小波域HMT模型去噪对干涉图解缠的影响

小波域HMT模型去噪对干涉图解缠的影响
小波域HMT模型去噪对干涉图解缠的影响

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

一种新的二次插值模型算法

一种新的二次插值模型算法 周庆华 【期刊名称】《工程数学学报》 【年(卷),期】2006(023)006 【摘要】本文中,通过利用随算法表现出来的问题的局部信息,我们构造了几种新的搜索子空间,然后对二次插值模型在这些子空间中进行求解.目的是利用前面的迭代信息构造问题更有可能下降的方向.实验证明我们的方法对于大多数问题都可以有效的减少函数值的运算次数.%In this paper, several new search directions are constructed by combining the local infor mation progressively obtained during the iteration of the algorithm to form new subspaces, the quadratic model is then solved in the new subspaces. The purpose is to use the information disclosed by previous steps to construct more promising directions. The effectiveness is demonstrated in that the number of function evaluations are reduced significantly for most tested problems. 【总页数】13页(1075-1087) 【关键词】无约束优化;信赖域方法;二次模型;Lagrange函数;直接法 【作者】周庆华 【作者单位】中国科学院数学与系统科学研究院,计算数学科学与工程计算研究院,科学与工程计算国家重点实验室,北京,100080 【正文语种】中文 【中图分类】O24

最新小波去噪matlab程序.优选

[转帖]小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2);

energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8

圆锥摆模型

一、经典例题 1.将一个半径为的内壁光滑的半球形碗固定在水平地面上,若使质量为的小球贴着碗的内壁在水平面内以角速度做匀速圆周运动,如图所示,求圆周平面距碗底的高度。若角速度增大,则高度、回旋半径、向心力如何变化? 点评:实质是圆锥摆模型:球面的弹力类比于绳的拉力,球面半径类比于绳长 2.一光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,其顶角为60o,如图所示,一条长为的轻绳,一端固定在锥顶点,另一端拴一质量为的小球,小球以速率绕圆锥的轴线做水平面内的匀速圆周运动,求: (1)当时,绳上的拉力多大? (2)当时,绳上的拉力多大? 1

3.圆锥摆模型的特点: 结构特点:一根质量和形变量可以不计的细绳,一端系一个可以视为质点的摆球,使小球在水平面内做匀速圆周运动。 受力特点:只受两个力即竖直向下的重力以及沿摆线方向的拉力。两个力的合力就是摆球做匀速圆周运动的向心力 4.关键求出临界时的速度,判断物体对圆锥体是否有压力。 5.(1)了解圆锥摆及其拓展模型受力特点,合力提供向心力 (2)圆锥摆中弹力与竖直方向成的角可起“桥梁”作用 二、相关练习题 1.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球。给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ。下列说法中正确的是 2

3 A .小球受重力、细绳的拉力和向心力作用 B .细绳拉力在水平方向的分力提供了向心力 C .θ越大,小球运动的周期越大 D .θ越大,小球运动的线速度越大 2.如图所示,两个质量不同的小球用长度不等的细线拴在同一点并在同一水平面内做匀速圆周运动,则它们的( ) A .运动周期相同 B .运动的线速度相同 C .运动的角速度相同 D .向心加速度相同 3.如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

圆锥摆模型全透视

1 圆锥摆模型全透视 一、圆锥摆模型: 1.结构特点:一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内作匀速圆周运动。 2.受力特点:只受两个力:竖直向下的重力mg 和沿摆线方向的拉力F 。两个力的合力,就是摆球作圆周运动的向心力F n ,如图示。 二、常规讨论: 1. 向心力和向心加速度: 设摆球的质量为m ,摆线长为l ,与竖直方向的夹角为θ,摆球的线速度为v ,角速度为ω,周期为T ,频率为f 。 n n ma F =, θ πθπ θωθθsin )2(sin )2(sin sin tan 2222l f m l T m l m l v m mg ====, θπθπ θωθθsin )2(sin )2(sin sin tan 2222l f l T l l v g a n ===== 2. 摆线的拉力: 有两种基本思路:当θ 角已知时θ cos /mg F =,当θ角未知时 l f m l T m l m F F n 22 2)2()2( sin /ππωθ==== 3. 周期的计算: 设悬点到圆周运动圆心的距离为h ,根据向心力公式有g h g l T π θπ2cos 2==,由此可知高度相同的圆锥摆,周期相同,与θ,,l m 无关。 4.动态分析:当角速度ω增大时,根据θωθsin tan 2 R m mg =有R g 2 cos ωθ= ,ω增大,θ增大, 向心力增大,回旋半径增大,周期变小。 三、典型实例: 例1:将一个半径为R 的内壁光滑的半球形碗固定在水平地面上,若使质量为m 的小球贴着碗的内壁在水平面内以角速度ω做匀速圆周运动,如图,求圆周平面距碗底的高度。若角速度ω增大,则高度、回旋半径、向心力如何变化?

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

试验室科研能力及服务项目情况

实验室科研能力及服务项目情况 (1)若干重要问题如大型线性方程组迭代解法、矩阵特征值问题的理论和数值 方法、代数特征值反问题的理论和数值解法、矩阵方程与矩阵逼近等进行了系统的研究,提出了新的概念、理论和方法,取得了一系列高水平且具有特色的研究成果 2.数学规划算法-主要致力于数学规划理论、算法和应用软件的研究及其在工程实际中的应用.近二十多年来,主要研究大规模最优化理论、方法与软件,无约束最优化问题的理论与方法,非光滑最优化理论与方法,组合优化理论与方法等。在当今国内外研究热点—SQP方法、有限存储方法、锥模型算法、非光滑最优 化条件、非线性向量互补问题与变分不等式、最小支撑树和最短网络等方面取得了一系列研究成果。 3.偏微分方程数值解法及其应用.自八十年代初以来,偏微分方程数值解法及其 应用一直是我校计算数学硕士学科点的稳定研究方向。经戴嘉尊教授和年轻数学工作者的不断建设和发展,特别是特聘教授陆云光博士的加盟,该研究方向已形成了一支实力雄厚、年龄结构合理的学术梯队,已成为我国在该领域开展研究工作最活跃的单位之一。 2.服务项目 (1)构造了解一般稠密大规模非线性规划问题的算法, 并建立了相关理论, 开发了有效的软件, 进行了大量数值试验。其主要贡献是成功地把有限储存技术和截断求子问题途经应用于一般大问题。研究成果已经以33页的篇幅发表在国际著名杂志《Optimization Methods and Software》上。 (2)非线性规划理论与算法的研究. 十多年来,我们主要研究大规模与非光滑最优化理论与方法。在国际核心杂志上发表论文50余篇,其中子空间拟牛顿方法发表在《Mathematics of Computation》(1997,vol.66,no.220)杂志上,已被SCI收录论文他引3次,有限储存截断对偶SQP方法的论文以33页的篇幅发

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

新北师大版六年级数学下册《圆锥的认识》公开课教案_14

圆锥的认识 一.学习内容 《义务教育教科书数学》(人教版)六年级下册第31—32页例1。 二.教学目标 1、认识圆锥,建立圆锥的几何模型,能明确指出圆锥的各部分名称及特征。 2、认识圆锥的高,能准确测量圆锥的高,发挥动手操作的能力,逐步形成严谨求学的科学态度。 3、通过动手制作圆锥图形和旋转实验,直观感知平面图形与立体图形之间的联系,发展空间观念。 三、教学重点 建立圆锥的几何模型,能明确指出圆锥各部分名称及特征。 四、教学难点 能准确测量圆锥的高。 五、配套资源 实施资源:《圆锥的认识》名师教学课件、圆锥的模型,尺子等 二、教学设计 (一)课前设计 1.预习任务 (1)回忆我们是从哪些方面来认识圆柱特征的?它的特征是什么?用自己喜欢的方式进行整理。 (2)收集生活中圆锥形的物体,并观察它们有什么共同的特点? (二)课堂设计 1.谈话导入 师:课前大家已经收集一些圆锥形的物体,谁来展示一下? 找1—2名学生展示。 师:老师也收集了一些,请大家欣赏。我收集的与你们收集的这些物体的形状有什么共同的特点? 师:这些物体的形状都是圆锥体,简称圆锥。(课件出示圆锥立体图)

这节我们一起来认识圆锥。板书课题。 2.问题探究 (1)圆锥的特征 ①迁移类比,引发思考 师:我们在认识圆柱的时候,是从哪些方面认识它的? 独立思考后,自由发言。 引导小结:从底面、侧面、高和侧面展开图。 师:现在认识圆锥,它与圆柱有没有相像的地方?你想从哪方面来认识它? 预设:底面、侧面、侧面展开、高等(根据学生发言板书) ②观察操作,认识特征 师:现在借助手中的圆锥实物来认识它? 同桌两人合作。 ③汇报展示,归纳小结 预设1:圆锥的面 生汇报交流。 引导小结:底面是一个圆,侧面是一个曲面,圆锥有一个顶点。 预设2:圆锥高的认识 师:高在哪里?谁愿意指给大家看? 引导学生评价。 师:从圆锥的顶点到底面圆周长上任意一点的距离,是不是圆锥的高?为什么? 学生评价判断。 师:那什么是圆锥的高呢? 学生试着用自己的语言描述。 引导小结:从圆锥的顶点到底面圆心的距离叫做高。 师:圆柱的高有无数条,圆锥的高有几条?为什么? 小结:沿着曲面上的线都不是圆锥的高,圆锥的高只有一条。 课件演示画高,标上字母h。 预设3:圆锥的侧面展开图

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波图像去噪及matlab分析

小波图像去噪及matlab实例 图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。 小波去噪 随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。具体来说,小波能够去噪主要得益于小波变换有如下特点: (1)低熵性。小波系数的稀疏分布,使图像变换后的熵降低。意思是对信号(即图像)进行分解后,有 更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原 始信号。 (2)多分辨率特性。由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。(3)去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。(4)基函数选择灵活。小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波 包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。 根据基于小波系数处理方式的不同,常见去噪方法可分为三类: (1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)

(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪 小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。 阈值函数选择 阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。(1)硬阈值 当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即: (2)软阈值 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即: 如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。硬阈值函数在|w| = λ处是不连续的,容易造成去噪后图像在奇异点附近出现明显的伪吉布斯现象。 阈值大小的选取 阈值的选择是离散小波去噪中最关键的一部。在去噪过程中,小波阈值λ起到了决定性作用:如果阈值太小,则施加阈值后的小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值太大,则去除了有用的成分,造成失真。小波阈值估计方法很多,这里暂不介绍。 小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。

小波去噪三种方法

小波去噪常用方法 目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。 1:小波变换模极大值去噪方法 信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。 算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。 2:小波系数相关性去噪方法 信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关

matlab小波函数

Matlab小波函数 一、Matlab小波去噪基本原理 1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频 信号。利用多层小波,将高频噪声信号从混合信号中分解出来。 2、选择合适的阈值对图像的高频信号进行量化处理 3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信 号来重构图像的信息。 二、第二代小波变换 1、构造方法特点: (1)继承了第一代小波的多分辨率的特性。 (2)不依赖fourior变换,直接在时域完成小波变换。 (3)变换之后的系数可以是整数。 (4)图像恢复质量与变换是边界采用何种延拓方式无关。 2、优点:算法简单,速度快,适合并行处理。对内存需求量小,便于DSP 芯片实现、可用于本位操作运算。 3、提升原理:构造紧支集双正交小波 (1)步骤:分裂—预测—更新 (2)分解与重构 三、matlab小波函数库 1、matlab小波通用函数: (1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】 wavemngr(‘add’,FN,FSN,WT,NUMS,FILE) wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B) % 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示 无尺度函数的复小波。 小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串 FILE表示文件名 B=[lb ub]指定小波有效支撑的上下界 wavemngr(‘del’,N) %删除小波 wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波 OUT1= wavemngr(‘read’) %返回小波族的名称 OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称 OUT1= wavemngr(‘read_asc’) %读取wavelets.asc文件并返回小波信息 (2)scal2frq函数【尺度转换频率】 F=scal2frq(A,’wname’,DELTA) %返回由尺度A,小波函数“wname”和采样周期DELTA决定的准 频率。 (3)orthfilt函数【正交小波滤波器组】

高中物理圆锥摆模型全透视

圆锥摆模型全透视 一. 圆锥摆模型 1. 结构特点:一根质量和伸长可以不计的细线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动。 2. 受力特点:只受两个力即竖直向下的重力mg 和沿摆线方向的拉力F T 。两个力的合力,就是摆球做圆周运动的向心力 F n ,如图1所示。 二. 常规讨论 1. 向心力和向心加速度 设摆球的质量为m ,摆线长为l ,与竖直方向的夹角为θ,摆球的线速度为v ,角速度为ω,周期为T ,频率为f 。 F ma mg m v l n n ===tan sin θθ 2 ===m l m T l m f l ωθπ θπθ2222sin ()sin ()sin a g v l l n == =tan sin sin θθ ωθ2 2 ==( )sin ()sin 222 2πθπθT l f l 2. 摆线的拉力 图1

有两种基本思路:当θ角已知时 F mg T = cos θ ;当θ角未知时 F F m l T n = =sin θω2==()()2222π πT l m f l 3. 周期的计算 设悬点到圆周运动圆心的距离为h ,根据向心力公式有 T l g h g ==22π θπcos ,由此可知高度相同的圆锥摆周期相同与m l 、、θ无关。 4. 动态分析 根据m g ml t a n s i n θωθ =2 有cos θω=2g l ,当角速度ω增大时,向心力增 大,回旋半径增大,周期变小。 三. 典型实例 【例1】将一个半径为R 的内壁光滑的半球形碗固定在水平地面上,若使质量为m 的小球贴着碗的内壁在水平内以角速度ω做匀速圆周运动,如图2所示,求圆周平面距碗底的高度,若角速度ω增大,则高度、回旋半径、向心力如何变化 【解析】本题属于圆锥摆模型,球面的弹力类比于绳的拉 力,球面半径类比于绳长。m g mR t a n s i n θωθ=2 ,故cos θω= g R 2 , 圆周平面距碗底的高度为h R R R g =-=- cos θω 2 。若角速度ω增 图2

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

信赖域法示例浅析

信赖域法示例浅析 摘要:本文介绍了非单调信赖域算法的基本知识,包括非单调信赖域算法的理论、算法框图及数值运算实例,数值结果表明该算法在求解高维非线性规划问题时比一般算法更有效。 关键词:信赖域法信赖半径Hesse阵Bk 引言 信赖域方法是求解非线性规划问题的常用方法之一,因其具有良好的可靠性和强健的收敛性备受非线性优化领域专家们的关注[1],信赖域方法与线搜索技术一样,也是优化算法中的一种保证全局收敛的重要技术。它们的功能都是在优化算法中求出每次迭代的位移,从而确定新的迭代点。漂亮的收敛性和有效的计算性确定了信赖域算法是一类重要和实用的方法[2]。因此研究约束优化问题的信赖域算法具有重要的意义。 1、算法的基本理论 与线搜索技术相比不同的是:线搜索技术是先产生位移方向(亦称为搜索方向),然后确定位移的长度(亦称为搜索步长)。而信赖域技术则是直接确定位移,产生新的迭代点。信赖域方法的基本思想是:首先给定一个所谓的“信赖域半径”作为位移长度的上界,并以当前迭代点为中心以此“上界”为半径确定一个称之为“信赖域”的闭球区域。然后,通过求解这个区域内的“信赖域子问题”(目标函数的二次近似模型)的最优点来确定“候选位移”。若候选位移能使目标函数值有充分的下降量,则接受该候选位移作为新的位移,并保持或扩大信赖域半径,继续新的迭代。否则,说明二次模型与目标函数的近似度不够理想,需要缩小信赖域半径,再通过求解新的信赖域内的子问题得到新的候选位移。如此重复下去,直到满足迭代终止条件。 2、信赖域方法解决无约束线性规划的基本算法结构 设■是第■次迭代点,记是Hesse阵■的第■次近似,则第■次迭代步的信赖域子问题具有如下形式: 其中■是信赖域半径,■是任一种向量范数,通常取2-范数或∞-范数。定义■为■在第■步的实际下降量: 定义■对应的预测下降量: 定义他们的比值为:。一般的,我们有■。因此,若■,则■,■不能作为下一个迭代点,需要缩小信赖半径重新求解问题。若■比较接近于1,说明二次模型与目标函数在信赖与范围内有很好的相似,此时■可以作为新的迭代点,同时

五种常用小波基含MATLAB实现

1.给出五种常用小波基的时域和频域波形图。 与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数(t)ψ 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等5种。 (1)Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。 Haar 函数的 定义如下:其他 1212 1 001-1(t)≤≤≤≤?????=ψt t Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如: 计算简单; (t)ψ不但与t)2(j ψz][j ∈正交,而且与自己的整数位移正交。 因此,在2j a =的多分辨率系统中Haar 小波构成一组最简单的正交归一的小波 族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Haar 小波的时域和频域波形图 -1.5 -1 -0.5 0.5 1 1.5 t haar 时域 x 10 5 1 2 3 4 5 6 75 f haar 频域 i=20; wav = 'haar'; [phi,g1,xval] = wavefun(wav,i); subplot(1,2,1); plot(xval,g1,'-r','LineWidth',1.5); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(1,2,2);plot(g3); xlabel('f') title('haar 频域')

小波去噪程序代码

附录 验证仿真程序如下: x=wnoise(3,10); ind=linspace(0,1,2^10); subplot(4,1,1); plot(x); title('(a)'); [x,noisyx]=wnoise(3,10,3,2^10); subplot(4,1,2); plot(noisyx); title('(b)'); xd=wden(x,'rigrsure','s','sln',5,'sym8'); subplot(4,1,3); plot(xd); title('(c)') xd=wden(x,'sqtwolog','h','sln',5,'sym8'); subplot(4,1,4); plot(xd); title('(d)');

试验程序如下: load noisbloc; x=noisbloc; subplot(2,2,1); plot(x);title('a') xd=wden(x,'rigrsure','s','sln',5,'sym8'); subplot(2,2,2); plot(xd);title('b') p1=1/length(x)*norm(x)^2; p2=1/length(x)*norm(x-xd)^2; snr1=10*log(p1/p2) RMSE1=sqrtm(p2) xd=wden(x,'sqtwolog','h','sln',5,'sym8'); subplot(2,2,3); plot(xd);title('c') p1=1/length(x)*norm(x)^2; p2=1/length(x)*norm(x-xd)^2; snr2=10*log(p1/p2) RMSE2=sqrtm(p2) wc=0.3; N=5; [b,a]=butter(N,wc); xd=filter(b,a,x); subplot(2,2,4);plot(xd);title('d'); p1=1/length(x)*norm(x)^2; p2=1/length(x)*norm(x-xd)^2; snr3=10*log(p1/p2) RMSE3=sqrtm(p2)

相关文档
最新文档