现代煤化工新技术的介绍

现代煤化工新技术的介绍
现代煤化工新技术的介绍

一、煤制二甲醚(DME)

1.1概况

二甲醚是一种重要的绿色工业产品,主要用做清洁燃料、气雾剂、制冷剂、发泡剂、有机合成原料等。与液化石油气相比生产成本低,有较大的差价,使得二甲醚替代液化石油气成为可能。所以现在作为柴油掺烧剂和替代民用燃料液化石油气。制取二甲醚的行业成为了新兴的“绿色化工”。国内合成二甲醚的研究工作正在紧张进行中,目前已建成最大的二甲醚生产装置为年产几十万吨。不少企业对“合成气”制二甲醚感兴趣,因此二甲醚被称为朝阳化工产品。并且甲醇制二甲醚的知识产权是自主的。

二甲醚(DME)是一种比较惰性的非腐蚀性有机物,常温常压下二甲醚为无色易燃气体,空气中允许浓度为400*10-6。对金属无腐蚀性,对人体不刺激皮肤,不致癌,对大气臭氧层无破坏作用,是一种有娘的绿色化工产品。

下表为二甲醚和液化石油气的性质比较

二甲醚与液化石油气性质的比较

项目二甲醚液化气

分子量46 44~56

饱和蒸汽压(60℃)/MPa 1.35 1.92

平均热值/(kj/kg)28410 45760

爆炸下限/% 3.5 1.7

理论烟气量/(m3/kg) 6.96 11.32

理论空气量/(m3/kg) 7.46 12.02

预热器热值/(kj/m3) 4219 3509

理论燃烧温度/℃2250 2055

从数据可看出,同等条件下,二甲醚存储运输较为安全。虽然二甲醚热值低,但由于二甲醚本身含氧在燃烧过程中所需空气质量远低于液化石油气,从而使得二甲醚的预混热气值夏理论燃烧温度都高于液化石油气。

二甲醚具有较高的十六烷值,液化后可直接作为汽车燃料,其燃烧效果比甲醇燃料效果好。由于二甲醚自身含氧,组分单一,碳链短,所以可实现无言高效燃烧,并可降低噪声。易于压缩使用,还可作为精细化工产品。在这些用途中,作为精细化工产品时,小规模生产(0.25~1.0万吨/年)就可满足需求,作为化工原料时生产规模应在2万吨/年以上,作为清洁燃料时的需求量大,实际上是代替原油,必须大规模生产(10万吨/年)以上,才能形成经济规模。全世界到2006年对二甲醚的需求量为40万吨/年。2008年世界经济风暴开始后,二甲醚的产量和价格也一落千丈,据统计2008年底仅有13.9%的装置维持生产。

1.2生产工艺、方法

煤制二甲醚既可以作为液化石油气(LPG)的替代品,也有可能作为车用柴油的替代品,因此是一种有望在我国得到大力发展的替代燃料。主要有甲醇脱水制二甲醚和合成气一步法。

1.3甲醇脱水制二甲醚

甲醇脱水制二甲醚,分为气相法和液相法。

液相法是加热硫酸和甲醇的混合物,甲醇脱水制二甲醚。由于硫酸腐蚀性较大且污染严重,近年来已逐渐被淘汰。

气相法是将甲醇蒸汽通过分子催化剂,催化脱水的二甲醚。就是气固相催化反应精馏流程,国内已在这方面取得成功,并已实现规模化生产。例如,西南化工研究院的CNM-3甲醇脱水催化剂,具有生产成本低,工艺过程较易控制,产品质量稳定的特点。得到的产品纯度为99.99%的二甲醚,甲醇单程转化率80%,二甲醚选择性99%,催化剂的寿命可达三年。下图为气象催化脱水制二甲醚流程图。

1.31 生产流程

甲醇经预热后,送入汽化塔气化后的甲醇经化热后,分两股进入反应器。第一股甲醇加热到反应温度,从顶部进入反应器;第二股甲醇稍微加热,进入反应器中部,作为冷激气。出反应器的粗甲醇,经换热器、预热器、水冷器冷却后,进入储罐气液分离。液相为二甲醚,气相为H2COCH4CO2等不凝气体和饱和的二甲醚和甲醇蒸汽。气相进入甲醇吸收塔,用甲醇吸收二甲醚,吸收液进入粗醚储罐,尾气解压后送火炬。然后粗甲醚送精馏塔,上段底部出二甲醚产品,精馏塔底部釜液送汽化塔,回收甲醇,塔釜废液冷却后外排或另外利用。

1.32使用的催化剂

催化剂为CNM-3型,圆柱状?(3~4)㎜*(10~20)㎜,堆密度0.7㎏/L,比表面150~300㎡/g,平均孔径(4~6)*10-6,使用寿命1~2年。

反应温度230~350℃,压力0.5~1.1MPa,甲醇单程转化率78~88%,二甲醚选择性>99%。引自文献○1。下表为1300t/d装置预计的主要设备数据。

1300t/d装置预计的主要设备数据

名称规格台数二甲醚合成反应器?3800,催化剂105 1

汽化塔?3000,浮阀塔,80块塔板 1

精馏塔?2800,浮阀塔,65块塔板 1

1.4合成气一步法

以煤为原料制二甲醚装置主要包括如下基本工序:煤气化制粗煤气、氧气制备、净化(包括脱硫、变换、微量成分脱除等)、二甲醚合成、二甲醚精馏等单元。其中,煤气化工序是主要的步骤,不同的炉型适合于不同的规模和煤种。以煤为原料生产煤气的成熟方法有:德士古水煤浆加压气化法,Lurgi 固定层加压气化和UGI常压气化法,特别是南非在使用Lurqi炉上是比较成功的。净化的工艺与煤制甲醇相同,由于粗煤气中含有硫、砷、金属羰基化合物等有害成分,并且要脱除一部分CO2,因此,采用低温甲醇洗或NHD

方法比较好。这种生产对工艺对除尘的要求就特别高了,如果在粗煤气制备过程中,粉尘没有除干净,将影响到后续工艺。主要反应为:

2CO+4H2=CH3OCH3+H2O(1)

CO+2H2=CH3OH(2)

CO+H2O=CO2+H2(3)

合成气一步法制二甲醚的工艺。分为气固床和淤浆床两种。气固床的形式与甲醇合成反应器很相似,如果催化剂研究得当,放大技术上无多大难题。气相法中反应器内合成气的转化率较低,未反应合成气的循环量大,并要求使用富氢合成气(H2/CO大于2)。淤浆床是国内外研究的主攻方向。反应过程中,合成气扩散到悬浮于惰性溶剂中的催化剂表面进行反应。淤浆床的单程转化率高于气固床,且选择性高,能耗低,它可以不受气相热力学平衡的限制,反应后需要汽液固三相分离。尽管这种反应器还缺乏大型化的工业实践,但根据千吨级放大到万吨级,因难不大。上述这两种工艺的反应温度压力大体相同。在催化剂的存在下,在3.5~5.0MPa和230~250℃条件下反应,约有75%~80%的CO转化为二甲醚。其中反应(1)的选择性很高。

使用的催化剂。目前一步法合成中使用的催化剂,均有两种催化剂复合而成,即合成甲醇的金属催化剂,和甲醇脱水生成DME的固体酸催化剂。所谓的双功能催化剂。合成甲醇的传统催化剂主要是Cu/Zn系列。甲醇脱水催化剂主要是γ-Al2O3或HZSM-5等费事分子筛。有文章认为○2

CuO/ZnO/Al2O3及HZSM-5分子筛的比例为1:4较好。

二甲醚的提纯。合成气一步法的产物中存在大量的CO

,是CO2、DME

2

和H2O的多元吸收和解吸问题。水的量比较大,分离比较因难。实际上,一步法二甲醚分离流程的原则是“吸收—解吸—精馏”,但还没有找到一个比较合适的分离流程及其参数。水吸收DME时,一部分CO2溶解于水中,解吸CO2时,部分DME随之逸出。有书介绍○3,还没有发现分离过程的物料平衡数据。在这种情况下,如果急于工业化,势必造成产品的经济上过不

了关而被迫关闭。可以以流程模拟为主导,用试验来实施和修正。首先要进

行相平衡试验,取得相关热力学方法中的“相互作用系数”和其它参数,放

入流程模拟中。然后设计不同的流程方案,进行模拟和优化计算的研究,得

到一套在工业上实施起来比较容易的方案,经济上也合理。在此基础上建立

千吨级中试装置,用实际操作数据未完善和修正原设计方案。在整个过程中,模拟研究十分重要,会决定自主知识产权的形成和工业化流程的成功。

1.5总体来说

目前国内外二甲醚产量不高,主要原因是应用领域尚未得到有效开拓。在应用领域得到广泛开拓,特别是燃料领域及下游产品开发后,二甲醚的需求量会迅速增长。合成气一步法制二甲醚新工艺,是一项适合中国国情的技术思路,该工艺的开发成功将占领国内外技术制高点,达到国际先进水平。但是现在最关键的问题是催化剂的寿命数据没有能够及时的公布,因此继续试验是不可避免的。煤制二甲醚的最大不足是要大量地排放CO2,以年产值10万t二甲醚为例,每t 二甲醚的CO2排放量为4.5t。在这一日产300tDME的情况下,需要1350hm2的阔叶林才能吸收它。越来越严重的温室效应促使我们把二甲醚生产的CO2t 醚排放降至最低。因此只有装置大型化和厂区外大规模绿化,才能做到这一步。二甲醚用于燃料,不是一件轻而易举的事。用于车用燃料,涉及到发动机、加油站等的改造。用于家用燃料,涉及到管道、阀门的抗溶问题,解决这些问题还有待时日。二甲醚装置不可能一哄而上。

------------------------------

参考文献:

○1汤洪等.甲醇甲醇气相催化制二甲醚新技术.氮肥与甲醇,2006,1(3):65~70.

○2沙雪清.合成气一步法合成二甲醚催化剂的研究.哈尔滨师范大学自然科学报,2003,19(2):79.

○3韩凌,郭少青,朱凌皓二甲醚生产技术与市场状况.煤化工,2000,(3):32-34

二、煤制醋酸

2.1醋酸的性质

醋酸的化学名为乙酸,由于食醋中含有乙酸3%~5%,故俗称醋酸。乙酸在常温下是一种有强烈刺激性酸味的无色液体。乙酸的熔点为16.6℃。沸点117.9℃(391.2K)。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水。对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。因为铝在空气中表面会形成氧化铝保护层,所以铝制容器能用来运输乙酸。

乙酸英文名称Aceticacid。乙酸分子中含有两个碳原子的饱和羧酸,是烃的重要含氧衍生物。分子式C2H4O2,结构简式CH3COOH,官能团为羧基。因是醋的主要成分,又称醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在普通食醋中含有3%~5%的乙酸。乙酸是无色液体,有强烈刺激性气味。熔点16.6℃,沸点117.9℃,相对密度1.0492(20~4℃)密度比水大,折光率1.3716。纯乙酸在

16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。易溶于水、乙醇、乙醚和四氯化碳。当水加到乙酸中,混合后的总体积变小,密度增加,直至分子比为1∶1,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,体积不再变化;分子量:60.05;分子结构:

纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.6°C(62°F),凝固后为无色晶体。尽管根据乙酸在水溶液中的离解能力它是一个弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,是一个重要的化学试剂。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。

2.2醋酸在工业上的用途

醋酸是一种极为重要的化工产品,它在有机化工中的地位与无机化工中的硫酸相当。醋酸的主要用途有:(1)醋酸乙烯。醋酸的最大消费领域是制取醋酸乙烯,约占醋酸消费的44%以上,它广泛用于生产维纶、聚乙烯醇、乙烯基共聚树脂、黏合剂、涂料等。(2)溶剂。醋酸在许多工业化学反应中用作溶剂。(3)醋酸纤维素。醋酸可用于制醋酐,醋酐的80%用于制造醋酸纤维,其余用于医药、香料、染料等。(4)醋酸酯。醋酸乙酯、醋酸丁酯是醋酸的两个重要下游产品。醋酸乙酯用于清漆、稀释料、人造革、硝酸纤维、塑料、染料、药物和香料等;醋酸丁酯是一种很好的有机溶剂,用于硝化纤维、涂料、油墨、人造革、医药、塑料和香料等领域。(5)有机中间体。以醋酸为原料可以合成多种有机中间体,主要产品有:氯乙酸、双乙烯酮、双乙酸钠、过氧乙酸等。(6)氢氮气的净化。醋酸在合成但生产的铜洗工艺中,以醋酸铜氨的形式用于氢氮气的净化,以除去

其中含有的少量CO和CO2,现在的小合成氨装置普遍采用此法。(7)其它应用。醋酸还用于合成醋酸盐、农药、医药、照相等多个领域。

2.3发展历史

醋酸几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。

文艺复兴时期,人们就通过金属醋酸盐的干馏制备冰醋酸。

1910年时,大部分的冰醋酸提取自干馏木材得到的煤焦油。

在工业上有代表性的、最早的醋酸制取方法是乙醛氧化法。20世纪50年代中期,丁烷氧化法开发成功。60年代末期代表醋酸合成最先进水平的是甲醇低压羰基合成醋酸技术由美国孟山都公司开发成功,并于1970年建成了首套生产装置,这一方法一直延续到现在,成为了当今醋酸生产企业最通用的方法。目前甲醇低压羰基化法合成醋酸的最大规模已达120万吨/年。全世界60%以上的醋酸生产能力采用甲醇低压羰基化法生产,其次为乙醛氧化法(以乙烯法为主)占25%,烃类液相氧化法等占15%。下图为醋酸工业的主要生产工艺路线。

2.4制备方法

乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。60%的工业用乙酸是通过甲醇的羰基化制备,具体方法见下。空缺部分由其他方法合成。

整个世界生产的纯乙酸每年大概有500万吨,其中一半是由美国生产的。欧洲现在的产量大约是每年100万吨,但是在不断减少。日本每年也要生产70万吨纯乙酸。每年世界消耗量为650万吨,除了上面的500万吨,剩下的150万吨都是回收利用的。

2.41 发酵法

有氧发酵:

通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。由细菌达到的化学方程式为:

C2H5OH+O2→CH3COOH+H2O

现在的大部分醋是通过液态的细菌培养基制备的,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。

无氧发酵:

部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:

C6H12O6→3CH3COOH

许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。

2CO2+4H2→CH3COOH+2H2O

梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以它的工业应用仍然被限制在一个狭小的范围。

2.42 乙醇氧化法

由乙醇在有催化剂的条件下和氧气发生氧化反应制得。

C2H5OH+O2→CH3COOH+H2O

2.43 乙醛氧化法

在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法。乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。当丁烷或轻石脑油在空气中加热,并有多种金属离子包括镁,钴,铬以及过氧根离子催化,会分解出乙酸。化学方程式如下:

2C4H10+5O2→4CH3COOH+2H2O

此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55atm。副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸

和副产物使得反应的成本增加。

在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸

2CH3CHO+O2→2CH3COOH

使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。

2.44 乙烯氧化法

由乙烯在催化剂(所用催化剂为氯化钯:PdCl2、氯化铜:CuCl2和乙酸锰:(CH3COO)2Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。

2.45 丁烷氧化法

丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。

2CH3CH2CH2CH3+5O2→4CH3COOH+2H2O

2.46 甲醇羰基化法

大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下:

CH3OH+CO→CH3COOH

这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二部中使用)

(1)CH3OH+HI→CH3I+H2O

(2)CH3I+CO→CH3COI

(3)CH3COI+H2O→CH3COOH+HI

通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的HenryDrefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis?[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于钌,使用([Ir(CO)2I2]),它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。

2.5煤制醋酸

随着煤化工在国内的发展,一枚为原料制合成气,再从合成气中提取CO,剩余的合成气去合成甲醇,生成的甲醇在于CO反应生成醋酸。这就是目前国内大家比较关注的煤制醋酸工艺路线。下图为煤制醋酸工艺路线图。

从煤开始制取醋酸可以有中压法和低压法两种。两种方法区别在于煤气化上,醋酸合成、变压吸附、氢回收是一样的。也可以采用低温精馏的方法分离

CO和H2。显然,中压法的耗能比低压法要低一些。

2.51中压法

中压法是指煤气化压力在3.0~9.1MPa之间的方法。这个方法的煤气化主要是采用气流床的水煤浆气化或干煤粉气化的方法,通常用的是国外Texaco、Shell、或GSP气化法,国内的两段式气化法、多喷嘴气化或多元料浆气化法,压力在4.0~6.0MPa之间。气化后采用激冷流程、部分变换、脱硫脱碳净化(低温甲醇洗、NHD),得到H2/CO=1.0左右的合成气。用PSA分离其中约50%的CO。合成醋酸后进行醋酸精馏。这一流程适合大中型醋酸生产装置使用。合成甲醇的弛放气经PSA-H2后,分出的H2返回系统重新使用,尾气送燃料库。下图为中压法煤制醋酸图。

2.52 低压法

低压法是指煤气化压力在1.0~2.5MPa之间的方法。这个方法的煤气化主要是采用流化床或固定床的煤气化方法,通常用的是国外的Lurqi、恩德炉气法,

或国内的灰熔聚气化、UGI气化法。压力在0.1~2.5MPa之间。其中灰熔聚气化法生产规模是最大的,其主要工艺是灰熔聚粉煤气化(气化炉+旋风分离器)、废锅加激冷(激冷室+文丘里+激冷洗涤塔)、前压缩、部分变换、低温甲醇洗、压缩、合成、精馏、膜分离回收H2等流程。压缩后的流程是典型的煤制甲醇流程,是比较成熟的组合。然后用PSA分离其中约50%的CO。合成醋酸后进行醋酸精馏。这一流程适合中小型醋酸生产装置使用。合成甲醇的弛放气经PSA-H2后,分出的H2返回系统重新使用,尾气送燃料库。下图为低压法前压缩煤气化制取醋酸图。

也有文献○1中提到用使后压缩流程,是目前常规流程的一种延伸,也是可取的。

2.6小结

羰基合成是化工领域最重要的工艺之一,甲醇羰基化制醋酸、醋酐,其相关

技术的研发深刻影响着煤制醋酸工业的发展。以醋酸行业为例。在煤化工迅猛发展的带动下,煤制甲醇的产量大幅上升,从而使甲醇羰基化生产醋酸项目成为近一段时期的投资热点。虽然经过多年技术攻关,国内一些醋酸企业已掌握羰基合成的核心技术,但在装置越上越多的严峻形势下,只有扩大装置生产能力,提升技术水平,降低成本,才能拥有足够的产品竞争力。为此,应该寻求一种高效、经济的分离高纯度CO的方法。此外,可以预期的是,运用该技术还可以实现节能减排的目的。许多工业尾气中都含有大量的一氧化碳,如醋酸和醋酐尾气、钢铁厂的高炉气和转炉气、有色金属冶炼厂的尾气、电石厂和黄磷厂的尾气等,以往这些废气大多被燃烧处理。据报道的北大先锋的PSA-CO技术原料气适用范围广,几乎可以从任何含CO的原料气中分离回收CO。它将有效减少废气排放,降低CO生产成本,为我国羰基合成工业提供高效、低成本、大规模分离高纯CO的新途径。

和甲醇一样,制取醋酸的规模也在“疯长”。大型化的煤气化技术在醋酸上使用是可能的。但是用现在的小醋酸装置技术并联为中醋酸制取技术是不可取的。其结果不仅是投资大、耗能高、污染大、不利于高度自动自动化的控制。合成技术应与时俱进。

根据醋酸的用途可以知道,醋酸的需求是有限的,通过煤化工发展醋酸的道路虽然可行,但是要有限度,现有的醋酸市场已经基本饱和。

。○2

---------------------------------------------

参考文献:

○1杜军等.以粉煤为原料年产20万吨醋酸的工艺方案及分析.2005,25(7):47~

49

三、煤制甲醛

3.1概述

甲醛是一种无色,有强烈刺激型气味的气体。易溶于水、醇和醚。甲醛在常温下是气态,通常以水溶液形式出现。易溶于水和乙醇,35~40%的甲醛水溶液叫做福尔马林。别称:蚁醛,产品别名:福尔马林,英文名称Formaldehyde,化学式:CH2O、HCHO,结构简式:HCHO,分子量:30.03,密度1.083,折射率1.3755-1.3775,沸点-19.5℃,熔点-118℃。

甲醛分子中有醛基能发生缩聚反应,得到酚醛树脂(电木)。甲醛是一种重要的有机原料,主要用于塑料工业(如制酚醛树脂、脲醛塑料—电玉)、合成纤维(如合成维尼纶—聚乙烯醇缩甲醛)、皮革工业、医药、染料等。福尔马林具有杀菌和防腐能力,可浸制生物标本,其稀溶液(0.1—0.5%)农业上可用来浸种,给种子消毒。工业上常用催化氧化法由甲醇制取甲醛。甲醛可与银氨溶液产生银镜反应[1],使试管内壁上附着一薄层光亮如镜的金属银(化合态银被还原,甲醛被氧化);与新制的氢氧化铜悬浊液反应生成红色沉淀氧化亚铜。

甲醛是最简单的醛,通常把它归为饱和一元醛,但它又相当于二元醛。在与弱氧化剂的反应中,每摩尔HCHO最多可还原出4mol的Ag或2mol的氧化亚铜,这都是乙醛还原能力的两倍,故甲醛又像二元醛。

甲醛的化学反应:

1.与Ag(NH3)2OH反应:

HCHO+2Ag(NH3)2+2OH-(加热)→HCOO+NH4++2Ag↓+3NH3+H2O

或HCHO+4Ag(NH3)2+4OH-(加热)→H2CO3+2NH4++4Ag↓+6NH3+2H2O 注:生成的NH3因为量太少,故不加气体符号

2.与Cu(OH)2反应:

HCHO+4Cu(OH)2(加热)→CO2↑+2Cu2O↓+5H2O

3.加聚反应:

nHCHO→-[---CH2—O--]n—

说明:-[---CH2—O--]n--是人造象牙的主要成分。

分子结构:C原子以sp2杂化轨道成键。分子为平面形极性分子。

3.11 甲醛的性质、对人体的危害及其来源

甲醛是原浆毒物,能与蛋白质结合,吸入高浓度甲醛后,会出现呼吸道的严重刺激和水肿、眼刺痛、头痛,也可发生支气管哮喘。皮肤直接接触甲醛,可引起皮炎、色斑、坏死。经常吸入少量甲醛,能引起慢性中毒,出现粘膜充血、皮肤刺激症、过敏性皮炎、指甲角化和脆弱、甲床指端疼痛,孕妇长期吸入可能导致新生婴儿畸形,甚至死亡,男子长期吸入可导致男子精子畸形、死亡,性功能下降,严重的可导致生殖能力缺失,全身症状有头痛、乏力、胃纳差、心悸、失眠、体重减轻以及植物神经紊乱等。

各种人造板材(刨花板、纤维板、胶合板等)中由于使用了粘合剂,因而可含有甲醛。新式家具的制作,墙面、地面的装饰铺设,都要使用粘合剂。凡是大量使用粘合剂的地方,总会有甲醛释放。此外,某些化纤地毯、油漆涂料也含有一定量的甲醛。甲醛还可来自化妆品。化妆品、清洁剂、杀虫剂、消毒剂、防腐剂、印刷油墨、纸张、纺织纤维等多种化工轻工产品。

3.12 甲醛的用途

甲醛属用途广泛、生产工艺简单、原料供应充足的大众化工产品,是甲醇下游产品树中的主干,世界年产量在2500万吨左右,30%左右的甲醇都用来生产甲醛。

1)、木材工业

用于生产脲醛树脂及酚醛树脂,由甲醛与尿素按一定摩尔比混合进行反应生成。

2)、纺织业

服装在树酯整理的过程中都要涉及甲醛的使用。服装的面料生产,为了达到防皱、防缩、阻燃等作用,或为了保持印花、染色的耐久性,或为了改善手感,就需在助剂中添加甲醛。目前用甲醛印染助剂比较多的是纯棉纺织品,因为纯棉纺织品容易起皱,使用含甲醛的助剂能提高棉布的硬挺度。含有甲醛的纺织品,在人们穿着和使用过程中,会逐渐释出游离甲醛,通过人体呼吸道及皮肤接触引发呼吸道炎症和皮肤炎症,还会对眼睛产生刺激。甲醛能引发过敏,还可诱发癌症。厂家使用含甲醛的染色助剂,特别是一些生产厂为降低成本,使用甲醛含量极高的廉价助剂,对人体十分有害。

3)、防腐溶液

甲醛是由(即甲醛亚硫酸氢钠)在60℃以上分解释放出的一种物质,它无色,有刺激气味、易溶于水。35%~40%的甲醛水溶液俗称福尔马林,具有防腐杀菌性能,可用来浸制生物标本,给种子消毒等。

甲醛具有防腐杀菌性能的原因主要是构成生物体(包括细菌)本身的蛋白质上的氨基能跟甲醛发生反应。

中煤榆林煤炭深加工基地项目环境影响报告书公众参与情况说明-20201104

1概述 中煤陕西公司为中国中煤能源集团有限公司(简称“中煤集团”)的全资子公司,是中煤集团在陕西的重要投资窗口,也是中煤集团“两商”战略定位和“六位一体”区域协调发展新格局的重要支撑企业。公司于2010年4月在榆林市注册成立,现注册资金88.69亿元。主要负责中煤集团在陕西的煤炭、煤化工、电力、铁路等项目的投资筹建、生产经营等工作。目前180万吨/年煤制甲醇、60万吨/年聚烯烃项目以及禾草沟煤矿项目已建成投产。 中煤集团是国务院国资委管理的国有重点骨干企业,前身是1982年7月成立的中国煤炭进出口总公司。主要从事煤炭生产贸易、煤化工、坑口发电、煤矿建设、煤机制造、煤层气开发以及相关工程技术服务等。2006年12月,中煤集团独家发起成立的中国中煤能源股份有限公司在香港上市。 中煤集团是中国第二大煤炭生产企业,现有煤矿44座,总产能2.77亿吨,矿区主要分布在山西、陕西等省;拥有洗煤厂33座,洗选能力2.76亿吨。煤化工产业形成规模,煤制烯烃、甲醇、尿素项目投产见效,煤炭转化规模不断扩大,大型煤焦化工和煤基醇醚、烯烃化工的设计规模和技术水平居行业领先。截至2015年底,中煤集团共有全资公司、控股和均股子公司52户,境外机构4户,资产总额2953亿元,从业人员10万人。 中煤集团以科学发展为主题,以加快转变发展方式为主线,大力实施转型升级、科技创新、人才强企、安全发展“四大”战略,优化矿区布局,形成以山西、蒙陕、江苏、黑龙江、新疆五大基地为主的区域布局;依托煤炭资源,坚持规模化、集约化、现代化模式,大力发展园区经济、循环经济,优化产业产品结构,形成以煤炭、煤化工、坑口发电、煤矿建设、煤机制造五大产业为支柱的产业格局,形成五大基地并进、五大产业协同发展的格局,加快建设具有国际竞争力的世界一流能源企业。 中煤陕西榆林能源化工有限公司拟建设中煤榆林煤炭深加工基地项目,主要建设内容包括200万吨/年煤制甲醇、70万吨/年烯烃,其中35万吨/年聚乙烯、55万吨/年聚丙烯(外购16.6万吨/年丙烯)。 中煤陕西榆林能源化工有限公司于2014年1月委托北京中环国宏环境资源

化工新技术

科技发展论文:煤化工技术的发展前景 摘要:世界已进入能源和化工原料多元化的时代,不同国家或者地区应根据资源和经济发展的需求选择现实、优质的原料和技术。以煤炭为原料生产化学品和通过转化生产高效洁净能源(燃料油、电力等) 的技术将与石油和天然气化工形成并列竞争发展的趋势,煤化工在各成熟单项技术的支撑下,面临新的发展机遇。 关键词:煤化工;新型煤化工;煤炭煤炭是世界上储量最丰富的化石能源。在当前世界石油价格居高不下和倡导保护环境的情况下,发展煤化工特别是新型煤化工,调整我国的能源化工结构,就显得日益重要。本文综述了国内外煤化工技术和新型煤化工的发展情况。 1煤化工概念 煤化工是以煤为原料,经过化学加工,使煤转化为气体、液体、固体燃料以及化学品,并生产出各种化工产品的工业。煤化工包括煤的一次化学加工、二次化学加工和深度化学加工,煤的焦化、气化、液化,煤的合成气化工、焦油化工和电石乙炔化工等等。根据生产工艺与产品的不同主要分为煤焦 化、煤电石、煤气化和煤液化4 条主要生产链。其中,煤焦化、煤电石、煤气化中的合成氨等属于传统煤化工,而煤气化制醇醚燃料,煤液化、煤气化制烯烃等则属于现代新型煤化工领域。 2 煤化工技术 2. 1 煤焦化 将煤隔绝空气加强热使其分解的过程,也称做煤的干馏。煤焦化产品主要有焦炭、煤焦油(苯、甲苯等) 、焦炉气(氢气、甲烷、乙烯、一氧化碳等) 精氨水等。这些产品已广泛应用于化工、医药、染料、农药和炭素等行业。有些甚至是石油化学工业无法替代的,如吡啶喹啉类化合物和许多稠环化合物等。 212煤气化 煤在高温条件下借助气化剂的化学作用将固体碳转化为可燃气体(气体混合物) 的热化过程。用空气、水蒸气、二氧化碳作为气化剂。它们与煤中的碳发生非均相反应。此外,煤热分解出的气态产物如CO2 、H2O 及烃类等也能与赤热的碳发生均相反应。依气化法、气化条件及煤的性质不同,气化气的组成也不同。根据煤气发生炉内所进行的气体过程特点,可以将煤层自上而下地分为干燥带、干馏带、还原带、氢化带和灰层,在干燥带和干馏带中,煤受到高温炉气的加热而放出水分并挥发。剩下的焦炭在还原带和氧化带中进行氧化反应。煤经过气化后得到的是粗煤气,再经过净化和加工后,可以得到各种化学品。常用于煤气化的方式有:

国内外煤炭资源现状及煤化工技术进展和前景解析

国内外煤炭资源现状及煤化工技术进展和前景 摘要:本文就中国能源建设面临着结构的优化与调整,结合中国能源结构以煤为主、石油及相关产品供需矛盾日益突出的现实,对国内外煤炭储量、产量及市场现状进行了较详尽的调研,对煤化工技术进展及前景进行了客观的分析,为我公司未来发展提前寻找了石油和天然气的最佳替代产品,指出了煤化工产业将是今后20年的重要发展方向,这对于我国减轻燃煤造成的环境污染、降低我国对进口石油的依赖,保障能源安全,促进经济的可持续发展,均有着重大意义。可以预见,煤炭的清洁转化和高效利用,将是未来能源结构调整和保证经济高速发展对能源需求的必由之路,现代煤化工在中国正面临新的发展机遇和长远的发展前景。 1 世界煤炭资源概况 据《BP世界能源统计2007》数据统计,2006年年底探明的煤炭可采储量全球总计9090.64亿吨,可采年限为147年。总体上看,世界煤炭资源的分布,北半球多于南半球,煤炭主要集中在北半球。北半球北纬30°- 70°之间是世界上最主要的聚煤带,占世界煤炭储量的70%以上。其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。拥有煤炭资源的国家大约70个,其中储量较多的国家有中国、俄罗斯、美国、德国、英国、澳大利亚、加拿大、印度、波兰和南非地区,它们的储量总和占世界的88%。世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4个国家共占29%。根据2006年全球煤炭探明储量,美国以2446亿吨储量稳坐头把席位,俄罗斯以1570亿吨储量排第二位,中国和印度分别为1145和924亿吨排第三、四位。澳大利亚、南非、乌克兰、哈萨克斯坦、波兰和巴西占据第五到第十位。

现代煤化工技术经济及产业链研究_陈贵锋

doi :10.11799/ce201410017 收稿日期:2014-09-05 基金项目:科研院所技术开发研究专项:固定床熔渣气化炉连续排渣关键技术研究(2014EG122191) 作者简介:陈贵锋(1966-),男,湖南常德人,研究员,煤炭科学技术研究院有限公司煤化工分院副院长,中国煤炭 学会资深会员,主要从事现代煤转化技术研发和洁净煤技术经济等研究,E -mail :chen@https://www.360docs.net/doc/375267383.html, 。 引用格式:陈贵锋,李振涛,罗 腾.现代煤化工技术经济及产业链研究[ J ].煤炭工程,2014,46(10):68-71.现代煤化工技术经济及产业链研究 陈贵锋 1,3,4 ,李振涛1,2 ,罗 腾 1,3,4 (1.煤炭科学技术研究院有限公司,北京100013;2.中国矿业大学化工学院,江苏徐州221116; 3.煤炭资源高效开采与洁净利用国家重点实验室,北京100013; 4.国家能源煤炭高效利用与节能减排技术装备重点实验室,北京100013) 摘 要:现代煤化工及其产业链经过近十年技术示范已经取得系列成果,其技术、经济和环 境影响等指标已经有初步结论,今后如何发展值得关注。介绍了现代煤化工技术进展及发展趋 势,采用CCTM 模型进行了能效、经济和环境指标研究,指出其在提高能效、降低水耗等方面还有很大潜力。分析了现代煤化工的产品链和主要产品市场,建议开展差异化产品结构研究,防止产能过剩风险。 关键词:煤化工;技术经济;技术进展;产业链;产品市场 中图分类号:TQ536;F426.7文献标识码:A 文章编号:1671-0959(2014)10- 0068-04Research on Technology Economic and Industrial Chain of Modern Coal Chemistry Industry CHEN Gui -feng 1,3,4,LI Zhen -tao 1,2,LUO Teng 1, 3,4 (1.China Coal Research Institute Company Limited ,Beijing 100013China ; 2.School of Chemistry Engineering ,China University of Mining and Technology ,Xuzhou 221116,China ; 3.State Key Laboratory of Coal Mining and Clean Utilization ,Beijing 100013,China ; 4.Energy State Key Laboratory of Coal Efficient Utilization and Energy -saving Emission Reduction ,Beijing 100013,China ) Abstract :After nearly 10years of technology demonstration ,modern coal chemistry and its industrial chain have obtained a series of achievement ,with preliminary conclusions of technical ,economic and environmental impact indicators ,its development in the future is calling for more attention.The paper introduced the technology progress and development trend of modern coal chemistry industry ,and studied the energy efficiency ,economic and environmental indicators with CCTM model ,pointing out that there is great potential in energy efficiency improving ,water consumption reducing.And the modern coal chemistry industry chain and main product market were analyzed ,recommending development of differentiated product structure to prevent the risk of excessive production capacity. Keywords :coal chemistry industry ;technology economic ;technology progress ;industry chain ;product market 现代煤化工是以先进技术为支撑,将煤转化成清洁燃料和化学品,实现煤炭高效清洁利用的产业,现代煤化工技术整体还处于工业示范阶段。相比传统煤化工的产能过剩、能耗高、环保效果较差等突出问题以及现代煤化工巨大的市场需求,现代煤化工受到社会广泛关注。总体来看,国家和企业对现代煤化工发展前景比较看好,但由于现代煤化工的技术经济性还不明朗,科学合理的产业链尚未形成,企业投资比较谨慎 [1-4] 。 1现代煤化工进展及趋势 现代煤化工主要集中在煤制油和合成天然气、煤制烯 烃、煤制乙二醇等领域,现代煤化工产业路线如图1所示,除煤制芳烃还处在研发阶段外,其它技术均进行了示范,形成了一批拥有自主知识产权的科技成果。 1.1大型煤炭气化技术成功应用 煤炭气化技术是现代煤化工技术的龙头(直接液化除 第46卷第10期2014年第10期 煤炭工程 COAL ENGINEERING Vol.46,No.10No.10,2014

现代煤化工煤制乙二醇技术概述

现代煤化工煤制乙二醇技术概述 摘要:本文主要研究现代煤化工中煤制乙二醇的技术。简单介绍了乙二醇的性质和用途,以及其制备技术的发展现状;对煤制乙二醇技术中的直接合成法及间接合成法做了概述;讨论了煤制乙二醇技术在发展过程中存在的问题;讨论了我国在乙二醇工艺技术中的现状。 关键字:煤制乙二醇;直接合成法;间接合成法;草酸酯法;现状 引言 乙二醇是一种重要的大宗基础有机化工原料,可用于生产多种化工产品,如聚酯纤维、防冻剂、不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂、炸药、涂料和油墨等,应用领域非常广泛。 在中国,乙二醇主要作为聚酯及防冻液的原料,其中聚酯消费占90%以上,2013年国内乙二醇进口量825万t,进口依存度高达70%左右,市场缺口巨大。2014年,国内新增聚酯产能预计达500万t,将继续拉动乙二醇消费量的增长。乙二醇在中国国民经济发展中正发挥着越来越重要的作用。乙二醇的生产工艺路线按原料不同可分为石油路线和非石油路线。在现阶段,全球主要的大型乙二醇生产装置均采用石油路线,也称乙烯路线,即在银催化剂、甲烷或H2致稳剂、氯化物抑制剂存在下,乙烯直接被O2氧化生成环氧乙烷,再与水直接或催化条件下反应生成乙二醇。石油路线经过多年的发展,工艺已趋于成熟,但耗水量大,生产过程副产物多且生产原料受石油价格波动影响较大,无法摆脱对石油资源的依赖。 因此,结合中国贫油、少气和相对富煤的能源结构特点,开发一条以煤为原料、经济合理的乙二醇合成工艺路线,符合中国的可持续发展战略。目前,国内掀起了开发煤基乙二醇的热潮,煤制乙二醇技术已经成为煤化工行业关注的焦点。

1乙二醇制备技术简介 1.1乙二醇性质简介 乙二醇(EG)是一种重要的石油化工基础有机原料,又名甘醇、亚乙基二醇,分子式为HOCH2CH2OH,是无色透明、稍带甜味的黏稠液体。乙二醇是最简单和最重要的脂肪族二元醇,主要用于生产聚酯和各类抗冻剂,前者用于制造纤维、薄膜和聚对苯二甲酸乙二醇酯(PET)树脂;其它用途则包括解冻液、表面涂层、照像显影液、水力制动用液体以及油墨等行业。高纯乙二醇可用做过硼酸铵的溶剂和介质,还可用于生产特种溶剂乙二醇醚。 1.2乙二醇制备的技术发展现状 目前,我国主要采用以下几种方法来制备乙二醇 1.1生物质发酵制备乙二醇 本工艺主要是将多糖、淀粉、秸秆等生物质混合发酵后制备多元醇,采用可再生能源作为原材料,具有广阔的应用前景目前,我国有多家科研单位和企业从事相关工作,如大连化物所采用玉米秸秆为原料制备了乙二醇、丙二醇等化工醇产品。 1.2石油路线制备乙二醇 该方法为目前世界上工业乙二醇生产中最为常用的一种方法该工艺以石油裂解产物乙烯为原料,经氧化后制得环氧乙烷,环氧乙烷水合后得到产物乙二醇,产品的收率可达90%以上。 1.3半石油路线制备乙二醇 该方法是石油路线的优化和改进,具有效率高和能耗小的优点,但是目前还没有实现工业化生产,仍在实验室中试阶段该方法采用环氧乙烷为原料,和二氧化碳反应生成碳酸乙烯醋,经过水解得到目标产物乙二醇。

现代煤化工产业发展现状分析

现状分析、政策走向及前景预测 一、现代煤化工产业概述 煤化工是以煤为原料,经过化学加工使煤转化为气体、液体、固体燃料及化学品,生产出各种化工产品地工业,是相对于石油化工、天然气化工而言地.从理论上来说,以原油和天然气为原料通过石油化工工艺生产出来地产品也都可以以煤为原料通过煤化工工艺生产出来.煤化工主要分为传统煤化工和现代煤化工两类,其中煤焦化、煤合成氨、电石属于传统煤化工,而目前所热议地煤化工实际上是现代煤化工,主要是指煤制甲醇、煤制乙二醇、煤制天然气、煤制油、煤制二甲醚及煤制烯烃等项目.目前煤化工热地背景源于石油、天然气价格地不断上涨,使得以煤为原料地煤化工产品在生产上具备了巨大地成本优势,从而成为相对石化产品地最具竞争力地替代产品.从煤化工基地建设而言,煤化工产业涉及煤炭、电力、石化等领域,是技术、资金、资源密集型产业,对能源、水资源地消耗大,对资源、生态、安全、环境和社会配套条件要求较高.煤化工地工艺路线主要有三条,即焦化、气化和液化,在煤地各种化学加工过程中,焦化是应用最早且至今仍然是最重要地方法,其主要目地是制取冶金用焦炭,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃;煤气化在煤化工中也占有很重要地地位,用于生产城市煤气及各种燃料气,也用于生产合成气(作为氢气、合成氨、合成甲醇等地原料);煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料(石脑油、汽油、柴油);煤地其他直接化学加工,则生产褐煤蜡、磺化煤、腐植酸及活性炭等,仍有小规模地应用.个人收集整理勿做商业用途 国内外现代煤化工产业发展现状 从全球煤化工发展状况来看,主要集中在南非(公司是世界唯一拥有煤制液化工厂地公司,该公司地个煤基液化厂保证了南非地汽油、柴油供给量)、美国(太平原合成燃料厂是世界上目前唯一运行地大规模煤制天然气商业化工厂地公司,年产亿方天然气和万吨合成氨)和中国,除中国外其他国家并无大规模地发展,国内以煤炭为原料地化工产品在国际上大多是以石油和天然气为原料地,高高在上地国际原油价格是促使煤化工再次得到重视地直接动因.以原油和煤炭地单位热值来衡量,目前煤炭地价格只有原油价格地左右,以煤炭来代替石油作为化工产品地原料具有很好地经济意义.个人收集整理勿做商业用途 “富煤、贫油、少气”是我国能源发展面临地现状,我国能源资源中,煤资源相对丰富,石油资源相对少,而且石油往往受制于国际市场.因此,通过把煤液化替代石油成为我国能源发展地一个明智选择.而且煤液化之后,相对于石油更加环保,符合国家节能环保地要求.未来随着我国经济发展,能源需求将日益扩大,对于煤液化地需求也就越大.这也就是意味着,对于煤化工需求也就越来越大.个人收集整理勿做商业用途 我国是世界上最大地煤化工生产国,煤化工产品多、生产规模较大,当前我国正处于传统煤化工向现代煤化工转型时期,以石油替代为目标地现代煤化工产业刚刚起步.由于国际市场油价高起,我国现代煤化工项目已呈现遍地开花之势,激发了富煤地区发展煤化工产业地积极性.据了解,在煤炭资源丰富地鄂尔多斯、通辽、赤峰、阿拉善盟等地,煤化工产业开始“井喷”.神华集团煤直接液化项目、伊泰集团间接法煤制油项目、神华包头煤制烯烃项目、大唐多伦煤制烯烃项目、通辽乙二醇项目等煤化工重点项目相继建成并投产.目前,全国煤制烯烃地在建及拟建产能达万吨,煤制油在建及拟建产能达万吨,煤制天然气在建及拟建产能接近亿立方米,煤制乙二醇在建及拟建产能超过万吨.这些项目全部建成之后,我国将是世界上产能最大地现代煤化工国家.近五年我国焦炭、电石、煤制化肥和煤制甲醇产量均位居世界首位,成为煤化工产品生产大国.年是现代煤化工爆发地启动之年,预计投资额应该在亿元左右,之后四年投资额将逐增加,年将达到奇峰,预计在亿,五年累计超过万亿,是十一五期间地倍.个人收集整理勿做商业用途 三、国家现代煤化工产业政策

现代煤化工技术手册

现代煤化工技术手册 出版社:化学工业出版社2011年 规格:上中下三册 16开精装 定价800元优惠价:580元 手册共分11篇,54章近318万字。详细介绍煤田地质,煤的储运、燃烧、气化、焦化、液化的方法及物化基础、工艺流程、工艺条件选择,煤化工的主要设备结构与材质及其相关的环保、安全、仪表自控等的公用工程。手册内容有以下特点。①技术先进,方法全面。反映了21世纪国际煤化工的现代技术水平;如气化技术中气流床水煤浆加压气化,干粉煤加压气化,流化床的灰熔聚炉气化技术、煤的地下气化技术等;焦化中焦油煤化工产品的

分离与提取技术,煤液化的直接与间接液化技术等。②全书理论联系实际,内容实用、可操作性强。③煤的利用涉及面广,如煤气化联合循环发电、燃料电池、碳素材料、由合成气制取氨、甲醇、二甲醚、低碳醇、低碳烯烃、乙二醇和羟基合成多种化工产品等均有介绍。④手册中有大量图表、数据、公式,文字通达。 ⑤ 手册是权威性专著,集中了全国一流的专家、学者。 本手册可供煤炭、煤化工领域的科研、设计、生产的工程技术人员使用;也可供相关专业大中专院校师生参考 目录 第一篇绪论 第一章煤炭在能源中的地位 第二章现代煤化工及洁净煤技术 第三章现代煤化工重点产品 第四章现代煤化工发展模式 第二篇煤炭及其储存运输、洗选与加工 第一章煤的组成和性质 第三章煤焦的储存、运输及制备 第四章型煤的制造 第五章水煤浆制备

第三篇煤的燃烧 第二章煤燃烧数学物理模型 第三章煤炭燃烧设备 第四章煤燃烧的环保控制 第四篇煤炭的气化 第一章煤炭气化的物理化学基础及气化技术分类第二章常压固定床气化 第三章碎煤固定层加压气化生产过程 第四章流化床煤气化 第五章干法气流床煤的气化 第六章湿法气流床加压气化 第七章多喷嘴对置式气流床水煤浆气化技术 第八章地下煤气化 第九章多元料浆新型气化技术 第十章煤制代用天然气(SNG) 第十一章其他煤气化方法 第十二章空气分离 第五篇煤炭的焦化 第一章煤炭的热解技术

浅谈中国煤化工发展

浅谈中国煤化工发展 摘要:我国煤炭资源丰富,对我国能源安全至关重要。在二十一世纪初期,中国的煤化工产业将面向高效率、更安全、更清洁和更加优化利用的发展。在这篇综述中,作者介绍了我国一次能源生产和消费的现状。自2005年以来,由中国国家基础研究计划科学技术部支持的的基础研究已在太原理工大学进行。该部强调,新的煤化工产业应以可持续的方式发展,实现能源的有效利用。此外,提高技术来积极改善煤化工的回收过程对实现现代煤化工有着战略意义。 关键词:中国;煤化工;煤化工技术 1.引言 近年来,世界市场的高水平的油价已促使中国的煤化工行业(尤其是在2007年)更快地发展;中国能源工业一直致力于加快发展新的煤化工产业。根据国家能源发展战略,新的煤化工产业主要生产清洁能源和替代品,如柴油、汽油等。煤化工将在未来二十年在我国能源资源的可持续发展中发挥重要作用,这将缓解我国的环境污染,减少我家对石油进口的依赖。总之,中国的煤化工行业将会有巨大的需求和机遇。 1.1能源消耗的总体情况 2005,中国的能源生产总量为20亿6000万吨标准煤,其中煤炭开采21亿9000万吨,石油1亿8000万吨,天然气500亿立方米,发电为2474.7亿千瓦;中国的总能耗是22亿2000万吨标准煤,继美国之后位居世界第二。如表1。 表12005年主要国家的能源消耗量

石油消费量达到3亿吨,净进口量为1亿4000万吨,占总消费量的44%。在2020,根据一些预测,中国的石油消费量将占世界总产量的近10%,对石油进口的依赖程度将达到60,70%的消费量[1,2]。 从表1和图1,很明显的可以看出在2005年煤炭仍然是中国能源供应的主要来源[3]。在世界各地煤炭的平均能源供应是28%,而在中国,它占69%。根据中国重工业的实际发展,能源消费总量将达到36亿吨标准煤。虽然中国的能源消费比例正在下降,但煤炭的主导地位是不变的。 1.2当前我国能源发展的问题 在第二十世纪的最后二十年里,中国的国内生产总值(GDP)翻两番,能源消耗翻了一番。从1981到2002,国内生产总值的平均增长率为9.7%,而能源消耗的平均增长率为4.6%。在2006年到2010年间,中国努力将人均国内生产总值能耗降低了20%。并将国家变成一个资源节约型、环境友好型社会。为实现这一目标,中国必须从2006年到2010年每年至少减少4.4%的能源消耗。 然而,在2006年,国家虽然推行了一系列的节能措施,国家的能源生产和消费的增长速度仍然高于经济的增长速度[4]。政府统计数据显示,从2001到2005,中国的能源平均增长率消费比全国经济增长率高出六个百分点。中国经济在过去的二十年里主要是由于大量的投资和能源消耗加倍而翻了两番。然而,环境保护和经济迅速增长之间明显的冲突对中国未来的发展充满了挑战。中国大多数的能源目前来自化石燃料,尤其是煤炭和石油,这些都造成了很严重的空气污染,使能源消耗增加。在我国,煤炭的直接消费占其利用的一大部分,主要消费方式是煤炭燃烧。这种利用煤的方式产生了大量的SOx和NOx,使得中国的空气污染成为一个严重的问题。中国已经是第二大温室气体排放的生产国,酸雨已经覆盖了我国三分之一的地区。世界上污染最严重第10大城市就是中国的。 我国大气污染主要来自燃煤烟气。主要污染物为二氧化硫和烟尘。中国的一项研究指出,在过去20年的经济发展过程中,中国的空气污染已经导致了超过1270亿元的损失[4]。 中国石油和天然气短缺,但含有丰富的煤炭,占能源消费总量的70%。在化石能源资源中,我国的煤炭占世界总储量的15%。石油和天然气分别为2.7%和0.9%。在中国主要的化石能源资源中,煤炭地质储量在中国是1兆4400亿吨,探明储量为1145亿吨。

新形势下现代煤化工的发展方向及重点-2017

升级示范持续创新 努力开创现代煤化工发展新局面 在2017中国国际煤化工论坛上的讲话 中国石油和化学工业联合会会长李寿生 2017年9月27日 煤炭资源丰富,石油天然气资源相对不足,是中国资源禀赋的 显著特征。发展现代煤化工,对于保障国家能源安全,促进煤炭清洁高效利用和煤炭产业转型升级、培育新的经济增长点,具有十分重要的战略意义。我国现代煤化工经历了“十一五”和“十二五”的快速发展,技术创新和产业规模均走在世界前列,已建成了煤制油、煤制烯烃、煤制天然气、煤制乙二醇等一批现代煤化工示范工程,形成了一定产业规模。据我们统计,2017年1-6月,我国煤制油产能达到693万吨/年,产量155万吨;煤(甲醇)制烯烃产能达到1242万吨/年,产量530万吨;煤制乙二醇产能达到270万吨/年,产量70万吨;煤制天然气产能达到51亿立方米/年,产量11亿立方米。为实现煤炭的清洁高效利用奠定了坚实的基础,但因产业处在起步发展阶段,存在着水资源和环保瓶颈制约、工艺流程和技术集成尚需优化升级、产业支撑体系不健全等诸多问题。

结合本届论坛主题,我主要就“十三五”以来现代煤化工技术新突破、行业面临的新形势和新挑战及今后发展的方向及重点,谈几点意见,供大家参考。 一、“十三五”以来现代煤化工技术新突破 当前,世界石化行业日臻成熟,创新驱动成为推动行业发展的主旋律,新产品、新技术不断涌现,技术创新既是石化行业,更是现代煤化工行业发展的核心动力。“十三五”以来,现代煤化工相关领域技术创新能力不断加强,国内外涌现出一大批新的研究成果。 一是煤气化技术向大型化、长周期迈进。华东理工大学等单位联合完成了日处理煤3000吨级超大型多喷嘴对置式水煤浆气化技术并已在国内累计推广11家企业,在建和运行气化炉42台。该技术是目前世界上唯一能够实现单炉日处理煤3000吨级能力的水煤浆气化技术,为我国大型煤化工的高效、洁净发展提供了坚实的技术支撑。航天长征化学工程股份有限公司设计生产的日处理煤2000吨级航天粉煤加压气化炉创造了世界现有工业化气化装置的 最长运行记录,单台气化炉连续(A级)运行记录为421天。神华宁煤集团联合中国五环工程公司等科研院所,自主开发出日耗煤2200吨干煤粉加压气化炉(神宁炉)应用于400万吨/年煤制油项目中,各项技术指标均达到国际先进水平。 二是煤炭液化技术向生产高效化和产品高端化发展。神华集团依据煤直接液化反应的产物分布特点,着力开发超清洁汽、柴油以及军用柴油、高密度航空煤油、火箭煤油等特种油品的生产技术,目前已完成了煤直接液化油品的战机试飞和火箭发动机试验。中科合成油技术有限公司基于对煤炭液化过程的全面分析,提出了包括

制药工业VOCs排放控制技术指南

制药工业VOCs排放控制技术指南 图1-1发酵制药生产工艺与VOCs排放环节图 图1-2化学合成制药生产工艺与VOCs排放环节图 图1-3提取制药生产工艺与VOCs排放环节图 一、源头削减 (一)生产工艺 ●使用非卤代烃和非芳香烃类溶剂,生产水基、乳液、颗粒产品。 ●采用生物酶法合成技术。

●使用低(无)VOCs含量或低反应活性的溶剂。 (二)生产设备 ●反应釜:常压带温反应釜上配备冷凝或深冷回流装置回收,减 少反应过程中挥发性有机物料的损耗,不凝性废气有效收集至 VOCs废气处理系统。 ●固液分离设备:采用全自动密闭离心机、下卸料式密闭离心机、 吊袋式离心机、多功能一体式压滤机、高效板式密闭压滤机、 隔膜式压滤机、全密闭压滤罐等;产品物料属性等原因造成无 法采用上述固液分离设备时,对相关生产区域进行密闭隔离, 采用负压排气将无组织废气收集至VOCs废气处理系统。二、过程控制 (一)储存 ●依据储存物料的真实蒸气压选择适宜的储罐罐型。 ●苯、甲苯、二甲苯宜采用内浮顶罐并安装顶空联通置换油气回 收装置。 ●盛装VOCs物料的容器或包装袋应存放于室内,或存放于设置 有雨棚、遮阳和防渗设施的专用场地,在非取用状态时应加盖、封口,保持密闭。 ●含VOCs废料(渣、液)以及VOCs物料废包装物等危险废物 密封储存于密闭的危废储存间。

(二)输送 ●液态VOCs物料应采用密闭管道输送;采用非管道输送方式转 移液态VOCs物料时,应采用密闭容器、罐车。 ●粉状、粒状VOCs物料应采用气力输送设备、管状带式输送机、 螺旋输送机等密闭输送方式,或采用密闭的包装袋、容器或罐 车进行物料转移。 (三)投料 ●易产生VOCs的固体物料采用固体粉料自动投料系统、螺旋推 进式投料系统等密闭投料装置,若难以实现密闭投料的,将投 料口密闭隔离,采用负压排气将投料尾气有效收集至VOCs 废气处理系统。 ●宜采用无泄漏泵或高位槽(计量槽)投加,替代真空抽料,进 料方式采用底部给料或使用浸入管给料,顶部添加液体采用导 管贴壁给料。 ●重点地区采用高位槽/中间罐投加物料时,配置蒸气平衡管, 使投料尾气形成闭路循环,消除投料过程无组织排放,若难以 实现的,将投料尾气有效收集至VOCs废气处理系统。非重点 地区可参照执行。 ●反应釜投料所产生的置换尾气(放空尾气)有效收集至VOCs 废气处理系统。

2019年中国煤化工产业发展概况分析

2017年中国煤化工产业发展概况分析【图】我国能源结构特点“富煤、贫油、少气”,资源禀赋决定了我国是全球主要的煤炭输出国,而石油、天然气以及整个石化产业链中的化工品则需要大量进口。如何解决对进口石油、天然气的过度依赖是涉及我国能源安全战略的重大问题。 根据发布的《世界能源统计年鉴 2016》,截止 2015 年底,我国探明能源储量中,煤炭约1145 亿吨,石油约 25 亿吨,天然气约 3.8 万亿立方。其中,煤炭储量占世界总储量的 12.8%,石油占 1.1%,天然气约占 2.1%。 由于石油、天然气储量占比低,我国每年消费的石油、天然气需要大量进口。截至 2015 年,我国原油表观消费量达到 5.25 亿吨,其中进口量 3.45 亿吨,进口占比 61%;天然气消费量 1855 亿方,其中进口 668 亿方,进口占比33%。二者进口依存度远高于煤炭的 8%,解决石油、天然气的过度依赖进口问题对我国能源安全意义重大。 我国石油、天然气储量占比低下,对外依存度高 此外,我国整个石化产业链中的化工品进口依赖度同样很高,乙二醇进口依赖度超过 70%,烯烃产品进口依赖度也超过 40%。2015 年,我国乙烯单体、丙烯单体的表观需求分别为 1866 万吨、2587 万吨,年进口量分别为152 万吨、277 万吨,对外依存度为 8%、11%;聚乙烯、聚丙烯表观消费量 2378 万吨、2009 万吨,年进口量 987万吨、339 万吨,对外依存度 41%、17%。根据测算,烯烃产品潜在进口替代空间 3287 万吨,该数字 2020年有望达到 5086 万吨。

我国乙烯年产量及进口量 我国丙烯年产量及进口量

现代煤化工产业创新发展布局方案(发改产业〔2017〕553号)

现代煤化工产业创新发展布局方案 现代煤化工是指以煤为原料,采用先进技术和加工手段生产替代石化产品和清洁燃料的产业。为推动现代煤化工产业创新发展,拓展石油化工原料来源,形成与传统石化产业互为补充、协调发展的产业格局,贯彻落实《石化产业规划布局方案》和《关于石化产业调结构促转型增效益的指导意见》的工作部署,现提出现代煤化工产业创新发展布局方案。 一、开展现代煤化工产业创新发展布局的必要性 石化产品是国民经济发展的重要基础原料,市场需求巨大,但受油气资源约束,对外依存度较高。2015年,原油、天然气、乙烯、芳烃和乙二醇对外依存度分别高达60.8%、31.5%、50.4%、55.9%和66.9%。我国煤炭资源相对丰富,采用创新技术适度发展现代煤化工产业,对于保障石化产业安全、促进石化原料多元化具有重要作用。 经过多年努力,我国现代煤化工技术已取得全面突破,关键技术水平已居世界领先地位,煤制油、煤制天然气、煤制烯烃、煤制乙二醇基本实现产业化,煤制芳烃工业试验取得进展,成功搭建了煤炭向石油化工产品转化的桥梁。但是,目前产业整体仍处于升级示范阶段,尚不完全具备大规模产业化的条件,系统集成水平和污染控制技术有待提升,生产稳定性和经济性有待验证,行业标准和市场体系有待完善,

且存在不顾生态环境容量和水资源承载能力、盲目规划建设现代煤化工项目的势头。针对存在的问题,迫切需要加强科学规划、做好产业布局、提高质量效益,化解资源环境矛盾,实现煤炭清洁转化,培育经济新增长点,进一步提升应用示范成熟性、技术和装备可靠性,逐步建成行业标准完善、技术路线完整、产品种类齐全的现代煤化工产业体系,推动产业安全、绿色、创新发展。 二、基本原则 ——坚持创新引领,促进升级示范 加快现代煤化工产业技术优化升级,大力推进原始创新和集成创新。聚焦重点领域和关键环节,加强共性技术研发和成果转化。依托现代煤化工升级示范工程建设,推进新技术产业化,完善技术装备支撑体系,提升产业自主发展能力。 ——坚持产业融合,促进高效发展 鼓励跨行业、跨地区优化配置要素资源,积极推广煤基多联产,促进现代煤化工与电力、石油化工、冶金建材、化纤等产业融合发展,构建循环经济产业链和产业集群,提升资源能源利用效率。 ——坚持科学布局,促进集约发展 依托现有现代煤化工优势企业,实施挖潜改造。选择在煤水资源相对丰富、环境容量较好的地区,规划建设现代煤

现代煤化工工艺路线总图

现代煤化工工艺路线总图煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)主反应: CO+2H2=CH3OH+102.5KJ/mol (2)副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol CO+3H2=CH4+H2O+115.6 KJ/mol 4CO+8H2=C4H9OH+3H2O+49.62 KJ/mol CO2+H2=CO+H2O-42.9 KJ/mol 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 CO+H2O(g)=CO2+H2 (放热反应)

4、水煤气组分与甲醇合成气组分对比 气体种类气体组分(%) CO H2CO2CH4 水煤气37.350.0 6.50.3 甲醇合成 29.9067.6429.900.1 气 天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: CH4+H2O=CH3OH+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。

3、蒸汽转化反应 CH4+H2O(g)=CO+H2(强吸热反应) 4、纯氧部分氧化反应 2CH4+O2=2CO+4H2+35.6kJ/mol CH4+O2=CO2+2H2+109.45 kJ/mol CH4+O2=CO2+H2O+802.3 kJ/mol 5、天然气组分与甲醇合成气组分对比 气体种 气体组分(%) 类 CO H2CO2CH4天然气----------- 3.296.2 甲醇合 29.9067.6429.900.1 成气 石油化工、煤炭化工产品方案对比(生产烯烃) 以天然气(或煤气)为原料的MTO技术流程

(能源化工行业)中国煤化工的现状及未来分析

(能源化工行业)中国煤化工的现状及未来分析

中国煤化工的现状及未来分析 (2009-03-2115:02:27) 世界化石能源(包括煤炭、石油、天然气)资源比较丰富,在壹次能源消费结构中占90%,是当今的主要能源。石油、天然气储量分别可供40年、60年的需求,非常规的油气资源有可能进壹步扩大。煤炭储量十分丰富,且分布广泛,探明储量可供世界开采200年。 全球化石能源供应前景的不确定因素之壹是成本、价格。技术进步和生产效率的提高推动着生产和运输成本的降低,但廉价资源储量枯竭等因素又导致成本和价格提高。预计从2000年壹2020年,化石能源在壹次能源消费结构中,石油将从39%降至38,煤炭将从26%降至24%,天然气将从23%提高至27%。 近几十年来,化石能源在中国壹次能源消费结构中占90%之上。煤炭是中国的主要能源,也是许多重要化工产品的主要原料。随着中国社会经济持续、高速发展,近年来能源、化工产品的需求也出现较高的增长速度,煤化工在中国能源、化工领域中已占有重要地位。 中国煤化工的发展对发挥丰富的煤炭资源优势,补充国内油、气资源不足和满足对化工产品的需求,保障能源安全,促进经济的可持续发展,具有现实和长远的意义。新型煤化工在中国正面临新的发展机遇和长远的发展前景。煤炭焦化、煤气化壹合成氨壹化肥已是中国主要的煤化工产业,随着技术、经济的发展和市场的巨大需求,煤炭焦化、煤气化壹甲醇及下游化工产品等将得到快速发展;煤制油(直接液化、间接液化)技术的开发和产业化将受到关注,重点项目建设已启动。 1焦化工业 1.1焦化工业快速发展,中国已成为世界焦炭生产、消费及贸易大国 中国第壹座机械化焦炉建于20世纪20年代,自50年代末开始,自主设计、建设的焦炉成为产业发展的主流,80年代后进人产业快速发展时期。到2004年初,全国约有700多家炼焦企业,1900多座焦炉,焦炭生产能力达到约170Mt/a。受钢铁工业快速增长的拉动,从2002年开始中国焦化工业呈现高速增长趋势,2003年焦炭总产量178Mt,比2002年增加约20%,约占世界焦炭总产量的46%;国内表观消费约163Mt,同比增长约19%,其中钢铁业消费约76,其他行业(化工、机械制造、有色冶炼等)消费约24%;出口焦炭14.7Mt,约占世界焦炭贸易总量的56。图1为1997年壹2003年焦炭的产量、出口量变化情况。 据估算,2003年中国炼焦消耗原料精煤约237Mt,涉及洗选加工原煤约400Mt,超过当年煤炭消费总量的20%,已成为消耗原料煤数量最大的煤化工产业。中国已成为世界焦炭生产、消费及贸易第壹大国。 中国的炼焦技术已进人世界先进行列,大容积焦炉(炭化室高6m)已实现国产化,大中型机械化焦炉发展很快,炭化室为4m之上的焦炉达300多座,2003年机械化焦炉生产的焦炭约占焦炭总产量的75%;干熄焦、地面除尘站等环保技术已进入实用化阶段;化学产品回收加强;淘汰小型焦炉、土焦及改良焦炉的工作进展显著。 1.2控制新焦炉建设,平稳发展焦炭产 从2003年开始,新焦炉建设数量大增,建成投产机械化焦炉66座,新增产能21Mt/a。预计2004年焦炭产量将超过200Mt/a,国内焦炭市场供需基本实现平衡。预计今后随着加强限制和取缔土焦或改良焦炉生产以及关闭污染严重的小型机械化焦炉等措施的不断实施,焦炭产量的增长速度会趋于平稳。 2004年初,中国政府通过宏观调控,调整和减缓了钢铁业的发展速度,稍后(2004年5月)也加强了对新建焦炉的审批管理,预计2004年后焦炭生产将适应市场需求进人相对平稳的发展状态。稳定原料煤资源,优化配煤技术,提高焦炭质量,注重煤焦油化学品的集中深加工和焦炉煤气的有效利用,将是焦化企业发展的重要方向。 污染控制是当前焦化工业发展的迫切问题,要严格取消土法炼焦,建设大型焦炉替代工艺落

现代煤化工新技术的介绍

一、煤制二甲醚(DME) 1.1概况 二甲醚是一种重要的绿色工业产品,主要用做清洁燃料、气雾剂、制冷剂、发泡剂、有机合成原料等。与液化石油气相比生产成本低,有较大的差价,使得二甲醚替代液化石油气成为可能。所以现在作为柴油掺烧剂和替代民用燃料液化石油气。制取二甲醚的行业成为了新兴的“绿色化工”。国内合成二甲醚的研究工作正在紧张进行中,目前已建成最大的二甲醚生产装置为年产几十万吨。不少企业对“合成气”制二甲醚感兴趣,因此二甲醚被称为朝阳化工产品。并且甲醇制二甲醚的知识产权是自主的。 二甲醚(DME)是一种比较惰性的非腐蚀性有机物,常温常压下二甲醚为无色易燃气体,空气中允许浓度为400*10-6。对金属无腐蚀性,对人体不刺激皮肤,不致癌,对大气臭氧层无破坏作用,是一种有娘的绿色化工产品。 下表为二甲醚和液化石油气的性质比较

二甲醚与液化石油气性质的比较 项目二甲醚液化气 分子量46 44~56 饱和蒸汽压(60℃)/MPa 1.35 1.92 平均热值/(kj/kg)28410 45760 爆炸下限/% 3.5 1.7 理论烟气量/(m3/kg) 6.96 11.32 理论空气量/(m3/kg) 7.46 12.02 预热器热值/(kj/m3) 4219 3509 理论燃烧温度/℃2250 2055 从数据可看出,同等条件下,二甲醚存储运输较为安全。虽然二甲醚热值低,但由于二甲醚本身含氧在燃烧过程中所需空气质量远低于液化石油气,从而使得二甲醚的预混热气值夏理论燃烧温度都高于液化石油气。 二甲醚具有较高的十六烷值,液化后可直接作为汽车燃料,其燃烧效果比甲醇燃料效果好。由于二甲醚自身含氧,组分单一,碳链短,所以可实现无言高效燃烧,并可降低噪声。易于压缩使用,还可作为精细化工产品。在这些用途中,作为精细化工产品时,小规模生产(0.25~1.0万吨/年)就可满足需求,作为化工原料时生产规模应在2万吨/年以上,作为清洁燃料时的需求量大,实际上是代替原油,必须大规模生产(10万吨/年)以上,才能形成经济规模。全世界到2006年对二甲醚的需求量为40万吨/年。2008年世界经济风暴开始后,二甲醚的产量和价格也一落千丈,据统计2008年底仅有13.9%的装置维持生产。

现代煤化工产业呈现四大特点

现代煤化工产业呈现四大特点 6月5日,中国石化联合会会长李勇武在2014中国国际煤化工发展论坛上表示,我国现代煤化工取得了突破性进展,技术创新和产业化应用走在了世界的前列,煤制油、煤制甲醇、甲醇制烯烃等示范工程都实现了稳定的运行。目前我国现代煤化工发展呈现四大特点。 一是产业规模快速增长。2013年,全国甲醇产量达到2900万吨,二甲醚产量达到500万吨,煤制油投产项目产量约170万吨,煤制烯烃180万吨,煤制乙二醇达到90万吨,已投产的煤制天然气示范项目达到27亿立方米,产业规模已居世界首位。预计到2020年,煤制油、煤制气规模将分别达到3000万吨和500亿立方米。 二是工程示范取得了积极进展。目前,煤制油、甲醇制烯烃、煤制二甲醚等一批示范工程建成投产并实现稳定运行。特别是神华集团鄂尔多斯煤直接制油示范项目、包头煤制烯烃示范项目、内蒙古伊泰集团煤间接制油项目运行稳定并取得了较好的经济效益。内蒙古新奥集团煤制二甲醚、大唐集团内蒙古克旗煤制天然气项目一期工程、新疆庆华煤制天然气项目一期工程都已经建成投产。 三是产业的集中度明显提升。现代煤化工项目主要集中在内蒙古、山西、陕西、新疆、宁夏等地区。培育了一大批大型骨干集团和企业,产业发展格局初步形成,仅甲醇产品已形成了山西晋煤、神华、河南煤业、兖矿集团、中海油等10家百万吨级生产企业,合计产能占了全国总产能的37%。内蒙古的煤化工产业正由示范项目向示范基地转变,产业化、规模化、集群化发展势头强劲。 四是关键技术和装备研发实现了新突破。我国自主研发了大型先进煤气化、煤制甲醇、煤直接制油和接制油、煤制烯烃、煤制乙二醇、万吨级煤制芳烃、低阶煤分质利用等技术;研制了大型煤气化装置、变换炉、低温甲醇洗、12万吨等级大型空分、8万吨等级以上空分空气压缩机、百万吨级煤制油反应器、60万吨级甲醇制烯烃反应器等大型装备,取得一大批具有自主知识产权的科技成果。

相关文档
最新文档