润滑复合材料的真空摩擦学特性研究

润滑复合材料的真空摩擦学特性研究
润滑复合材料的真空摩擦学特性研究

聚合物基自润滑材料的研究现状和进展

聚合物基自润滑材料的研究现状和进展 由于聚合物本身具有较低的摩擦系数,优良的机械性能及耐腐蚀性等优点,其基自润滑复合材料具有非常优异的摩擦磨损性能,正在被广泛的应用到减摩领域。本文综述了聚醚醚酮、聚四氟乙烯及聚酰亚胺等几种高聚物的摩擦磨损特点及其应用,聚合物基自润滑复合材料发展现状。指出目前聚合物基高性能自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度,通过添加各类固体自润滑剂来提高摩擦性能,有效提高其综合性能。聚合物基自润滑材料可取代传统金属材料,成为全新的一类耐摩擦磨损材料。 论文关键词:高聚物,复合材料,自润滑材料,摩擦,磨损 1、聚醚醚酮(PEEK) 1.1 聚醚醚酮(PEEK)的特点 聚醚醚酮(PEEK)是一种高性能热塑性高聚物,具有良好机械性能、抗化学腐蚀性和抗辐射性,显着的热稳定性和耐磨性。它可以在无润滑、低速高载下或在液体、固体粉尘污染等 收稿日期: 修订日期: 作者简介:刘良震(1980-),男,助理讲师, E-mail:ldcllfz@https://www.360docs.net/doc/374947911.html, 恶劣环境下使用。因而关于聚醚醚酮及其复合材料的研究越来越受到人们重视。聚醚醚酮是一种半晶态热塑性聚合物,为了改善其机械性能,尤其是摩擦学性能,常在其中添加聚四氟乙烯(PTFE)、聚丙烯腈(PAN)和碳纤维(FC)等材料,也可添加颗粒增强型材料或进行特种表面处理等离子体处理等。当聚醚醚酮及其复合材料与金属材料相互对磨时,通常在金属表面形成聚合物转移膜,其结构、成分均与原有的聚合物及复合材料不同,其性能、厚度及连续程度均对摩擦副的摩擦学性能有重大影响[4]。 1.2 对聚醚醚酮(PEEK)摩擦性能的研究 章明秋等人[5,6]对聚醚醚酮(PEEK)在无润滑滑动条件下磨损产生的磨屑的形态进行研究,结果表明,聚醚醚酮(PEEK)的磨屑具有分形特征,其分形维数与载荷的关系对应于磨损率与载荷的关系,能够反映聚醚醚酮(PEEK)磨损机制的变化。在给定的试验条件下,随着载荷的增大,聚醚醚酮(PEEK)的磨损机制从粘着磨损为主伴随着疲劳-剥层磨损,进而转变为热塑性流动磨损。 张人佶等[7,8]利用扫描电镜、扫描微分量热仪、红外光谱仪、俄歇电子谱仪等分析手段系统的研究了聚醚醚酮(PEEK)及其复合材料的滑动转移膜,结果表明:纯聚醚醚酮(PEEK)在滑动摩擦过程中形成不连续的转移膜。聚四氟乙烯(PTFE)的光滑分子结构有助于使转移膜更光滑,固体润滑效果也更好。在PEEK/FC30中,不仅加入PTFE,而且加入具有层状

润滑油基础知识考试题

普通工业润滑油基础知识考试题 一、填空题 1、按40℃运动粘度划分牌号的油品包括液压油、汽轮机油、 __________ 、____________ 等。 2、多级油具有__________、-__________、__________、可以全年通用,并且节约能源等优点,所以应推广使用多级油。 3、液压油可以分为两大类,一类是易燃的_____液压油,另一类是 _________液压液。 4、液压油在运行过程中,由于操作不善,会使水混入油品中,促使添加剂分解,严重腐蚀设备。因此要防止_____的混入。 5、液压油中混入固体颗粒,会使液压元件损耗增大,并堵塞过滤器,加速油品的老化。因此要防止_________混入。 6、齿轮传动能保证恒定的瞬时______,传递动力准确可靠。 7、汽轮机油主要用于电力、船舶、化肥、化纤工业汽轮机组和大、中型水轮机组的轴承、齿轮箱、调速器以及液压控制系统,起_____、 ____和________的作用。 8、HVI150代表:_____________ ,MVIS150BS代表: _____________________。 9、中和______油品中的酸性物质所需要的氢氧化钾毫克数称为酸值,用mgKOH/g油表示。 10、粘度指数是表示油品粘温性能的一个________。粘度指数高,表示油品的粘度随温度变化_____,油的粘温性能好。反之亦然。 11、润滑油的基本性能检测包括________、___________和 ___________。 12、乳化是油分子和水分子互相包容的一种现象,是___________变化,可分成油包水型和水包油型。常见的乳化是__________,往往呈乳白色。 13、基础油的主要成分决定了_____、粘温、_____、______等性能等

复合材料特性

(1)力学性能 石墨烯被认为是迄今为止强度最高的物质,添加石墨烯可以增加聚合物的力学性能。拓展石墨烯的改性范围,开发出多种的增强复合材料变得尤为重要。改性的程度有许多影响因素,例如强相的浓度和在基质中的分布状态,界面粘合性和增强相的长径比等。石墨稀纳米片和聚合物基体之间的界面粘合性强,是进行有效加固的关键。局部两相间不相容性可能由于石墨稀对基体的附着力差而降低应力转移几率,导致了一个较低的机械性能复合材料。可使用氢键和范德华力非共价键改善界面相互作用,提高聚合物基体机械性能[1]。 尽管些物理相互作用可以提高复合材料的性能,在外部受力下填料与基体之间相对移动是不可避免的。这限制了材料的最大使用强度。为了缓解该问题,关键是选择有效的手段,提高界面与基体间的抗剪切强度。改善填料与基体之间靠共价键形成的应力传递。例如,利用GO表面的羟基(-OH)与聚氨酯链上的端部的-NCO基团反应,形成聚氨甲酸酯键(-NH-CO)而共价键合到聚氨酯上。(2)导电导热性能 石墨烯的导电性能是目前已知导电材料中最好的,其载流子迁移率达15000 cm2·V- 1·s- 1[ 2]。这个数值是目前已知具有最高迁移率的锑化铟材料的两倍,是商用硅片迁移率的10倍以上。石墨烯具有高导电性,当加入到聚合物基体中,可导电的石墨烯分散在基体中形成导电网络,可以大大提高复合材料的导电性。复合材料表现出导电性随石墨烯含量的增加呈现一种非线性增长。 石墨烯的导热性能很高,在室温下为3000W·M-1·K-1,已被用来作为基体填充物,以改善聚合物的热导率和热稳定性。片状石墨稀的二维片层结构在聚合物较低的界面热电阻,从而产生更好的导电性增强聚合物复合材料。其他因素,例如石墨稀片的长径比,取向和分散,基体的种类等也将影响复合材料的热性能。(3)热稳定性 热稳定性是复合材料的另一个重要性能,可以通过在聚合物基体中嵌入石墨烯来实现。高的热稳定性和层状结构的石墨烯的加入,会使复合材料热性能显著提高。Ramanathan等[3]系统研究发现石墨烯的加入可以使聚甲基丙烯酸甲酯的模量、强度、玻璃化转变温度和热分解温度大幅度提高。并且石墨烯的作用效果远远好于单壁碳纳米管和膨胀石墨。 (4)气体阻隔性能 石墨烯的加入相对于原始的聚合物可以显着减少气体对聚合物复合材料的透过率。各种研究表明,气体渗透性降低可能由于石墨稀长径比和高表面积,以及在聚合物基体中形成的“弯曲通道”效应 (tortuous path effect),从而有效的阻隔了气体分子的扩散和穿透。Pinto等[4]研究了聚乳酸/石墨稀复合材料对氧气和氮气的阻隔性。结果表明,与未加入石墨稀前相比在复合物中使用0.4%(重量)添加量可以使复合材料对氧气的透过量下降三倍,对氮气的透过量下降四倍。(5)吸附性能 众所周知,吸附强烈依赖于孔隙结构和表面面积,以及吸附剂的官能团。石

固体自润滑复合材料分类

固体自润滑复合材料分类 根据基体材质不同大致可将固体自润滑复合材料分为聚合物基、陶瓷基和金属基等三大类。 A.聚合物固体自润滑复合材料 目前常见的减摩用聚合物有:聚酰亚胺、聚醚醚酮(PEEK)、聚四氟乙烯、尼龙(PA)、聚甲醛(POM)、聚乙烯(PE)等。其中PTFE本身也是一种良好的固体润滑剂,是研究较早且应用最广的耐热性聚合物基自润滑材料,其分子结构规整,静摩擦系数可达0.04,是已知的可实用的滑动材料中摩擦系数最小的。然而,聚合物材料机械强度低、耐热和传热性能不理想,即使环境温度不升高,但在摩擦条件十分苛刻的条件下,传热性能低的聚合物材料很容易发生局部升温而达到耐热极限,因此不适宜高温、高速、重载等工作条件。 B.陶瓷基固体自润滑复合材料 新型结构陶瓷材料具有高强度、高硬度、低密度,以及优异的化学稳定性和高温力学性能等特点,因此有关陶瓷基自润滑复合材料及摩擦学性能的研究日益 受到重视。Sliney等选择了Cr 3C 2 为陶瓷相,以Ni为粘结相,CaF 2 和BaF 2 的共 熔物与银为润滑剂,制备了性能优异的高温自润滑金属陶瓷涂层PS200,对上述 配方进行调整可制得PS212涂层及PM212陶瓷复合材料,对解决斯特林发动机等的高温润滑问题有重要意义。王静波等考察了Ni-WC-PbO系自润滑金属陶瓷的高温摩擦学特性,发现摩擦化学产物PbW0 4 是该类材料具有优异摩擦学特性的主要 原因,直接加入PbW0 4 时材料的摩擦学性能较好,但其机械性能略差。陈晓虎研究了润滑组元(石墨、氮化硼)与氧化铝基体化学相容、物理匹配关系及其对自润 滑陶瓷材料摩擦学性能的影响,将石墨和氮化硼同时引入A1 20 3 陶瓷基体之中, 润滑减摩性能明显提高。总体上讲,自润滑陶瓷材料成为解决极端苛刻工况条件下实现自润滑要求的有效途径,但目前自润滑陶瓷材料的研究仍处于起步阶段,离实际应用还存在一定的距离。 C.金属基固体自润滑复合材料 金属基固体自润滑复合材料是固体润滑剂作为组元加入到金属基体中形成的复合材料,它具有如下特点:熔点高,机械强度高,有较好的韧性和延展性;热传导性和导电性好;尺寸稳定,耐潮湿,摩擦因数小,耐磨寿命长等优良的摩

石墨烯复合材料在电磁领域的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第43卷,第9期2015年9月 V ol.43,No.9Sept. 2015 143 doi:10.3969/j.issn.1001-3539.2015.09.029 石墨烯复合材料在电磁领域的应用研究进展 王雯1,黄成亮1,郭宇1,宋宇华1,张颖异1,刘玉凤1,杜汶泽2 (1.中国兵器工业集团第五三研究所,济南 250031; 2.总装备部装甲兵驻济南地区军代室,济南 250031) 摘要:石墨烯以其独特的二维结构和优异的力学、电学、光学、热学性能成为材料领域的研究热点,石墨烯复合材料是石墨烯应用领域中重要的研究方向。概括了国内外石墨烯复合材料在电磁波吸收及电磁屏蔽领域的应用研究进展,并展望了未来石墨烯复合材料在此领域的发展趋势。 关键词:石墨烯;石墨烯复合材料;微波吸收;电磁屏蔽;应用 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2015)09-0143-04 Application Research Progress of Graphene Composites in Electromagnetic Fields Wang Wen 1, Huang Chengliang 1, Guo Yu 1, Song Yuhua 1, Zhang Yingyi 1, Liu Yufeng 1, Du Wenze 2 (1. CNGC Institute , Jinan 250031, China ; 2. Jinan Regional Office of Armoured Force Military Representative Bureau , Jinan 250031, China) Abstract :Graphene has become a hot research spot at home and abroad in recent years due to its unique two-dimensional structure and excellent mechanical, electrical, optical and thermal properties. Graphene composites is an important research direction in the area of graphene application. The application research progress in the microwave absorption and electromagnetic interference shielding fields of graphene composites were summarized. The developmental trend of graphene composites in the fields was expected. Keywords :graphene ;graphene composite ;microwave absorption ;electromagnetic interference shielding ;application 石墨烯是单层碳原子紧密堆积而形成的一种超薄碳质新材料,厚度只有0.34 nm ,是目前世界上最薄的二维材料 [1–2] 。自2004年英国曼彻斯特大学的物理学教授A. Geim 和 K. Novoselov 等用机械剥离方法观测到单层石墨烯,其独特的物理性能和在电子领域的潜在应用成为国际研究的热点,并引起科学界新一轮“碳”热潮[3–6]。 碳材料是电磁屏蔽和吸波材料研究的重要内容,对于石墨、碳纤维、碳纳米管等材料的电磁屏蔽和吸收性能的研究已经相当广泛。然而,作为一种新型碳材料的石墨烯具有纵横比、电导率和热导率高、比表面积大、密度低等特点,其本征强度高达130 GPa ,常温下的电子迁移率可达到15 000 cm 2/(V ·s),是目前电阻率最小的材料。并且石墨烯具有室温量子霍尔效应和良好的铁磁性[7–10],与石墨、碳纤维、碳纳米管等材料相比,拥有独特性能的石墨烯可以突破碳材料原有的局限,成为一种新型有效的电磁屏蔽和微波吸收材料[11–14]。因此,以石墨烯为研究方向,结合金属纳米材料或聚合物材料,通过结构设计研制性能优异的石墨烯复合材料,有望广泛应用于电磁波吸收及电磁屏蔽等民用及军事领域。笔者根据国内外学者的研究情况,重点介绍石墨烯复合材料在电磁波吸收以及电磁屏蔽领域中的研究进展,并对未来石墨烯复合材料的发展进行了展望。 1 石墨烯复合材料在电磁波吸收领域中的应用 随着无线电探测技术和探测手段的发展以及其它非可见光探测技术和各种反伪装技术的逐渐完善和应用,传统武器装备的生存受到严峻的挑战。因此,研制高效吸收雷达波的轻型材料是提高武器装备系统生存能力的有效途径之一,是现代战争中最具有价值、最有效的战术突防手段。可见,高性能轻型微波吸收材料研制及在武器装备中的应用至关重要。 二维片状的石墨烯具有高的比表面积(2 630 m 2/g)[9] 以及特异的热、电传导功能,对微波能产生较强的电损耗。与传统吸收剂相比,石墨烯材料以其优异的电磁性能成为一种有效的新型微波吸收材料。传统的铁磁类吸收剂,如Fe ,Ni ,Co ,Fe 3O 4,Co 3O 4等铁磁性纳米物质对电磁波具有较强的磁损耗。通过结构设计,将石墨烯与此类纳米粒子复合后,得到石墨烯片层中镶嵌强吸收电磁波纳米磁性粒子结构的复合材料,并且可实现对微波较强的介电损耗和磁损耗。此类复合材料将石墨烯与磁性纳米粒子的优异性能结合在一起,有效提高了石墨烯材料的磁损耗,并可显著提高我国吸 联系人:王雯,工程师,博士,主要从事新型碳材料的制备及应用方面的研究 收稿日期:2015-06-22

雷达天线罩电磁散射特性研究

第3l卷第10期2009年lO月 现代雷达 ModemRadar V01.31No.10 0ct.2009 ?1穷真技术?中图分类号:TN011文献标识码:A文章编号:1004—7859(2009}10—0095—04雷达天线罩电磁散射特性研究 李西敏1’2,童创明1’2,付树洪1’2,李晶晶1 (I.空军工程大学导弹学院,陕西三原713800) (2.东南大学毫米波国家重点实验室,南京210096) 摘要:采用高阶矩量法研究了常见雷达天线罩的电磁散射特性。首先采用双线性表面几何建模技术对天线罩进行面剖分,再依据等效原理在天线罩表面建立电磁积分方程,最后用基于混合域基函数的高阶矩量法对其离散求解。实例验证,该方法简单易行、结果精确,同时发现天线罩材料的电参数在很大程度上影响了其电磁散射特性。 关键词:雷达天线罩:电磁散射特性;高阶矩量法;双线性表面 AStudyonEMScatteringCharacteristicsofRadome UXi-rain,TONGChuang-ming,FUShu-hong,LIJing-jing (1.MissileInstituteofAirForceEngineeringUniversity,Sanyuan713800,China) (2.StateKeyLabofMillimeterWaves,SoutheastUniversity,Nanjing210096,China)Abstract:Electromagnetic(EM)scatteringcharacteristicsofcommonradomearestudiedwithhiighorderMethodofMoment(MoM).Firstly,radomesurfaceissegmentedusingbilinearsurfacegeometricalmodeling.Then,EMintegralequationsalee¥tab-fishedwithequivalenceprinciple.Finally,bymean8ofhishorderMoMinwhichmixed?domainbasisfunctions8xeadopted,thee—quationsa聆discretizedand solved.Theresultsofsimulationshowthatthismethodissimpleandaccurate.ItisalsoshownthatthepermittivityofradomematerialhasgreatinfluenceonitsEMscaReringcharacteristics. Keywords:radome;EMscatteringcharacteristics;highorderMoM;bilinearsurface 0引言 雷达天线罩是天线的电磁窗口和保护罩。它既保护天线免受恶劣环境侵害,又可以最大限度保持天线的电性能。不仅地面雷达需要加载天线罩,机载、弹载雷达更需要天线罩的保护,图1给出了一种常见的弹载雷达天线罩。 图1某弹载雷达天线罩 天线罩的电磁散射特性是其很重要的电性能指标,雷达散射截面(RadarCrossSection,RCS)又是量化 基金项目:毫米波国家重点实验室基金资助项目K200818/K200907) 通信作者:李西敏Email:chmtong@126.com 收稿Et期:2009-06.18修订日期:2009-09.18反映目标电磁散射特性的参数。设计者都希望尽可能减小天线罩的RCS,从而减小被对方雷达发现和被反辐射导弹跟踪的概率,提高系统在现代电子对抗中的生存能力。 分析天线罩电磁散射特性的方法可分为实验测量和仿真计算2种。前者可信度高但操作复杂且费用比较昂贵,同时受诸多实际条件的限制,很难获得完备的散射特性数据。因此仿真计算辅之以实测数据对其结果进行修正和完善的方法,成为分析和获取天线罩电磁散射特征的重要手段。本文采用结合双线性表面几何建模技术的高阶矩量法…研究了天线罩的电磁散射特性。 1几何建模 采用高阶矩量法求解天线罩电磁散射问题,首先须说明其几何形状,即几何建模。几何建模是一项很复杂的工作,很多天线罩具有复杂的几何形状,不易精确描述,因而必须进行适当近似处理。拟采用双线性表面几何建模嵋1的方法来逼近模拟天线罩的表面。 一般来讲,双线性表面是一个曲面四边形,按照一 一95— 万方数据

润滑油基本知识

润滑油基本知识 润滑油知识 润滑油的作用润滑油是如何制成的? 合成基础油的优点何谓粘度? SAE粘度级粘度指标 单级粘度油和复级油API机油质量等级 如何从包装识别汽油机油或柴油机油?什么叫“闪点”? 什么叫“倾点”?什么叫泵送温度? 什么叫运动粘度(cSt)?什么叫密度? 什么叫针入度(稠度)?什么叫滴点? 什么时候应换润滑油?工业润滑油主要有哪些? 不同品牌的同类润滑油能否混用?如何推荐润滑油? 车辆用油主要有哪些?摩托车二冲程油和四冲程油的区别? 是否车辆使用越高级别的油越好? 一、润滑油作用: 减少磨擦、减少磨损。 冷却系统。 润滑油的油膜有密封作用。 防止生锈。 清洁系统。 可传递压力和温度。 二、润滑油是如何制成的? 从石蜡基的原油中提取矿物基油,按用途加上添加剂混和。(合成油是用合成基础油加上添加剂混和)合成型油品和矿物油品不可混用,合成型油成本高所以售价也高。 三、合成基础油的优点: 高粘度指数——需较少的粘度指数改进剂,沉淀少。 ——减少粘结和研磨现象,品质稳定。

不易挥发——耗油量低,排放少。 低倾点——低温流动性好,启动性好,磨损低。 四、何谓粘度? 按不同需要,油品制成各种稀薄粘稠不同的产品,油品这种不同程度的粘稠称为粘度。把粘稠分为等级则为粘度级。温度升高粘度下降,压力升高粘度增加,剪切率增大粘度下降。 五、SAE粘度级 美国汽车工程师协会(SAE)制定并颁布的润滑油粘度等级。(ISO/ASTM粘度级是国际标准协会工业用润滑油使用的粘度级)加上后标“W”是表示用于冬季,15W。 六、粘度指数 所有油品,加热时会变稀、遇冷时会变稠。但各种油对粘度/温度的效应敏感度不同,故用粘度指数(VI)来表示,在温度变化下粘度变化相对小的称为较高的粘度指数。 七、单级粘度油和复级粘度油 只适用于变化不大的某种温度条件使用的油叫单级粘度油,在温度变化范围较大都能使用的油我们叫它为复级粘度油。 八、API机油质量等级 由美国石油协会制定的,对机油质量的等级划分。汽油发动机用S开头,从SA到SJ,柴油发动机用C开头,CA到CH4,字母越后等级越高。 九、如何从包装上识别汽油机油或柴油机油? 如果包装上只标有API S*的是汽油车用的汽油机油。 如果包装上只标有API C*的是柴油车用的柴油机油。 若然罐上只标API S*/C*或C*/S*,是适用于混合车队的柴汽油两用机油,一般来说:S在前的更适 合与汽油车,C在前面的更适合柴油车,但最终应根据API的等级来决定使用。 十、什么叫闪点? 润滑油在加热的情况下粘度会下降变稀、分子运动会加剧,在这种情况下润滑油在火花产生

碳纤维增强复合材料在自润滑轴承中的应用综述

碳纤维增强复合材料的研究开发 嘉兴天翼科技有限责任公司唐清 2013年2月16日 以热固性树脂制成的轴承在市场上出现以来,在轴承领域里,各种聚合物和聚合物为主的各种混合物的应用已不断增加。可以用作轴承材料的塑料品种很多,如聚四氟乙烯、尼龙、聚酰亚胺、聚甲醛、低压聚乙烯等,它们都有很好的自润滑性,摩擦系数小,功率损耗比金属轴承约小15 %。聚四氟乙烯为目前氟塑料中综合性能最突出、应用最广、产量最大的一个品种,它有高度的化学稳定性,耐强腐蚀,极好的自润滑性,摩擦系数极小等特点。但纯聚四氟乙烯尺寸稳定性差,耐磨性差,而加入填充剂可以改善其摩擦性能,提高其硬度和强度。经过反复试验,我公司开发出新型热固型钨-碳纤维轴承,相比传统轴承,钨-碳纤维轴承具有更好的性能和性价比。 2 W-CFRP 轴承的工作机理与摩擦特性 2.1 W-CFRP 轴承的工作原理 W-CFRP 轴承一般与金属轴形成一对旋转摩擦副。 在跑合阶段,由于旋转轴表面有一定的粗糙度,具有不同的“凸峰”和“凹谷”,夸大来讲就好像钢锉一样对W-CFRP 轴承内表面产生磨削作用,磨削下来的W-CFRP 大部分填充到

凹谷中。随着转轴运动的持续进行,磨削下来的W-CFRP 粉末累积量不断增加,填充更多的凹谷。“磨削一填充”过程持续进行,导致转轴表面上所有凹谷均填满了W-CFRP 微屑。在转子重力作用下,凹谷内W-CFRP 微屑被压实,使轴外表面紧密粘附一层W-CFRP 膜层,且形成连续光滑面。这全过程完成了轴承内表面W-CFRP 的部分“转移”,转移的结果是:由金属与W-CFRP 两种材料变为W-CFRP 一种材料之间的相互摩擦。由于CFRP 良好的自润滑性能,因此在跑合以后的工作阶段,轴承表面的磨损量随之下降到一个极低的水平,从而使摩擦副表面得到保护,大大减轻了转轴与轴承表面的磨损,延长了工作寿命。 2.2 W-CFRP 轴承的摩擦磨损特性 自润滑轴承属于干摩擦,因此可根据古典摩擦理论的基本公式求出其摩擦力,进而求出轴承的耗功量。 F=fW 式中F—摩擦力,kgf ; f —摩擦系数:W —接触面积的法向载荷,kgf 。公式中的摩擦系数 f 只适用于干摩擦或边界摩擦的状况。对于任一给定摩擦副的表面,其摩擦力大致与载荷成比例,因而摩擦系数 f 为一常数。就初步近似而言,摩擦力也与物体的面积无关。然而摩擦系数 f 不能视为接触时材料的恒定特征值,因为摩擦力取决于许多可变因素,例如表面的宏观形状、表面粗糙度、表面可能形成

固体自润滑材料研究进展

固体自润滑材料研究进展 摘要:综述了固体自润滑材料的种类、性能、组织、应用以及自润滑机理。指出为了满足科技的日益发展,迫切需要研制从添加润滑剂到无须添加润滑剂而具有自润滑的材料。 关键词:自润滑摩擦磨损组织机理 前言 固体润滑是指利用固体材料来减少构件之间接触表面的摩擦与磨损的润滑方式。而自润滑材料是具有固体润滑的性能。固体润滑技术的发展,主要是从二战以后的航空工业、空间技术等高技术领域开始的。在某些不能或者无法使用润滑油和润滑油脂的高温、超低温、强辐射、高负荷、超高真空、强氧化、海水以及药物等介质的条件下,固体自润滑技术显示出良好的适应性能,被广泛应用于冶金、电力、船舶、桥梁、机械、原子能等工业领域,因而在欧美工业发达国家受到相当的重视。 1固体自润滑材料的性能 1.1铝、铅及石墨的含量对铝铅石墨固体自润滑复合材料性能的影响 固体润滑剂的加入对材料的摩擦学性能有较大的影响,采用常规的粉末冶金方法制备了铝铅石墨固体自润滑复合材料,并对其力学性能和摩擦磨损性能进行了研究。早在20世纪60年代初期,人们就已经发现,两种或者多种固体润滑剂混合使用时,会产生一种料想不到的协同润滑效应。其润滑效果比任何一种单独使用时都好[1]。考虑将石墨和铅作为组合固体润滑剂同时使用。多元固体润滑剂的复合使用是固体自润滑材料的一个发展方向。 实验通过不同的成分配比,采用常规的粉末冶金方法。将各种原料粉末按实验需要的配比称好后置于V型混料机中干混4~6h,在钢模中进行压制,压制压力为0.5Gpa,然后在高纯氮气保护气氛下烧结60 min。得到的样品,对其进行性能测试。主要是对其样品进行力学性能、物相分析、金相分析及摩擦学性能的测试。 通过实验的测试结果可得到以下结论[2]: 1)在铅和石墨总含量不变的情况下,随着石墨含量的增加,铝铅石墨固体自润滑复合材料的力学性能下降,但石墨含量对强度的影响不如对硬度的影响程度大。 2)铅和石墨有着良好的协同润滑效应,随着石墨含量的增加,复合材料的摩擦因数减小,同时材料的磨损量也明显下降。 3)在固体润滑剂含量相同的情况下,铝铅石墨材料的力学性能略低于铝铅材料,但是其摩擦磨损性能好得多,这是因为石墨的润滑性能比铅好,而且存在良好的协同润滑效应。 1.2石墨含量、粒度及温度对铜基自润滑材料力学和摩擦磨损性能的影响 铜基自润滑材料具有抗氧化、耐腐蚀及磨合性好等特性,含油粉末冶金铜基自润滑轴承和轴瓦在纺织机械、食品机械、办公机械及汽车工业中得到了广泛的应用.然而当温度高于300℃后,铜基材料强度明显降低、耐磨性变差.为了充分发挥铜基材料的优良特性,提高铜基自润滑材料的使用温度显得尤为重要。通过基体多元合金化和选用不同粒度的石墨颗粒,采用常规粉末冶金方法制备了铜基石墨固体自润滑材料,在大越式OAT-U型摩擦磨损试验机上考察了复合材料从室温到500℃温度条件下的摩擦磨损性能,利用扫描电子显微镜观察分析磨损表面形貌,进而探讨其摩擦磨损机理。深入研究铜基自润滑材料在较高温度条件下的摩擦磨损性能及机理,对研制开发高温铜基自润滑材料具有重要意义。选用不同粒度的石墨颗粒作为主要润滑组分,并对铜合金基体进行合金化优化设计,采用常规的粉末冶金方法制备了铜基石墨固体自润滑复合材料,考察了其在室温至500℃温度条件下的摩擦磨损性能。 通过实验测试可得到石墨含量对室温力学和摩擦磨损性能的影响、石墨粒度对室温力学和摩擦磨损性能的影响及温度对铜基石墨自润滑摩擦磨损性能的影响[3]。

自润滑复合材料论文-自润滑材料及其摩擦特性(精)

自润滑复合材料论文-自润滑材料及其摩擦特性摘要:自润滑复合材料是材料科学研究领域的一个重要发展方向,由于其在特殊使用条件下具有优良的摩擦学特性而受到人们的广泛关注。本文主要介绍国内外自润滑复合材料的开发与进展,讨论了对材料摩擦学性能的影响因素。 关键词:固体润滑摩擦磨损自润滑复合材料 一、前言: 液态润滑(润滑油、脂是传统的润滑方式,也是应用最为广泛的一种润滑方式。但液体润滑存在一下问题: 1.高温作用下添加剂容易脱落; 2.随温度升高,其粘性下降,承载能力下降; 3.高温环境下其性能衰减等问题; 4.液体润滑会增加成本,如切削加工中的切削液; 5.液体润滑会造成环境污染。 所以,自润滑材料已成为润滑领域的一类新材料,成为目前摩擦学领域的重要研究热点。 二、自润滑材料的种类 自润滑材料一般分为金属基自润滑材料、非金属基自润滑材料和陶瓷自润滑材料。其制备方法通常为粉末冶金法,此外,等离子喷涂、表面技术和铸造法也被应用于自润滑复合材料的制备。 1金属基自润滑材料

金属基自润滑复合材料是以具有较高强度的合金作为基体,以固体润滑剂作为分散相,通过一定工艺制备而成的具有一定强度的复合材料。目前已开发的 金属基自润滑复合材料,如在铁基、镍基高温合金中添加适量的硫或硒及银基和铜基自润滑材料,都已得到一定程度的应用。 2非金属基自润滑材料 非金属基自润滑材料主要是指高分子材料或高分子聚合物,如尼龙等。它在航空航天、汽车制造、电子电气、医疗和食品加工等领域得到广泛应用。目前高分子基自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度;通过添加各类固体自润滑剂来提高摩擦性能。 3陶瓷自润滑材料 陶瓷材料以其独特的特点和优点,使得陶瓷及陶瓷复合材料的自润滑研究 已经引起了较为广泛的重视。 三、自润滑减摩材料的特点、性能 1 粉末冶金法制造减摩材料的特点 (1在混料时可掺入各种固体润滑剂(如石墨、硫、硫化物、铅、二硫化钼、氟化钙等,以改善该材料的减摩性能; (2利用烧结材料的多孔性,可浸渍各种润滑油,或填充固体润滑剂,或热敷和滚轧改性塑料带等,使材料更具自润滑性能,减摩性能特佳; (3优良的自润滑性,使它能在润滑剂难以到达之处和难以补充加油或者不希望加油(如医药、食品、纺织等工业的场合,能安全和无油污染的使用; (4较易制得无偏析的、两种以上金属的密度差大的铜铅合金—钢背、铝铅合金—钢等双金属材料;

铜基自润滑复合材料摩擦磨损性能研究

铜基自润滑复合材料摩擦磨损性能研究 前言 随着电子技术、信息技术以及航空、航天技术等的迅猛发展,焊接电极、接触导线、轴瓦和集成电路引线框架、仪器仪表、电子通信器件中的接触元件等部件种类增多,需求量急剧增大,而且器件向高整化、高集成电路化、高密实装化等方向变化,要求材料不仅具有良好的导电性、导热性、弹性极限和韧性,而且还应具有较好的耐磨性、较高的拉伸强度、较低的热膨胀系数,并具有良好的成型性和电镀及封装性能。 很多金属材料虽然有较高的强度,但摩擦学性能较差。采取合金化措施使硬组分分布在韧基体中,便可改善合金的摩擦学特性。把几种各具不同特点的材料(如软金属和其他固体润滑剂)进行人工复合,构成复合材料,使各组分间能相互取长补短,从而得到力学性能、化学性能和摩擦学性能都较为理想的金属基复合材料。铜具有很高的导电性、导热性,优良的耐腐蚀性能和工艺性能,广泛应用于电力、电工、机械制造等工业。但是铜的屈服强度一般较低,高温下抗变形能力更低,因而限制了其进一步应用。如何在不降低或稍降低铜的导电性等物理性能的前提下,提高铜的力学性能,是材料工作者研究的热点。 现有的铜基复合材料可分为显微复合铜合金、颗粒增强铜基复合材料及纤维增强铜基复合材料[1]。显微复合铜合金是一种Cu-X二元合金,以其超高强度、高导电率以及良好耐热性能引起人们的重视,有望用于热交换器、推进器、焊接电板等。颗粒增强铜基复合材料与铜基合金相比,具有更高的比强度和较好的高温强度,因而备受重视。常用的颗粒有金属颗粒(如钢颗粒、钨颗粒等)和陶瓷颗粒(如SiC、A1 03、A1N 、TiC、TiB5 、ZrC、WC 、纳米碳管等),其中以Al2 03颗粒和SiC颗粒研究得较多。碳纤维/铜复合材料由于综合铜的良好导电、导热性,及碳纤维的高比强度、高比模量和低热膨胀系数,具备较高的强度、良好的传导性、减摩耐摩性、耐蚀性、耐电弧烧蚀性和抗熔焊性等一系列优点,已被广泛应用于电子元件材料、滑动材料、触头材料、集成电路散热板及耐磨器件等领域口。这类材料的性能可设计性好,可通过控制碳纤维的种类、含量及分布来获得不同的性能指标,是一类很有发展前途的新型功能材料。 主题 1、铜基复合材料的研究现状 1-1、SiC颗粒增强铜基复合材料 SiC颗粒增强铜基复合材料的制备主要有粉末冶金法、复合电铸法、复合电沉积法等,但不能采用液态法,原因是在高温液态下铜和SiC会发生严重的化学反应口而损害增强体。香港城市大学s.C.Wjong等应用热等静压法制备了SiC颗粒增强铜基复合材料,并测定了其耐磨性能、屈服强度和维氏硬度,虽然其耐磨性能和维氏硬度提高了,但其屈服强度却比基体铜还低。其原因是SiC颗粒和基体铜之间在固态条件制备下既不润湿,又没有界面反应,因而界面结合太弱了,Kuen-ming Shu等采用化学镀的方法在SiC颗粒表面包覆一层铜后通过粉末冶金法制备成型,并对比了无涂层和有涂层处理两种试样的显微组织和热膨胀特性,发现有涂层的界面结合较好,而且其热膨胀系数也能得到有效的减少。上海交通大学湛永钟等也采用化学处理工艺在SiC颗粒增强物表面均匀地包覆了一层铜,使复合材料获得紧密的界面结合,图2 2 所示为其断口形貌,有SiC颗粒脱粘的明显迹象。经过界面改性后,发挥了SiC 颗粒的增强作用,使复合材料获得了更高的强度和硬度,而电导率只有稍许下降。 1-2、碳纤维增强铜基复合材料 对碳纤维/铜基复合材料制备工艺的探讨一直是该类材料的研究热点之一。由于碳纤维

复合材料

1、复合材料的定义、分类、命名 定义:用经过选择的、含一定数量比的两种或两种以上的组分(或称组元),通过人工复合、组成多相、且各相之间有明显界面的、具有特殊性能的固体材料。 命名:(1)基体材料名称与增强体材料并用 (2)强调增强体时以增强体材料的名称为主 (3)强调基体时以基体材料的名称为主 分类:按基体材料分:聚合物基复合材料,金属基复合材料,陶瓷基复合材料,水泥基复合材料,碳基复合材料; 按增强材料形态分为以下三类 (1)、纤维增强复合材料: a.连续纤维复合材料 b.非连续纤维复合材料 (2)、颗粒增强复合材料:包括微米颗粒和纳米颗粒; (3)、板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。 (4)、层叠复合材料 按材料作用分两类 ①功能复合材料:使用的是材料的光、电、磁、热、声等非力学性能 ②结构复合材料:应用的材料的力学性能 2、复合材料都有哪些部分组成,各部分的作用是什么? 复合材料的结构通常是一个相为连续相,称为基体;基体的作用是将增强体粘合成整体并使复合材料具有一定的形状,传递外界作用力、保护增强体免受外界的各种侵蚀破坏作用。当然也决定复合材料的某些性能和加工工艺 另一相是以独立的形态分布在整个连续相中的分散相,与连续相相比,这种分散相的性能优越,会使材料的性能显著增强,故常称为增强体(也称为增强材料、增强相等,功能复合材料中也称功能体)。 相界面是一个具有一定厚度的,结构随组分而异、与基体和增强体明显不同的新相。界面区的范围是从增强体内部性质不同的一点开始,到基体内整体性质相一致的点之间的区域。 界面是基体和增强体之间连接的纽带,是应力及其他信息传递的桥梁。它的结构、性能以及结合强度等因素,直接关系到复合材料的性能。 3、复合材料都有哪些性能特点? (1)比强度、比模量高(2)良好的抗疲劳性能(3)优良的高温性能(4)减震性好(5)破断安全性好。 4、复合材料的界面定义是什么,包括哪些部分? 复合材料的界面是指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。 包括:基体表面区,相互渗透区,增强剂表面区 5、复合材料界面具有哪些效应,都有哪些界面理论? 界面的效应: (1)传递效应界面能传递力,即将外力传递给增强物,起到基体和增强物之间的桥梁作用。 (2)阻断效应结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。 (3)不连续效应在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性、尺寸稳定性等。

铜基自润滑复合材料综述2

铜基自润滑复合材料综述 1 国内外铜基复合材料的研究现状与发展趋势 近年来,随着电子技术、计算机和信息技术的迅猛发展,焊接电极、接触导线、轴瓦和集成电路引线框架、仪器仪表、电子通信器件中的接触元件等部件种类增多,需求量急剧增大,而且器件向高整化、高集成电路化、高密实装化等方向变化,要求材料不仅具有良好的导电性、导热性、弹性极限和韧性,而且还应具有较好的耐磨性,较高的抗张强度,较低的热膨胀系数,加工性能好;焊接性能、电镀性能及封装、性能良好等一系列优良性能。自美国Ollin公司首先研制生产Cl9400铜合金替代铁镍合金作引线框架以来,在世界上掀起了研制和生产铜基复合材料的热潮,由于铜基复合材料强度的提高往往伴随着导电、导热性的下降。如何解决这一矛盾,将是铜基复合材料研究的关键课题。目前,Cu基复合材料的研究开发国内外非常活跃,抗拉强度在600MPa以上,导电率大于80%LACS的铜基复合材料已成为开发的热点之一。铜与其它一种金属有良好的融合性,采用Fe、Cr、Zr、Ti等在铜基体中有较大固溶度的合金元素,经固溶和时效处理后,合金元素以单质或金属间化合物的形式弥散析出,析出的弥散相有效阻止位错和晶界的移动,达到强化效果,而且第二相的析出纯化了基体金属,恢复了有固溶处理所降低的导电、导热性,取得了强度和导电导热性的平衡。如Cu-Ni-Si合金,通过固溶处理,强冷变形并时效处理后,由于在时效过程中调幅结构幅度的变化和沿晶界析出相形核的形成,NiSi相呈颗粒状从晶界上析出,使该合金抗拉强度达到760MPa,导电率43%;又通过对Cu-Cr-Zr系合金固溶处理和时效的控制,使含富Cr的金属间化合物在Cu基体上呈纳米微细结构弥散析出,获得了抗张强度600MPa、电导率80%IACS。 Cu基复合材料所追求的并非只是强度和导电,而是多项性能的综合。在实际使用过程中,电子器件发热所增加的热量需要通过铜基合金向外散热,因此,作为高强度Cu基复合材料还要求具有良好的导热性能。在Cu基复合材料的开发应注重以下几个方面: (1)新材料必须提高能适应部件小型化的加工性能; (2)Cu基复合材料的开发应注重特定的应用环境,如发动机四周的汽车电器,要求高温应力松弛特性优良的部件等。 引入纤维、晶须、陶瓷颗粒等高强度的强化相增强基体显示出良好的发展前景,其方法是向铜基体内植入稳定的高强度第二相,通过冷变形等加工处理,使第二相以弥散的颗粒状或纤维状分布与基体中,达到机械能和电导性能的最佳匹配。 2 铜基复合材料颗粒增强相的种类 颗粒增强铜基复合材料是指在铜基体中人为地或通过一定工艺生成弥散分布的第二相粒子。第二相粒子利用混合强化和阻碍位错运动的方式来提高铜基的强度,增加其耐磨性,如Al2O3/Cu复合材料,Ti2B2/Cu复合材料。通常第二相粒子在铜基复合材料中主要以2种形式分布:(1)在晶粒内部弥散分布;(2)在晶界上聚集分布。

电磁散射和隐身技术导论

电磁散射与隐身技术导论课程大作业报告 学院:电子工程学院 专业:电子信息工程 班级: 0210** 学号: 0210**** 姓名: ****** 电子邮件: 日期: 2018 年 07 月 成绩: 指导教师:姜文

雷达目标RCS近远场变换 在现代军事领域中,隐身技术和反隐身技术是重中之重,研究隐身和反隐身技术就要研究目标的电磁散射特性。雷达散射截面(RCS)是评价目标散射特征的最基本参数之一,其计算和测量的研究具有重要意义。计算方法有解析方法,精确预估技术和高频近似方法等。根据测量方式的不同,可以分为远场测量、近场测量和紧缩场测量。远场测量在室外进行,虽然能直接得到目标RCS,但是条件难以满足(满足远场条件时,被测目标与天线间的距离非常大),相比之下,在微波暗室中进行的近场测量由于采用缩比测量的方法更容易满足测试条件。相对于紧缩场测量,近场测量的精度更高,成本也有所降低,于是近场测量越来越成为研究的一个重点。近场测试到的雷达回波信号并不是工程中所关心的RCS,而如何由近场测量数据得到目标RCS,则是必须要解决的问题。 为了得到目标RCS,将目标等效为一维分布的散射中心,并忽略了散射中心与雷达之间的相互影响,忽略散射中心与测试环境之间的相互影响。根据雷达回波信号,研究了一种利用雷达近场数据来估计目标总的RCS的方法。推导了算法的具体过程,将研究重点放在了算法的核心——权重函数上。分别仿真了单站正视,单站侧视,对称双站,不对称双站几种情况下权重函数的特性,具体表现为不同参数对权重函数幅度和相位的影响。基于仿真结果,提出了用定标来求得权重函数的方法。并用不同尺寸的金属球作为实验目标,采用某一个金属球理论RCS 值来定标,求得权重函数之后,用此算法变换出目标的RCS,并与其理论值做比对,验证了算法的可行性。 一、雷达截面的研究背景、发展现状 隐身和反隐身技术作为现代战争中电子高科技对抗的重要领域,一直都是各国军事研究的重点,随着各种精确制导武器和探测系统研制成功,隐身技术和反隐身技术越发重要。在军事应用中,希望己方的武器隐身性能尽可能好,并且能尽可能的探测到敌方的隐身目标。这就是必须研究隐身技术和反隐身技术最主要的原因,隐身技术与反隐身技术都必须研究目标的雷达散射特性,隐身技术是让目标的散射尽可能的小,反隐身技术则是尽量能够接收到目标的回波信号,因此要研究隐身和反隐身技术就要研究目标的电磁散射特性。隐身技术和反隐身技术

复合材料的特点及应用

复合材料的特点及应用 定义:复合材料是由两种或多种不同类型、不同性能、不同形态、不同成分和不同相型的组分材料,通过适当的复合方法,将其组合成一种具有整体结构特性的,使用性能优异的材料体系。 复合材料品种较多,按基本分类通常为:金属基复合材料、陶瓷基复合材料、树脂基复合材料、碳/碳复合材料和纳米复合材料。 在这里,且介绍我们从事的树脂基复合材料。 树脂基复合材料主要由树脂基体、增强材料、填料与助剂组成。 一、常用的热固性树脂基本有:不饱和聚酯树脂、酚醛树脂、环氧树脂、聚氨酯树脂、乙烯基酯树脂、有机硅树脂等。见表1 表1几种热固性树脂及复合材料的主要特性和用途 二、树脂基复合材料常用的增强材料有玻璃纤维及其织物、芳纶纤维及其织物、碳纤维及其织物、高拉伸聚乙烯纤维及其织物以及其他高性能纤维及其织物等。 三、树脂基复合材料的主要特点 1.材料的形成与制品的成型同时完成。 利用复合材料形成和制品成型同时完成的特点,可以实现大型制品一次性成型,从而简化了制品结构并且减少了组成零件和联接零件的数量,这对减轻制品质量,降低工艺消耗和提高结构使用性能十分有利。 2.制品轻质高强、具有突出的比强度、比模量 纤维增强制品相对密度仅有1.4~2.0,只有普通钢的1/4~1/6,比铝合金还轻1/3。而机械强度却达到或超过普通钢的水平。玻璃纤维增强的环氧复合材料拉伸强度和弯曲强度均在400Mpa以上。碳纤维增强的环氧树脂比强度、比模量见表2

表2 1.03×)× 0.13×0.27× 可见复合材料的比强度比钢高3~8倍,比模量高3~6倍。 3.尺寸稳定性好 4.优越的耐热、耐高温特性。一般其热变形温度在150℃~260℃之内。 5.电性能优良 由于复合材料具备的优良的电性能,其制品不存在电化学腐蚀和杂散电流腐蚀,可广泛地用于制造仪表、电机及电器中的绝缘零部件,以提高电气设备的可靠性并延长其使用寿命。此外,制品在高频作用下良好的介电性和微波透过性,已用于制造多种雷达罩等高频绝缘产品。 6.卓越的耐腐蚀性 对大气、水和一般浓度的酸、碱、盐等介质具有良好的化学稳定性,特别是在强的非氧化性酸和相当广泛的PH值范围内的介质中具有良好的稳定性。 7.可设计性、可配制性显著 鉴于复合材料的上述优越特性,多用于制造机械结构件、绝缘件、高频受力件和其他功能性结构部件。

相关文档
最新文档