51单片机的电压频率转换

51单片机的电压频率转换
51单片机的电压频率转换

基于单片机的电压频率转换电路设计、装配与调试

1.电压频率转换电路

图3-13 LM331构成单片机V/F数据采集前向通道电原理图

1.电路工作原理分析

LM331片内能隙基准电路产生1.9V直流电压送到2脚,并钳位在1.9V上。当2脚外接R S+R S’,后形成基准电流i=1.9/(R S+R S’)。本例i=1.9/(12k+R S’),i max=1.9/12k=158μA,i min=1.9/17K=112μA。

片内输入比较器的两个输入端:7脚接被测输入电压V IN。6脚为阈值电压V X,并与电流输出端1脚相连。外接R L、C L电路。片内定时比较器两个输入端:一个在片内通过R、2R电阻分别与V CC、GND相连;获得固定的比较电压2/3V CC。另一个输入端5脚接Rt、Ct相连;获得随Ct充电状态变化的电压V5。V5与2/3V CC 比较,当Ct充电到V5>2/3V CC时,定时比较器使片內R-S触发器复位。在R-S 触发器复位状态下电流开关断开,输出驱动晶体管截止,使Ct开始放电。片內R-S触发器与定时比较器和复位晶体管以及外接Rt、Ct构成一个单稳脉冲定时器。定时周期T=1.1Rt×Ct。

当输入比较器的V IN>V X时,启动单稳脉冲定时器并导通频率输出晶体管,使3脚连接的光电耦合器导通。同时片内开关电源导通电流i通过1脚向C L充电,Vx逐渐升高;当Vx上升到V INVx。重复上述循环,在3脚输出一个脉冲频率信号。

注入C L 的平均电流IA VE =i ×t ×fout 严格地等于Vx /R L 。IA VE =i ×t ×fout = Vx/R L 。又V IN ≈V X ,故有:

i ×t ×fout ≈ Vx/R L

fout =t i R V L IN ??=)'/(9.11.1RS RS C R R V t t L IN +???=t L IN C Rt R RS RS V ???+?09.2)

’( 根据已知电路参数R S +R S ’=15k ,R L =100k ,Rt =6.8k ,Ct =0.01μF

fout ≈000001.001.010008.6100010009.2001015????????IN

V =1000VIN 可得当V IN =1V 时,fout=1000HZ 。V IN =10V 时,fout=10000HZ ,线性度可达0.01`%。

输入电压V IN 经一个R C 低通滤波器消除干扰,进入输入端7脚。R C 滤波器截止频率fo 为:

fo =112C R V IN

π=000001

.04.010*******.321?????≈16HZ R S 、R L 、Rt 和Ct 直接影响转换结果,对元件精度有一定要求,可根据转换精度适当选择。R S 、R L 、Rt 和Ct 要选用低温漂的稳定元件,C L 虽对转换结果无影响,但应选择漏电流小的电容。

3. 频率测量程序设计

LM331的3脚输出脉冲频率信号经光电耦合器隔离后,送入8031。由单片机程序对被测信号频率进行计数,或测定被测信号的周期,即可有两种方法。被测量信号频率fout =0~10KHZ ,当单片机系统时钟为6MHZ 时,T0或T1定时

脉冲fc=6MH Z /12=500 KH Z ,由测频公式fout =

c x

n n *fc (x n 为被测信号计数值,c n 为定时脉冲计数值),当c n 固定时,为频率法,当x n 固定时,为周期法。

由于定时的起始、结束边沿与被测的计数脉冲边沿不同步,将出现±1个被测的计数脉冲的误差δ,误差δ与被测量信号频率fout 有关,fout 越低,误差δ越大。要实现高精度频率测量,可采用同步计数技术来改善误差δ。用频率低的被测信号来控制定时计数的起始、结束(同步),此时产生的±1个脉冲的误差δ为±1个频率高的定时计数脉冲,降低了误差δ。同步计数时序见图3-14,fout-

待测频率信号,START-定时信号,nx-待测频率信号计数,nc-定时计数。 非同步计数:δ=c x c n n n //1=x

n 1 同步计数:δ’=c c c n n n /1/1)1/(1-+=c

n 1 因c n >x n ,故δ’< δ,降低了误差。

⑴ 频率法 被测脉冲送入8031的T1定时/计数器,若T0定时T =0. 1秒,由T =KHZ N

102,N

≈10相当于10位A /D 转换器。设定时/计数器初值为n C ,定时时间内计数器终值为n C ’,则f out =( n C ’- n C )/0.1。

V IN =fout /1000=(n C ’-n C )/100

绝对误差 f =1/T =1/0.1=10H Z

8031采样程序分为二部分。(1)启动定时100ms (2)定时到读取计数器终值n C ’,并计算f out

BEGIN : MOV TMOD ,#51H ; T0方式1定时,T1方式外部计数

MOV TH0,#3CH

MOV TL0,#0B0H

MOV TH1,#00H

MOV TL1,#00H

SETB P3.5

SETB TR1

LOOP1: JNB P3.5,LOOP1 ;T0定时的起始与T1引脚上升沿同步 SETB TR0 ;设置TR0为1。启动T0定时100mS LOOP2: JNB TF0,LOOP2 ;检测T0定时100ms ,T0定时结束 MOV TL0,#0H

MOV TH0,#0H

LOOP3: JNB P3.5,LOOP3 ; T1引脚上升沿到来前,延长定时 CLR TF0

CLR TR0

CLR TR1

MOV A ,#50H

ADD A ,TL0

MOV R0,A

MOV A ,#0C3H

ADD A ,TH0

图3-14 同步计数时序

MOV R1,A ; 取c n ( 0C350H 加上延长定时 )

MOV R2,TH1 ;取x n

MOV R3,TL1

RET

⑵ 周期法

V /F 脉冲送入8031的0INT 或1INT 脚。通过测定T0或T1定时/计数器在V /F 脉冲一个周期T 内,对定时时钟脉冲Tc 的计数nc ,T=n c ×Tc 。周期法适用于V /F 输出频率范围较低情况。T0或T1定时脉冲Tc=12/6MHz=2μS 。频率相对测量误差δ=1/n c ,当f out =10HZ 时,δ=1/50000=2×10-5,当f out =10KHz 时,δ=1/50=2×10-3。V IN 越低,误差δ越小。

程序: BEGIN :NOP

MOV TMOD ,#08H ;T0定时方式1, TR0决定T0工作

MOV TL0,#00H

MOV TH0,#00H

LOOP1: NOP

JNB P3.2,LOOP1 ;等待被测信号的上升沿到来,起始同步

SETB TR0 ;若0INT 为1,设置TR0为1。启动T0

LOOP2: NOP

JB P3.2,LOOP2 ;检测若0INT 是否为0了

LOOP3: NOP

JNB P3.2,LOOP3 ;检测若0INT 是否为1,若0I

N T 为1,一个周期

CLR TR0 ;结束同步.读定时计数Nc 值

MOV B ,TH0

MOV A ,TL0

MOV TL0,#00H

MOV TH0,#00H

RET

基于51单片机的数字频率计_毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

基于MCS-51单片机的频率可调的方波发生器设计

基于MC51单片机的频率可调的方波信号发生器 用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。要求用“增加”、“减小”2 个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2 秒后,给定频率以10 次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机默认输出频率为5Hz。 1:系统设计 (1)分析任务要求,写出系统整体设计思路 任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O 管脚的状态取反。由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8 位自动装载的工作模式。涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。 问题的难点在按键连续按下超过2S 的计时问题,如何实现计时功能。 系统的整体思路: 主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序负责方波的产生、按键连续按下超过2S 后频率值以10Hz/s 递增(递减)。 (2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图 采用MCS51 系列单片机At89S51 作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。数码管驱动采用2 个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244 作为数码管的驱动。在74HC244 的7 段码输出线上串联100 欧姆电阻起限流作用。独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500欧姆电阻再接到电源上,当输入为低电平时,发光二极管导通发光。 图1 方波信号发生器的硬件电路原理图 (3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图 软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。 程序设计思路:根据定时器溢出的时间,将频率值换算为定时器溢出的次数(T1_over_num)。使用变量(T1_cnt)暂存定时器T1 的溢出次数,当达到规定的次数(T1_over_num)时,将输出管脚的状态取反达到方波的产生。主程序采用查询的方式实现按键的扫描和数码管的显示,中断服务程序实现方波的产生和连续按键的计时功能。单片机内部资源分配:定时器T1 用来实现方波的产生和连续按键的计时功能,内部变量的定义: hz_shu:设定的频率数;

51单片机频率计

实验报告 实验名称基于8255的8LED数显频率计课程名称Protues软件设计(51单片机) 班级学号 姓名

一、实验要求 基本要求: 用P1或P3口,产生一方波信号,频率为1000Hz,用一组数码管或LCD显示频率和周期以及脉宽等参数(也可用信号源或模拟信号源)。 将输出信号输入到另一端口(INT0/INT1)作频率计的信号输入端,测量此方波信号的频率、周期和脉宽,在另一组数码管或LCD上将参数值显示出来。(刷新时间1秒)。 发挥部分: 1、设置一功能键,能将当前数码管或LCD上的信号参数值锁定。 2、通过键盘,可修改方显示参数,刷新时间。 3、按键时,蜂鸣器发出提示音,表示按键有效 4、用图形方式显示输入波形(用模拟示波器) 动态显示格式: 自定 二、实验内容 实验内容为基于8255的简易8LED数字显示频率计,利用8255的扩展功能,来扩展51单片机的功能管脚,使其可以实现利用8255的A,B端口实现输入输出功能,从而实现51单片机管脚的扩展。 三、实验原理 频率计主要功能是测量频率。频率是指一秒内发生相同波形的次数,根据这一定义,可以初步得出测量频率的方法,就是通过计量一定时间的脉冲次数就可以通过计算累加获得频率的次数,然后通过数值译码输送的数显电路当中去。 根据实验假设,可以知道实验中需要用的两个定时装置,一个为定时装置,另一个为计数装置。而单片机中正好就设置了这样的计时器。 8051提供两个16位的内部定时器(计数器),分别为Time0,Time1(简称T0,T1)这两个定时器可以用作为内部定时器或者外部计数器,作为内部计时的时候是计算的是内部的脉冲,以12MHz的计时脉冲系统为例,将此计数器时钟脉冲除12后送入定时器,因此定时器所计数的脉冲周期为1us。若采用16位的定时器,最多可以计数65536,约为0,065s。因而我们选择0.05S作为单位计数时间长度。 若当成外部计数器时则计数由T0或T1管脚送入脉冲,同样地,若采用16位的定时模式,则最多可以数65536个计数量,相当可观。 在51单片机中有两个16位的定时/计数器T0,T1,分别由TH0、TL0和TH1、TL1组成,它们均是8位寄存器,在特殊功能寄存器中占地址8AH-8DH。它们用于存放定时或计数的初始值。此外,内部还有一个8位的方式寄存器TMOD 和一个8位的控制寄存器TCON。用于选择和控制定时/计数器的工作。其格式见下面两表: 方式控制寄存器TMOD GATE C/T M1 M0 GATE C/T M1 M0 门控开关计数/定 时方式选择门控开关计数/定 时 方式选择

51单片机汇编指令速查表

51单片机汇编指令速查表 指令格式功能简述字节数周期 一、数据传送类指令 MOV A, Rn 寄存器送累加器 1 1 MOV Rn,A 累加器送寄存器 1 1 MOV A ,@Ri 内部RAM单元送累加器 1 1 MOV @Ri ,A 累加器送内部RAM单元 1 1 MOV A ,#data 立即数送累加器 2 1 MOV A ,direct 直接寻址单元送累加器 2 1 MOV direct ,A 累加器送直接寻址单元 2 1 MOV Rn,#data 立即数送寄存器 2 1 MOV direct ,#data 立即数送直接寻址单元 3 2 MOV @Ri ,#data 立即数送内部RAM单元 2 1 MOV direct ,Rn 寄存器送直接寻址单元 2 2 MOV Rn ,direct 直接寻址单元送寄存器 2 2 MOV direct ,@Ri 内部RAM单元送直接寻址单元 2 2 MOV @Ri ,direct 直接寻址单元送内部RAM单元 2 2 MOV direct2,direct1 直接寻址单元送直接寻址单元 3 2 MOV DPTR ,#data16 16位立即数送数据指针 3 2 MOVX A ,@Ri 外部RAM单元送累加器(8位地址) 1 2 MOVX @Ri ,A 累加器送外部RAM单元(8位地址) 1 2 MOVX A ,@DPTR 外部RAM单元送累加器(16位地址) 1 2 MOVX @DPTR ,A 累加器送外部RAM单元(16位地址) 1 2 MOVC A ,@A+DPTR 查表数据送累加器(DPTR为基址) 1 2 MOVC A ,@A+PC 查表数据送累加器(PC为基址) 1 2 XCH A ,Rn 累加器与寄存器交换 1 1 XCH A ,@Ri 累加器与内部RAM单元交换 1 1 XCHD A ,direct 累加器与直接寻址单元交换 2 1 XCHD A ,@Ri 累加器与内部RAM单元低4位交换 1 1 SWAP A 累加器高4位与低4位交换 1 1 POP direct 栈顶弹出指令直接寻址单元 2 2 PUSH direct 直接寻址单元压入栈顶 2 2 二、算术运算类指令 ADD A, Rn 累加器加寄存器 1 1

课程设计—基于单片机的方波信号发生器汇总

微型计算机技术专业方向课程设计 任务书 题目名称:基于单片机的方波信号发生器 专业自动化班级122 姓名学号 学校: 指导教师: 2014年12月9日

课程设计任务书 课程名称:微型计算机技术 设计题目:基于单片机的方波信号发生器系 统硬件要求: 从P1.0口输出方波,分四个档:按下S1时输出1HZ,按下S2时输出10HZ,按下S3时输出1KHZ,按下S4时输出10KHZ的方波,要求误差少于1%, 软件设计: 1)主程序设计 2)各功能子程序设计 其他要求: 1、每位同学独立完成本设计。 2、依据题目要求,提出系统设计方案。 3、设计系统电路原理图。 1、调试系统硬件电路、功能程序。 2、编制课程设计报告书并装订成册,报告书内容(按顺序) (1)报告书封面 (2)课程设计任务书 (3)系统设计方案的提出、分析 (4)系统中典型电路的分析 (5)系统软件结构框图 (6)系统电路原理图 (7)源程序 (8)课设字数不少于2000字 成绩 评语

摘要 本实验是基于AT89C51单片机单片机所设计的,可以实现四种频率不同的方波信号的发生。本实验方波输出在89C51的P1.0口,分为四档,按下S1时输出1HZ,按下S2时输出10HZ,按下S3时输出1KHZ,按下S4时输出10KHZ的方波。 关键词:51单片机;方波;四档

目录 第一章前言 (5) 第二章系统总体设计 2.1系统介绍 (5) 2.2 硬件简介 (5) 2.3 软件简介 (5) 2.4 系统结构框图 (5) 第三章硬件电路 3.1硬件设计思想 (6) 3.2开关信号采集 (6) 3.3复位电路及晶振电路 (8) 3.4方波输出 (8) 第四章软件系统 4.1软件系统概述 (8) 4.2各部分程序 (10) 第五章总结 (15) 附录 (16)

数字频率计(51单片机)

自动化与电子工程学院单片机课程设计 报告 课程名称:单片机原理与应用 学院:自动化与电子工程院 专业班级: 学生姓名: 完成时间: 报告成绩:

目录 第1章数字频率计概述 (2) 1.1数字频率计概述 (1) 1.2数字频率计的基本原理 (1) 1.3单脉冲测量原理 (2) 第2章课程设计方案设计 (2) 2.1系统方案的总体论述 (2) 2.2系统硬件的总体设计 (3) 2.3处理方法 (3) 第3章硬件设计 (4) 3.1单片机最小系统 (4) 第4章软件设计 (5) 4.1系统的软件流程图 (5) 4.2程序清单 (7) 第5章课程设计总结 (7) 参考文献 (8) 附录Ⅰ仿真截图 (9) 附录Ⅱ程序清单 (15)

第1章数字频率计概述 1.1数字频率计概述 数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。 本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。测量范围从10Hz—5.5kHz,精度为1%,用单片机实现自动测量功能。 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。它以测量频率的方法对方波的频率进行自动的测量。 1.2数字频率计的基本原理 数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T(如图1.1所示)。 图1.1 频率测量原理 频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。故输入时钟信号的最高频率不得超过单片机晶振频率的二十四分之一。根

MCS-51指令表

MCS-51单片机指令汇总表 助记符指令说明字节数周期数 (数据传递类指令) MOV A,Rn 寄存器传送到累加器 1 1 MOV A,direct 直接地址传送到累加器 2 1 MOV A,@Ri 累加器传送到外部RAM(8 地址) 1 1 MOV A,#data 立即数传送到累加器 2 1 MOV Rn,A 累加器传送到寄存器 1 1 MOV Rn,direct 直接地址传送到寄存器 2 2 MOV Rn,#data 累加器传送到直接地址 2 1 MOV direct,Rn 寄存器传送到直接地址 2 1 MOV direct,direct 直接地址传送到直接地址 3 2 MOV direct,A 累加器传送到直接地址 2 1 MOV direct,@Ri 间接RAM 传送到直接地址 2 2 MOV direct,#data 立即数传送到直接地址 3 2 MOV @Ri,A 直接地址传送到直接地址 1 2 MOV @Ri,direct 直接地址传送到间接RAM 2 1 MOV @Ri,#data 立即数传送到间接RAM 2 2 MOV DPTR,#data16 16 位常数加载到数据指针 3 1 MOVC A,@A+DPTR 代码字节传送到累加器 1 2 MOVC A,@A+PC 代码字节传送到累加器 1 2 MOVX A,@Ri 外部RAM(8 地址)传送到累加器 1 2 MOVX A,@DPTR 外部RAM(16 地址)传送到累加器 1 2 MOVX @Ri,A 累加器传送到外部RAM(8 地址) 1 2 MOVX @DPTR,A 累加器传送到外部RAM(16 地址) 1 2 PUSH direct 直接地址压入堆栈 2 2 POP direct 直接地址弹出堆栈 2 2 XCH A,Rn 寄存器和累加器交换 1 1 XCH A, direct 直接地址和累加器交换 2 1 XCH A, @Ri 间接RAM 和累加器交换 1 1 XCHD A, @Ri 间接RAM 和累加器交换低4 位字节 1 1 (算术运算类指令) INC A 累加器加1 1 1 INC Rn 寄存器加1 1 1 INC direct 直接地址加1 2 1 INC @Ri 间接RAM 加1 1 1 INC DPTR 数据指针加1 1 2 DEC A 累加器减1 1 1 DEC Rn 寄存器减1 1 1

51单片机汇编语言编程:用定时器控制输出矩形波

80C51单片机的时钟频率为12MHz,利用定时器T1和P1.0输出矩形脉冲。 波形只画出了2段:一段为100us 另一段为50us。 要完全的、完整的、详细的编写此程序的过程!谢谢 ------------------------ 最佳答案: 用一个定时器定时50us,也可以达到题目要求。 在我的空间里面有类似的问题和解答。 ORG 0000H SJMP START ORG 001BH ;T1中断入口. SJMP T1_INT START: MOV TMOD, #20H ;设置T1定时方式2 MOV TH1, #206 ;自动重新装入方式. MOV TL1, #206 ;定时时间 MOV IE, #10001000B ;开放总中断和T1中断. SETB TR1 ;启动T1 MOV R2, #3 ;周期是3×50us SJMP $ ;等着吧. T1_INT: SETB P1.0 ;输出高.

DJNZ R2, T1_END ;R2-1 CLR P1.0 ;减到0,就输出低电平. MOV R2, #3 T1_END: RETI ;中断返回. END ;完. ------------------------ 已知51单片机系统晶振频率为12MHz,请利用定时器1工作方式1,中断方式在P2.3输出频率为10Hz的方波。 写出定时设计过程及完整代码 问题补充:用汇编的麻烦写一下 ------------------------ 最佳答案: ORG 0000H SJMP START ORG 001BH ;T1中断入口. SJMP T1_INT START: MOV TMOD, #10H ;设置T1定时方式1 MOV TH1, #(65536-50000) / 256 ;送入初始值.

51单片机_频率计_1602

电子产品设计与开发 结课论文 题目:其于51单片机的频率计设计与仿真 班级:电子1104班 姓名:陈** (组员)学号:03 电话:1376****** 成员:曾* (组长)学号:29 电话:13726****** 成员:孙* (组员)学号:21 电话:137*******

目录 一、需求分析 二、方案设计 1设计基本原理 (4) 1.1测量频率的原理 (4) 1.2系统设计框图 (4) 三、软件设计 (5) 1资源分配表 (5) 2程序流程框图 (6) 四、系统硬件线路设计图 (7) 1 单片机最小系统设计 (7) 2 液晶LCD1602显示电路 (8) 3 频率测量电路 (11) 五.系统仿真、测试结果及性能分析 (12) 1系统仿真、测试结果 (12) 2性能分析 (13) 六、心得与体会 (14) 七、参考文献 (14)

摘要 本设计提出了一种基于AT89C51单片机开发的数字频率测量仪的设计。系统以单片机AT89C51为核心,构成完备的测量系统。可以对信号进行频率的精确测量,测频在1Hz至10kHZ。采用液晶LCD1602显示被测信号的频率。与传统的电路系统相比,其有处理速度快、稳定性高、性价比高、硬件结构简单的优点。 关键词:单片机;低频;绝对误差

一、需求分析 频率测量在科技研究和实际应用中的作用日益重要。传统的频率计通采用组合电路 和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量低频信号 时不宜直接使用。频率信号抗干扰性强、易于传输,可以获得较高的测量精度。同时,频率 测量方法的优化也越来越受到重视.并采用AT89C51 单片机和相关硬软件实现。MCS—51 系列单片机具有体积小,功能强,性能价格比较高等特点,因此被广泛应用于工业控制和 智能化仪器,仪表等领域。我们研制的频率计以89c51单片机为核心,具有性能优良,精 度高,可靠性好等特点。 二、设计方案 此次课程设计采用间接测量法来测量。要用到GATE信号,GATE=1时,TR0=1,INTO=1 才能启动计数器,而计数器0是通过外部中断INTO的下降沿开始触发的,计时器从0开 始计时,计数器只能测高电平,因此测得的时间为半个周期。当计数器0计时溢出,执行 m加1的操作。则测量时间为:t1=TH0*256+TL0+m*65536 ,所求频率F=1000000/(2*t1) 1设计基本原理 1.1测量频率的原理 定时/计数器工作在方式1,每产生一次定时器0中断,计数65536个脉冲,此时的 脉冲来自振荡器的12分频后的脉冲,其周期为1uS。根据产生外部中断0时,定时器0中 断的次数u,以及此时定时/计数器0计数寄存器的数值X,即可求得待测方波的周期为: T=(65536*u+X)us ,取其倒数即可求得待测方波的频率,小数点后保留两位,即可使得频 率精度为0.1HZ。 1.2系统设计框图 经过方案论证和比较后,最终确定的系统框图如图1所示,主要由AT89C51单片机、异或 器件、LCD1602、电源等组成。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

基于51单片机的数字频率计毕业论文

基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概述 (2) 1.2频率测量仪的设计思路与频率的计算 (2) 1.3基本设计原理 (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明 (5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示 (12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15)

基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量围从1Hz—10kHz的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms。用单片机实现自动测量功能。 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。 1.2频率测量仪的设计思路与频率的计算 频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图1所示。 1 图可知: T=NT o 为标准信号的周期,所以T为分频后信号的周期,则可以算出被测量信(注:T o

基于MCS-51单片机的可调频率方波发生器课程设计报告[1]

单片机课程设计报告 设计题目:频率可调方波发生器 专业班级:生物医学工程09班 组长:李建华 组员:梁国锋,赖水兵,郭万劲,李建华2010 年 06 月 16日

摘要 本实验是基于PHILIPS AT89C51 单片机所设计的,可以实现键位与数字动态显示的一种频率可调方波发生器。通过键盘键入(10HZ-9999HZ)随机频率,使用七段数码管显示,每一个数码管对应一个键位。单片机对各个键位进行扫描,确定键位的输入,然后数码管显示输入的数值,方波发生器输出以数码管显示的数值为频率的方波。 关键词:单片机七段数码管键盘电路频率可调方波发生器

一、目的和功能 1.1 目的: 设计一种频率范围限定且可调的方波发生器,志在产生特定频率的方波。 1.2功能: 假设键盘是4*4的键盘,当键盘输入范围在10hz-9999hz的数字,单片机控制数码管显示该数值,并把该数值当做方波发生器的输入频率,单片机控制该方波发生器以该数值作为频率显示方波,从而得到我们想要频率的方波。 二、硬件设计 2.1 硬件设计思想 键盘的数字和键位关系固定,通过键盘输入产生频率,通过LED数码管显示出来,每一个数码管对应一个键位。基本设备是基于PHILIPS AT89C51单片机,外围设备采用的是4个七段数码管,PHILIPS A T89C51单片机,1个OSCILLOSCOPE 方波发生器,16个Button,若干电阻,电源电池。 2.2 部分硬件方案论述 2.2.1 七段数码管扫描显示方式的方案比较 方案一:静态显示方式:静态显示方式是指当显示器显示某一字符时,七段数码管的每段发光二极管的位选始终被选中。在这种显示方式下,每一个LED数码管显示器都需要一个8位的输出口进行控制。静态显示主要的优点是显示稳定,在发光二极管导通电流一定的情况下显示器的亮度大,系统运行过程中,在需要更新显示内容时,CPU才去执行显示更新子程序,这样既节约了CPU的时间,又提高了CPU的工作效率。其不足之处是占用硬件资源较多,每个LED数码管需要独占8条输出线。随着显示器位数的增加,需要的I/O口线也将增加。

单片机课设《数字频率计设计》

单片机课程设计 学生姓名: 学号: 在班编号: 学院:电气与电子工程学院 专业: 题目:数字频率计设计 指导教师:吴翔老师 2013年01月08日

摘要 本方案主要以单片机为核心,主要分为时基电路,复位电路,显示电路三大部分,设计以单片机为核心,利用单片机的计数器和定时器的功能对被测信号进行计数。编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。 本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED数码显示管将所测频率显示出来。系统简单可靠、操作简易,能基本满足一般情况下的需要。既保证了系统的测频精度,又使系统具有较好的实时性。本频率计设计简洁,便于携带,扩展能力强,适用范围广。 [关键词]单片机,AT89C51,运算,频率计,LED数码管。

前言 在电子测量领域中,频率测量的精确度是最高的,可达10—10E-13数量级。因此,在生产过程中许多物理量,例如温度、压力、流量、液位、PH 值、振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。 国际上数字频率计的分类很多。按功能分类,测量某种单一功能的计数器。如频率计数器,只能专门用来测量高频和微波频率;时间计数器,是以测量时间为基础的计数器,其测时分辨力和准确度很高,可达ns数量级;特种计数器,它具有特种功能,如可逆计数器、予置计数器、差值计数器、倒数计数器等,用于工业和白控技术等方面。数字频率计按频段分类 (1)低速计数器:最高计数频率<10MHz; (2)中速计数器:最高计数频率10—100MHz; (3)高速计数器:最高计数频率>100MHz; (4)微波频率计数器:测频范围1—80GHz或更高。 单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。单片机的潜力越来越被人们所重视。特别是当前用CMOS工艺制成的各种单片机,由于功耗低,使用的温度范围大,抗干扰能力强、能满足一些特殊要求的应用场合,更加扩大了单片机的应用范围,也进一步促使单片机性能的发展。

单片机课程设计报告——智能数字频率计

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

单片机输出方波及显示宽度

桂林电子科技大学单片机最小应用系统 设 计 报 告 指导老师:吴兆华 学生:冯焕焕 学号:1000150301

前言 近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新.在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善. 单片机是指在一个芯片上集成了中央处理器、存储器和各种I/O接口的微型计算机,它主要面向控制性应用领域,因此又称为嵌入式微控制器。单片机诞生30多年以来,其品种、功能和应用技术都得到飞速的发展,单片机的应用已深入国民经济和日常生活的各个领域。 本次课程设计目的主要是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程.随着科学技术发展的日新日异,单片机已经成为当今计算机应用中空前活跃的领域,在生活中可以说得是无处不在。因此作为二十一世纪的大学来说掌握单片机的开发技术是十分重要的。 本课程设计实在学完单片机原理及课程之后综合利用所学单片机只是完成一个单片机应用系统设计并在实验室实现。该课程设计的主要任务是通过解决一、两个实际问题,巩固和加深“单片机原理和应用”课程中所学的理论知识和实验能力,基本掌握单片机应用电路的一般设计方法,提高电子电路的设计和实验能力,加深对单片机软硬知识的理解,获的初步的应用经验,为以后从事生产和科研工作打下一定的基础。 摘要

单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。单片机是20世纪中期发展起来的一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。本文是设计频率/脉冲宽度的测量与显示的硬件电路与程序的编制。它可以测量脉冲信号的脉冲宽度,频率等参数。利用定时器的门控信号GATE进行控制可以实现脉冲宽度的测量。利用定时器T0定时T1计数来测量由P3.5口输入的脉冲信号的频率。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。显示时采用动态扫描的方式将将各位数的BCD码依序输入到LED中,并连续扫描2秒钟。通过采用STC89C52RC 单片机为中心器件来设计脉冲宽度测量器,并运用MCS—51/52单片机计数功能,选择好工作模式,对脉宽进行计数。在现有的单片机仿真机系统上掌握相关软硬件设计与调试知识,并在计算机上编写汇编程序调试运行。 关键词: 门控信号GATE;脉冲宽度;扩展测量范围;脉冲频率 ABSTRACT

51单片机频率计程序

#include #define uchar unsigned char #define uint unsigned int #define ulong unsigned long uchar led_code[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管段选码,0~9 uchar led_bit[]={0x01,0x02,0x04,0x08,0x10,0x20};//数码管位选码,分别对应1~6 uint over_count=0,cap_count=0;//分别定义T2溢出次数、T2捕捉数 ulong sig_t=0;//被测信号周期,单位为us void timer2isr(void)interrupt 5 using 2//T2中断子程序,测量输入脉冲宽度 { if(EXF2==1) { EXF2=0;//清中断标志 cap_count++;//捕捉次数加1 if(cap_count==1)//第一次捕捉到负脉冲时将下述变量清0,为第2次捕捉作准备 { TH2=0; TL2=0; RCAP2H=0; RCAP2L=0; over_count=0; return; } sig_t=RCAP2H*256+RCAP2L+over_count*65536+30;//第2次捕捉到脉冲下降沿时计算出该信号的周期,30为误差 TH2=0;//将相关寄存器和变量清0 TL2=0; RCAP2H=0; RCAP2L=0; over_count=0; cap_count=0; } else { over_count++; TF2=0;//T2溢处次数加1,溢出标志位清零 } } void display(ulong tempdata)//用数码管动态显示一个6位整数 { uchar led_data[6]; uchar i;

51单片机指令表汇总

51单片机指令表 助记符指令说明字节数周期数 (数据传递类指令) MOV A,Rn 寄存器内容传送到累加器 1 1 MOV A,direct 直接地址内容传送到累加器 2 1 MOV A,@Ri 间接RAM内容传送到累加器 1 1 MOV A,#data 立即数传送到累加器 2 1 MOV Rn,A 累加器内容传送到寄存器 1 1 MOV Rn,direct 直接地址内容传送到寄存器 2 2 MOV Rn,#data 立即数传送到寄存器 2 1 MOV direct,Rn 寄存器内容传送到直接地址 2 2 MOV direct,direct 直接地址传内容传送到直接地址 3 2 MOV direct,A 累加器内容传送到直接地址 2 1 MOV direct,@Ri 间接RAM内容传送到直接地址 2 2 MOV direct,#data 立即数传送到直接地址 3 2 MOV @Ri,A 累加器内容传送到间接RAM 1 1 MOV @Ri,direct 直接地址内容传送到间接RAM 2 2 MOV @Ri,#data 立即数传送到间接RAM 2 1 MOV DPTR,#data16 16 位地址传送到数据指针 3 2 MOVC A,@A+DPTR 代码字节传送到累加器 1 2 MOVC A,@A+PC 代码字节传送到累加器 1 2 MOVX A,@Ri 外部RAM(8位地址)内容传送到累加器 1 2 MOVX A,@DPTR 外部RAM(16位地址)内容传送到累加器 1 2 MOVX @Ri,A 累加器内容传送到外部RAM(8位地址) 1 2 MOVX @DPTR,A 累加器内容传送到外部RAM(16 地址) 1 2 PUSH direct 直接地址内容压入堆栈 2 2 POP direct 堆栈内容弹出到直接地址 2 2 XCH A,Rn 寄存器和累加器交换 1 1 XCH A, direct 直接地址和累加器交换 2 1

基于AT89C51单片机的频率计设计

基于AT89C51单片机的频率计设计 1、频率计方案概述 本频率计的设计以AT89S51单片机为核心,利用他内部的定时/计数器完成待测信号周期/频率的测量。单片机AT89S51内部具有2个16位定时/计数器,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。在定时器工作方式下,在被测时间间隔内,每来一个机器周期,计数器自动加1(使用12 MHz时钟时,每1μs加1),这样以机器周期为基准可以用来测量时间间隔。在计数器工作方式下,加至外部引脚的待测信号发生从1到0的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率。外部输入在每个机器周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24个振荡周期),所以最大计数速率为时钟频率的1/24(使用12 MHz时钟时,最大计数速率为500 kHz)。定时/计数器的工作由运行控制位TR控制,当TR置1,定时/计数器开始计数;当TR清0,停止计数。 本设计综合考虑了频率测量精度和测量反应时间的要求。例如当要求频率测量结果为3位有效数字,这时如果待测信号的频率为1 Hz,则计数闸门宽度必须大于1 000 s。为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两种方法: (1)当待测信号的频率>100 Hz时,定时/计数器构成为计数器,以机器周期为基准,由软件产生计数闸门,计数闸门宽度>1 s时,即可满足频率测量结果为3位有效数字; (2)当待测信号的频率<100 Hz时,定时/计数器构成为定时器,由频率计的予处理电路把待测信号变成方波,方波宽度等于待测信号的周期。这时用方波作计数闸门,当待测信号的频率=100 Hz,周期为10ms,使用12 MHz时钟时的最小计数值为10 000,完全满足测量精度的要求。 2频率计的量程自动切换 使用计数方法实现频率测量时,外部的待测信号为单片机定时/计数器的计数源,利用软件延时程序实现计数闸门。频率计的工作过程为:定时/计数器的计数寄存器清0,运行控制位TR置1,启动定时/计数器工作;运行软件延时程序,同时定时/计数器对外部的待测信号进行计数,延时结束时TR清0,停止计数。从计数寄存器读出测量数据,测量数据在完成数据处理后,由显示电路显示测量结果。 使用定时方法实现频率测量时,外部的待测信号通过频率计的预处理电路变成宽度等于待测信号周期的方波,该方波同样加至定时/计数器的输入脚。工作高电平是否加至定时/计数器的输入脚;当判定高电平加至定时/计数器的输入脚,运行控制位TR置1,启动定时/计数器对单片机的机器周期的计数,同时检测方波高电平是否结束;当判定高电平结束时TR清0,停止计数,然后从计数寄存器读出测量数据。这时读出的数据反映的是

相关文档
最新文档