提供了大量物资上的支持,其中就包括了抗疟疾药物的开发。1967年5月23日国家科委、解放军总后勤部在北京饭店召开了“疟疾防治药物研究工作协作会议”,由国家部委、军队直属和有关省、市、自治区的数十个单位组成了攻关协作组,协作组的常设机构也因此称为523办公室。500多名科研人员在办公室的统一部署下,从生药、中药提取物、方剂、奎宁类衍生物、新合成药、针灸等六个大方向寻求突破口。但当时中国正处于文化大革命的动乱之中,科研工作开展极端困难:工作组1967年~1969年间共筛选了4万多种抗疟疾的化合物和中草药,都没有取得进展。 有趣的是,美国当时也在积极开展抗疟疾药物的研究,他们当时的理论是抗疟疾药物必含杂环,据此测试了20万种化合物,结果都不太理想。

当时中国本身的疟疾状况也不容乐观,所以越南战争结束后,523项目继续开展。1969年1月21日,北京的卫生部中医研究院参加523项目,屠呦呦教授任科研组长。她从系统收集整理历代医籍、本草入手,整理出一册《抗疟单验方集》,包含640多种草药,其中就有后来声名远扬的青蒿。不过,在第一轮的药物筛选和实验中,青蒿提取物对疟疾的抑制率只有68%,还不及胡椒有效果。因此,在相当长的一段时间里,青蒿并没有引起大家的重视。后来中医研究院的研究者用低温萃取的方法得到了可贵的青蒿素晶体。 山东省中医药研究所的魏振兴也注意到了青蒿的抗疟功效,1970年他选取山东本土生长的黄花蒿作原料,试图提取其中的有效成分。1971年研究人员采用醋酸乙酯等作介质提取到了白色结晶物,但仍不是纯的单体,熔点不固定。直到1973年11月,山东中医药研究所的提取工艺才成熟,研究人员通过重结晶,得到了纯度达99.9%的结晶体,测得熔点为156度。 第三家从事青蒿素提取工作的单位是云南省药物研究所。1972年底,云南523办公室主任傅良书从北京带回消息,说中医研究院发现青蒿的粗提取物中含有一种可能会对疟疾有效的成分。1973年新年,罗泽渊在云南大学校园里意外地发现了许多同属的苦蒿。抱着试一试的想法,她采了一大把回来,制备了不同溶剂的提取物并顺利地获得了数种结晶体。从事药效学筛选工作的黄衡惊讶地发现编号为结晶体3的化合物能彻底杀灭小鼠血片中的疟原虫。经过进一步的药效学、药理学研究,到3月底,研究组证实了3号结晶体确实具有高效、低毒抗鼠疟的特点。与此同时,苦蒿的植物标本经分类专家吴征镒鉴定,定名为菊科蒿属大头黄花蒿。因此,他们将该结晶命名为黄蒿素。这是523项目中首次得到纯的青蒿素单体。 云南省药物研究所虽然起步最晚,但进展最快,在三家单位中最早得到纯的青蒿素单体,并发现了优质青蒿产地、发明了后来广泛应用的溶剂汽油提纯法,为进行药效、毒理、药理及临床试验提供了充足的青蒿素,极大地加速了整个项目的进展。

青蒿素的性质及合成

青蒿素性质及合成方法 院系:化工学院 专业:应用化学 学号: 姓名: 指导老师: 2016/1/12 摘要:青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括:青蒿素的特性,青蒿素的合成,青蒿素的生物合成,青蒿素衍生物。 关键词:青蒿素;合成方法;青蒿素衍生物 Abstract:The recent research advances in artemisinin, the most effective weapons against malarial parasites have been reviewed. An overview is given on artemisinin research from the following aspects:sources of artemisinin,synthesisof artemisinin, biosynthesis of artemisinin, analogs of artemisinin and artemisinin production from plant tissue cultures。 Key words:artemisinin,synthesis,artemisinin derivatives 目录 1、前言……………………………………………………………… 2、青蒿素的基本性质………………………………………………

(1)分子结构………………………………………………………… (2)理化性质………………………………………………………… (3)药动力…………………………………………………………… (4)提取工艺………………………………………………………… 3、合成方法………………………………………………………… (1)全合成………………………………………………………… (2)半合成………………………………………………………… (3)生物合成……………………………………………………… 4、衍生物………………………………………………………… 5、抗癌功能………………………………………………………… 6.结论……………………………………………………………… 1前言: 青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用;具有影响人体白血病U937细胞的凋亡及分化的作用;还具有部分逆转MCF-7/ARD细胞耐药性作用;还具有抑制人胃癌裸鼠移植瘤的生长的作用;还具有一定的抗肿瘤作用等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床

青蒿素提取工艺研究

青蒿素提取工艺研究 摘要:采用单因素和均匀试验设计,应用高效液相色谱仪测定不同提取条件下青蒿素的提取量。结果表明,对青蒿素转移率的影响相对程度由大到小依次为:提取次数>提取时间>溶剂用量>提取温度,确定了较佳的工艺操作条件为温度55℃时,取药材提取3次,第1次加药材投料量6倍量的溶剂油提取2h,第2次加5倍量提取1.5h,第3次加4倍量提取1.5h。 关键词:青蒿素;提取工艺;溶剂油 青蒿为菊科植物黄花蒿(Artemisia annua L.)的干燥地上部分[1],青蒿素(Artemisinin,C15H22O5)是从青蒿中提取分离得到的一种无色结晶。青蒿素为无色针状结晶,易溶于丙酮、乙酸乙酯,在乙醇、乙醚中溶解,微溶于冷石油醚,几乎不溶于水[2]。对热不稳定,易受潮、热和还原性质的影响而分解[3]。青蒿素是继氯喹、乙氨嘧啶、伯喹和磺胺后最热门的抗疟特效药,尤其对脑型疟疾和抗氯喹疟疾具有速效和低毒的特点,已成为世界卫生组织推荐的药品。青蒿素在原植物青蒿中含量很低,一般只有7‰左右,因此,研究青蒿素的提取率,缩短提取时间,降低生产成本具有重要的意义。本试验采用单因素和多因素试验研究了提取次数、提取时间、提取温度和提取溶剂量对提取的影响,确定了最佳提取条件,提取所得滤液经减压浓缩,除去杂质,重结晶,干燥精制后得青蒿素试验成品。 1 材料和方法 1.1 材料 6号溶剂油(上海炼油厂,产品质量执行标准:GB16629-1999);120号溶剂油(中国石油化工总公司,产品质量执行标准:SH0004-90);青蒿叶末(产地重庆酉阳,40℃时烘3h后打碎);HPLC(HP公司);青蒿素对照品(中国药品生物制品检定所)。 1.2 色谱条件[4] HP1100液相色谱仪,示差检测器,色谱柱KromasilKR100-C18 E17580(250×4.6mm),甲醇-水(72:28)为流动相;流速为1.0mL/min,柱温为30℃。分别精密吸取青蒿素对照品溶液与供试品溶液各20μL,注入液相色谱仪,测定。 1.3 提取溶剂 称取青蒿叶粗粉4份,每份100g,分别置1000mL圆底烧瓶中,其中2份每次加5倍量的6号溶剂油,另2份每次加5倍量的120号溶剂油,50℃提取3次,每次2h,分别合并3次提取液。

青蒿素的提取工艺及含量测定开题报告

四川农业大学本科毕业论文 开题报告 青蒿素的提取工艺及含量测定 姓名:何禹 院(系):资源与环境系 学科专业:生物技术 研究方向:药用植物 指导老师:蒲尚饶教授 2006年10月26日 一、选题依据

1.论文题目及研究领域 (1)论文题目:药用植物青蒿的青蒿素含量测定 (2)研究领域:药用植物 2.论文研究的理论意义和应用价值 目前青蒿素的售价是225美元/g。近年的统计资料表明世界每年有近300万人死于疟疾,尤其是非洲的发病率极高。世界每年青蒿素的需求量为150吨左右,而产量仅为15吨左右,明显供不应求。因此本实验拟测定青蒿中青蒿素的含量为最大程度的获得有效药用成份提供依据。 3.目前研究的概况和发展趋势 由于在抗疟中的重要作用,国际市场对青蒿素的需求量日益提高。目前青蒿素的来源主要是三个方面。一是人工合成。但因其技术难度大,成本高,难以规模生产。二是用基因工程,细胞工程等技术手段,提高青蒿素含量。但用组织培养技术达到产业生产规模还有许多难题需要克服,且也难满足巨大的市场需求。三是从青蒿素植株中提取有效的抗疟成分青蒿素。目前在实验室中有微波辅助提取法、索氏提取法、超临界二氧化碳提取法、水蒸汽蒸馏提取法。微波辅助提取成本太高,索氏提取法不利于工业生产,超临界二氧化碳提取一次性投入成本太高,水蒸汽蒸馏提取法的周期太长、不利于工业化生产。 二、论文研究的内容

1.论文重点解决的问题: 提取方法的选择 2.论文拟开展的大方面 定性定量测定 3.论文拟得出的主要结论 降低成本,提高青蒿素的提取效率,优化工艺流程,防止污染。 三、论文拟采用的研究方法 1.拟采用的主要研究方法是热提取法: 拟采用的工艺流程: 拟采用的实验步骤: (1)将原料粉碎,过60目的筛,后称取100g ,放于有600 ml石油醚的反应器中。 (2) 加热提取3次,每次5h。温度为50度。合并提取液。 (3)过硅胶柱,用苯洗脱,收集含青蒿素段,浓缩回收石油醚后结晶。 2、论文进度计划: 2006年8月~2006年9月——查阅资料 2006年10月~2006年12月——青蒿素含量的测定

青蒿素的研究进展

青蒿素的研究现状 1 前言 青蒿素是一种倍半萜内脂类化合物[1],分子式为C15H22O5,有抗疟、抗孕、抗纤维化、抗血吸虫、抗弓形虫、抗心律失常和抑制肿瘤细胞毒性等作用[2]。目前,青蒿素用于疟疾防治的价值已被人类认识和接受,世界卫生组织已把青蒿素的复方制剂列为国际上防治疟疾的首选药物。青蒿素因其在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,传统提取方法一般采用有机溶剂法,后来又出现了超临界CO2萃取技术、超声提取技术、大孔吸附树脂提取技术、微波辅助萃取技术、快速溶剂萃取技术以及联用技术。 青蒿分布地域狭窄, 青蒿素含量低(0.01%~0.5%). 化学合成青蒿素产率不理想, 成本高. 随着全球疟疾发病率(3.8 亿人/年)和死亡率(4600 万人/年)逐年升高[3], 青蒿素类抗疟药需求量迅猛增长, 导致青蒿素原料药供不应求, 市场价格飙升[4]。近10 年来,为了从根本上解决青蒿素的供需矛盾, 国内外争相开展了青蒿素合成生物学及代谢工程研究, 一方面尝试在微生物体内重建青蒿素生物合成途径[5], 另一方面对青蒿中原有的青蒿素生物合成途径进行遗传改良[6]。我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。

2青蒿素的发现及历史 青蒿入药, 最早见之于马王堆三号汉墓出土( 公元前168 年左右) 的帛书《五十二病方》,其后在《神农本草经》, 《大观本草》及《本草纲目》等均有收录。从历代本草及方书医籍的记载, 青蒿入药治疗疟疾是经过长期的临床实践经验所肯定的。在现代临床上用于对恶性疟疾、发热、血吸虫病、腔黏膜扁平苔藓、红斑狼疮、心律失常的治疗[7],并且对类风湿性关节炎的免疫有显著疗效[8]。 1971 年以来, 中医研究院青蒿素研究小组通过整理有关防治疾病的古代文献和民间单验方, 结合实践经验, 发现中药青蒿乙醚提取的中性部分具有显著的抗疟作用。在此基础上, 于1972 年从青蒿中分离出活性物质——青蒿素,在青蒿素药理实验的基础上, 人们又进行了大量的药理和临床疗效研究。1973 年9 月, 青蒿素首次用于临床, 到目前为止, 已有十几种衍生物的抗疟效果比青蒿素活性高出多倍。自我国开展有关青蒿素的研究后, 世界各国相继开展此方面的重复性研究, 获得的结果显示了抗疟的特效性。

全国高考热点透视之——青蒿素必考【含答案】

2016年全国高考热点透视之——青蒿素必考 【含答案】 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2016年全国高考热点透视之——青蒿素 Daniel高考研究院命题 青蒿素与双氢青蒿素 注意选择题为不定项选择 1.2015年,中国科学家屠呦呦因发现治疗疟疾的药物青蒿素获得了诺贝尔奖。青蒿素的结构如图所示,下列有关青蒿素的说法中正确的是 A.分子式为C15H22O4 B.具有较强的还原性 C.可用蒸馏水提取植物中的青蒿素 D.碱性条件下能发生水解反应 2.85岁中国女药学家屠呦呦因创制新型抗疟药青蒿素和双氢青蒿素而获得2015年诺贝尔生理学医学奖。颁奖理由是“因为发现青蒿素——一种用于治疗疟疾的药物,挽救了全球特别是发展中国家数百万人的生命。” 下列关于青蒿素和双氢青蒿素(结构如图)说法错误 ..的是 A.青蒿素和双氢青蒿素互为同分异构体 B.青蒿素和双氢青蒿素均能发生取代反应 C.青蒿素的分子式为C15H22O5 D.青蒿素在一定条件下能与NaOH溶液反应 2

3.青蒿琥酯是治疗疟疾的首选药,可由青蒿素两步合成得到。下列有关说法正确的是 A.青蒿素分子式为 C15H22O5 B.青蒿素不能与NaOH溶液反应 C.反应②原子利用率为100% D.青蒿琥酯能与氢氧化钠溶液反应可生成青蒿琥酯钠 4.中国女药学家屠呦呦因发现青蒿素对疟疾的治疗作用而成为2015年诺贝尔生理医学奖获得者之一。下列说法不正确 ...的是A.从青蒿中提取青蒿素的方法是以萃取原理为基础,萃取是一种化学变化 B.青蒿素的分子式为C15H22O5,它属于有机物 C.人工合成青蒿素经过了长期的实验研究,实验是化学研究的重要手段 D.现代化学分析测试中,可用元素分析仪确定青蒿素中的C、H、O元素 5.某种药物青蒿素结构如右图所示,则下列说法正确的是 3

生物技术制药青蒿素

生物技术制药PPT讲稿 第二张PPT: 2011年23日国际医学大奖——美国拉斯克奖临床研究奖授予中国中医科学院终身研究员屠呦呦,以表彰她“发现了青蒿素——一种治疗疟疾的药物,在全球特别是发展中国家挽救了数百万人的生命”。 疟疾是经按蚊叮咬或输入带疟原虫者的血液而感染疟原虫所引起的虫媒传染病。寄生于人体的疟原虫共有四种,即间日疟原虫,三日疟原虫,恶性疟原虫和卵形疟原虫。在我国主要是间日疟原虫和恶性疟原虫。 青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物。也是中国发现的第一个被国际公认的天然药物。青蒿素类药物毒性低、抗虐性强,被WTO批准为世界范围内治疗脑型疟疾和恶性疟疾的首选药物。 黄花蒿(Artemisia annua Linn)又叫黄蒿,是菊科蒿属的一年生草本植物,广泛分布在国内各省。为中国传统中草药。其有效成分—青蒿素在抗疟方面与传统的奎宁类抗疟药物具有不同的作用机理。“青蒿一握,水一升渍,绞取汁尽服之”。《肘后备急方》 第三张PPT 80年代以来,青蒿素的化学合成、生物合成及组织培养相继成功,但由于受率低、成本高而难以投入工业化生产,目前青蒿素来源主要是从青蒿中直接提取得到;或提取青蒿中含量较高的青蒿酸,然后半合成得到。然而青蒿素含量随产地不同差异极大。除中国重庆东部、福建、广西、海南部分地区外,世界绝大多数地区生产的青蒿中的青蒿素含量都很低,无利用价值。据国家有关部门调查,在全球范围内,只有中国重庆酉阳地区武睦山脉生长的青蒿素才具有工业提炼价值。 第五张PPT: MV A、MEP途径合成萜类MV A甲戊二羟酸FPP法尼基焦磷酸 紫穗槐-4-11-二烯合酶(ADS)该酶是将倍半萜通用前体FPP 引导至青蒿素生物合成下游途径的关键酶。 在青蒿或非青蒿植物中, 存在着多个能氧化紫穗槐-4, 11-二烯的酶2006年,美国和加拿大的两个实验室室先后从青蒿腺毛中克隆得到了紫穗槐-4, 11-二烯氧化酶基因CYP71A V1,在氨基酸序列上存在差异, 发现这两个蛋白都能将紫穗槐-4, 11-二烯连续催化形成青蒿醇、青蒿醛和青蒿酸, 是多功能酶。 CYP71A V1是一种P450氧化酶, 其不能单独发挥作用, 必须由电子配偶体的配合。 2006年, Keasling实验室在克隆得到CYP71A V1后, 从青蒿中将CYP71A V1的电子配偶体——细胞色素P450还原酶基因(CPR)也克隆了出来。 Dbr2在腺毛中表达最高, 特异性地作用于青蒿醛, 生成11R-二氢青蒿醛, 对青蒿酸、青蒿醇、artemisitene和arteannuin B均无活性。 09年科学家从青蒿中分离得到1个醛脱氢酶基因, 命名为Aldh1。该基因CDS长为1 497 bp, 编码498氨基酸, 分子质量是53.8 kD。ALDH1的N末端无信号肽, 也没有细胞器定位序列。ALDH1在腺毛中表达最高, 在花芽中表达适中, 在叶子中表达较低, 而在根中检测不到活性, 这种表达方式与CYP71A V1的很相似, 也与青蒿素在植物中的分布很相似。 第六张PPT 2003年,美国Keasling小组将青蒿ADS基因经密码子优化后导入大肠杆菌中表达,首次在细菌体内合成出青蒿素的第一个关键前体——紫穗槐-4,11-二烯

相关文档
最新文档