定量PCR原理及实验方法

定量PCR原理及实验方法
定量PCR原理及实验方法

定量PCR原理及实验方法

方法简介

所谓的实时荧光定量PCR 就是通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线。

RT-qPCR是由三个步骤组成:

1.反转录:依赖反转录酶将RNA反转录成cDNDA;

2.扩增:用PCR的方法扩增cDNA;

3.检测:实时检测和定量扩增的产物.

RT-qRCR影响分析可靠性关键点(Key porint):

1.分析结果依赖于模板的数量、质量以及合理的检测方法设计

2.反转录反应的非标准化影响试验的稳定性

3.数据分析应该高度客观,如果不合理的分析,从分析结果中会得到混淆的错误结果,因此通过对RT-qPCR的每一组分进行质量评价以达到最小化变异性,最大化可重复性,而且还需要沿用一个通用的数据分析的指南。对基因表达分析的标准化的需要是与人类临床诊断分析相适应的。存在的问题

由于各个学术团体和科研机构使用不同的操作流程,必然导致大家使用不同定量的来源物以及数据分析:

1.新鲜、冰冻、甲醛固定的样品

2.整个组织样本,显微切割样本,单个细胞,组培细胞

3.总RNA或者mRNA

4.RNA反转录成cDNA的不同的引发策略

5.不同的酶以及酶的不同组合

6.变异系数、灵敏度

7.多类型的检测化学方法,反应的条件,热循环仪的分析以及汇报方式。

8.每一步骤缺乏标准化分析流程造成了在样品的处理,内参的使用,归一化的方法,质量控制等等因素严重影响RT-qPCR的可信度,重复性。

RNA质量评价

现在RNA 定量的程序很多。最近EMBO qPCR course

(http://www-db.embl.de/jss/EmblGroupsOrg/conf_28) 比较了用Ribogreen, Agilent BioAnalyser, spectrophotometer,Nanodrop and the BioRad Experion 来定量同样的样品。结果显示没有哪两种方法得到同样的分析数据。所以用不同的方法进行定量是不明智的。因此,我们需要用统一套定量分析方法来完成所有RNA样品的评价。

RNA质量

RNA 质量主要包括RNA的纯度(没有蛋白质和DNA的污染)以及完整性。传统的RNA 质量的评价通过分析A260/A280的比值或者对琼脂糖凝胶电泳rRNA的条带的分析。Agilent Bioanalyser/BioRad Experion 微流体毛细电泳系统也是一种较新的分析方法。Agilent的2100也是一种十分好的分析RNA质量的方法,它通过分析18S以及28S rRNA的分析图谱,通过图谱来反应RNA的量和完整性,其完整性通过完整性系数(RIN)来反应。样品的RINs 在10-4之间。10代表完整的RNA,4代表没有完整的rRNA带。

由于以上的方法并非100%准确定反应mRNA的完整性,因为他们只是反应rRNA的量来间接测定mRNA的完整性。这里推荐一种方法:采用GAPDH的3’:5’分析法。

我们使用oligo dT进行逆转录,然后对逆转录的cDNA用multiplex荧光定量评价。设计三个taqman探针来定量三种相同大小的扩增产物。探针设计的位点分别位于3’;5’以及中部。扩增产物的之间的比值反应RNA的完整性。如果3’;5’的比值在1,反应较高度完整性,如果高于5说明降解。

QRT-PCR抑制物的组成

QRT-PCR抑制物严重减少了PCR的灵敏度以及热动力学反应,高度的抑制还导致假阴性的结果。

抑制物的来源:生物样品的核酸抽提以及共沉淀中的混合物,盐离子,尿素,血红素,heparin 以及IgG.

是否有抑制物的评价体系:

1.通过对目的样品进行梯度稀释进行PCR扩增效率的检测

2.通过内部扩增对照来反应样品处理过程中样本的情况

3.用细菌检测临床样品的抑制

4.通过标准人工合成的扩增进行RT-PCR来反应目标检测物的抑制情况

反转录反应系统

1.RT和PCR单一酶系统

2.RT和PCR分离的酶系统

3.RNA逆转录引物的选择

引物主要有三种:

1.随机引物:随机引物,特别是6nt引物对所有的靶位点不产生十分稳定一致的结果,建议使用15nt的随机引物.

2.oligo-dT:只能用于mRNA完整的样品,特别有polyA .而且对于一些特殊的变异体以及较长的3’UTR的区域比较困难

3.特异引物:最特异最灵敏的方法。特别RNA量足够情况下建议使用此法。

PCR优化

PCR优化主要有:

1.引物的浓度

2.建议使用SYBR Green I和EvaGreen 进行扩增和溶解曲线的测试

笔者建议的操作流程:

I.靶的选择和试验设计

1.针对目的基因序列选择合适的扩增片断

查看以下三个网站是否有合适的已经证实的QRT-PCR的扩增引物,探针以及反应条件. RTPrimerDB (http://medgen.ugent.be/rtprimerdb),

PrimerBank (https://www.360docs.net/doc/378555769.html,/primerbank/index.html)

Real Time PCR Primer Sets (https://www.360docs.net/doc/378555769.html,)

如果没有合适的或者已经证实的可以提供参考,以下的设计方案仅供参考:

A.最广泛使用的商业化的软件Beacon Designer(https://www.360docs.net/doc/378555769.html,)

B.DIY的软件Primer Express

C.如果Beacon Designer 无法得到您说需要的结果,或者获得到设计方案的备选数目不够的话,可以选择Sigma-Genosys https://www.360docs.net/doc/378555769.html,)的服务方案,详细周到

D.一个免费的基于网页构架的引物和探针设计程序:

https://www.360docs.net/doc/378555769.html,/products/probe_design.asp

您可以挑选其中的4-6对引物进行试验,选择引物的扩增效率和灵敏度高的.这个软件可以直接与NCBI的网站进行比对,并且用NCBI的ePCR进行虚拟的电子PCR

引物设计简介

DNA引物长度:15-25 个碱基

GC含量:50%左右

如果引物的与AT区域富集结合,可以考虑用LNA替换几个碱基,较少引物的长度以及避免引物次级结构和3’端二聚体的影响.由于引物和模板和探针与靶点之间的分之间的相互竞争,分之内杂交,倒转重复等等会引起引物的引发探针对结合效率达降低,因此我们选择引物二聚体的△G为负值,即:<10 kcal/mol.没有连续的G/C.

引物探针的保存一般遵循以下原则:

正向和反向引物保存在-20度, 浓度为10mM 或者10×工作浓度.探针应该避光保存,贮存在-70度,最好以冻干粉状态,工作浓度的液体保存一般两周左右。

2.输入靶序列,用BLASTn在https://www.360docs.net/doc/378555769.html,/blast进行比对

3.检查比对序列的多态性以及可能的错误避免这些区域来进行引物和探针设计

4.在靶序列中避免直接待重复区,在重复区进行杂交容易使得引物非获得产物性结合,降低DNA的扩增效率以及减少分析的灵敏度。

5.考虑到潜在的剪接变异体以及合适的所需要的获得到靶,通过学分析内含子以及外显子的边界,主要通过cDNA和基因组序列比对来确定。一般都设计跨最长内含子区,这样减少了扩增子受到基因组DNA的污染的影响。这是十分有必要的,特别当用DNA做归一化处理以及靶向某一特异的剪接变异体。最经济的做法是让下游引物跨越剪接接头,这样允许使用一条探针检测可能剪接变异体.然后如果在有效性和灵敏度无法保证情况下,可以使用跨越单一外显子的设计方案。我们还是建议试验者用DnaseI处理样品,除去gDNA的污染。

6.在RT步骤时,用(https://www.360docs.net/doc/378555769.html,/applications/mfold/rna/form1.cgi)工具检测在特定温度下靶序列的折叠情况,避免一些高度次级结构的区域,那些区域探针和引物结合效率较低

7.尽可能用60-150bp的扩增产物,GC含量在60%或者稍小来确定高效的变性,更高度反应效率。GC含量高度序列容易产生非特异性的反应,短序列扩增是

的扩增时间缩短gDNA污染可能性减少。短的序列容易人工合成,用来做扩增多标准曲线。用oligodT进行逆转录最好设计扩增子位于靠近模板的3’区域

量PCR除可以对样品的初始浓度进行准确定量外,还有其它多种丰富的应用。还包括基因表达调控情况的分析、等位基因的分析等,那么这些功能是如何在一台定量PCR仪上实现的呢?下面将进行一一介绍。

利用标准曲线对样品的初始浓度进行定量:

用已知浓度的标准品绘制标准曲线来对未知样品定量,首先要有一组稳定的标准品。标准品可以是含有目的基因的线性化的质粒DNA,也可以是比扩增片段长的纯化后的PCR产物,当然也可以是DNA,甚至cDNA,但前提是所有的作为标准品的核酸都必需保证稳定。一般一条标准曲线取四到五个点,浓度范围要能覆盖样品的浓度区间,以保证定量的准确性。一般一个点重复三至五次,对于常期稳定使用的标准品可以适当减少重复的次数。

以Rotor-Gene3000的操作为例,以标准曲线对未知样品定量是默认的分析方法。软件可在反应尚在进行时就对结果进行分析,结果随着反应的进行可实时更新,当然也可以等反应完全结束后再进行分析。

点示“Analysis”,弹出分析框,默认分析功能即为“Quantitation”,点击“Show”,软件即自动给出包括标准曲线(包括R值,R平方值,扩增效率、标准曲线公式等)、标准化的荧光曲线、各样品计算浓度(包括标准偏差、变异系数等)在内的结果。

若是使用SYBR Green I法,还可进行熔解曲线分析,以判断退火温度是否合适,产物中是否有引物二聚体的影响。对于SYBR Green I的客户,我们建议一定要在最后做一步熔解曲线的分析,这对于反应条件的优化和结果的正确判定都有着非常重要的作用。

同样,点击“Analysis”,在分析窗口中选择“Melt”,点击“Show”,自动给出分析结果。

完成了所需的分析之后,如还需给出分析结果报告,点击“Analysis”边上的“Report”选项,选择报告模板,软件自动给出报告。

利用定量技术进行基因型分析研究:

常用的分析方法有两种,一种是Taqman探针法,一种为FRET探针法(又称Hyb探针),运用以上两种方法进行基因型的分析需要一台有多通道的荧光定量PCR仪。Taqman探针分析基因型是以扩增信号的有无来判定,而FRET探针则根据扩增后片段熔解温度的不同来判定。

以下为用Taqman探针判断基因型的实例:

这里,突变型的探针以FAM荧光素标记,野生型的探针以VIC荧光素标记,检测时分别同时检测了FAM通道和VIC通道的荧光情况。这里,3、4号样品只在FAM通道有信号,而在VIC通道里无信号,表明这两个样品为突变型;1、2号样品在FAM通道无信号,在VIC

通道有信号,表明这两个样品为野生型;而5、6号样品在两个通道都有信号,但荧光强度恰为其它样品的一半,说明这两个样品为杂合型。

并且,我们可以在软件里将不同的通道定义为不同的基因型,软件会根据不同样品在各个通道的荧光情况,自动对各个样品的基因型做出判定。

以下为用FRET方法分析基因型的实例:

如上图,荧光探针与突变型完全匹配,而与野生型存在一个碱基的错配,因而打开这两组双链所需的能量就不同,具体体现在熔解温度的差异上,因而突变型的样本有较高的熔解温度,而野生型的样品熔解温度相对较低。在图中,5号样本熔解温度较低,为野生型;2号样本熔解温度较高,为突变型;而1、3、4号样品在高温和低温处都出现了熔解峰,则它们为杂合型。并且用户还可以将不同的峰定义为不同的基因型,软件可根据用户的定义自动给出未知样品的基因型。如上图表格中所示。

利用相对定量的方法分析目的基因的上下调情况:

基因表达调控研究中,常用的相对定量方法主要有两种,Delta-deltaCt法和双标准曲线法。由于RNA纯化后得率不同、RNA反转录为cDNA的效率不同等客观因素,用于定量分析的初始样品浓度不同,因此,在进行基因表达调控研究中都会用一些看家基因来标准化,以校正因样品初始浓度不同而造成的差异。常用的看家基因有beta-actin,GAPDH,18SrRNA 等。因此,在做基因表达调控分析时至少要做两个基因,目的基因和一个看家基因。我们分别来看看以上两种相对定量分析方法的特点和应用。

Delta-deltaCt:

公式:

由Delta-delta Ct的公式可以看出,该方法直接利用看家基因来校正样品初始量,但同时默认两个基因扩增效率一致。

Comparative Delta-delta Ct法的特点、注意事项及实际应用:

1. Comparative Delta-delta Ct法的一大特点是,当优化的体系已经建立后,在每次实验中无需再对看家基因和目的基因做标准曲线,而只需对待测样品分别进行PCR扩增即可。

2. 每次实验都默认目的基因和看家基因的扩增效率一致,而并非真实扩增情况的反映,因此实验条件需要严格优化,并且总会存一定的偏差。

用Comparative Delta-delta Ct法展开定量实验前,在预实验中,必需对目的基因和看家基因做两组标准曲线。Rotor-Gene 的软件会自动给出两组标准曲线的R值、扩增效率等信息,如果两组标准曲线的斜率,即M值的差小于0.1,表明两个基因的扩增效率已非常接近,那么后续实验中就可以用Comparative Delta-delta Ct法进行相对定量分析。反之,如果M差值大于0.1,就无法用该方法进行相对定量分析。此时的解决方法有两种,一是优化实验,使两组标准曲线的斜率差值小于0.1,二是换用其它的相对定量方法。

下面是某科研用户用Delta-delta Ct进行相对定量分析的实例:

首先,该客户分别做了目的基因和看家基因的确标准曲线,根据软件自动给出的M值判断该方法的可行性:

如下图,将标准品进行梯度稀释后,分别对目的基因(Gene of Interest)和看家基因

(Housekeeper Gene)做标准曲线。软件自动绘制标准曲线,并给出相应的参数。从上图可知,两组标准曲线的M值分别为-3.525和-3.467,两者的差值<0.1,因此,这组看家基因和目的基因可以用Comparative Delta-delta Ct法进行相对定量。确定这两个基因可以用

Delta-delta Ct法分析后,用户扩增了其待测样品的目的基因和看家基因。经软件自动分析后,给出分析结果,如下:我们看到,在该客户的实验中,以样品A为对照组,软件自动组出了样品B和C的目的基因相对于样品A的表达情况。这种方法对于样品量大,但研究的基因数目相对较少的客户特别有用,因为一旦条件优化好之后就无需再做标准曲线,节约了试剂和样品量,实验操作也相对简单。

双标准曲线法:双标准曲线法考虑到了不同基因扩增效率的差异,用标准曲线来校正扩增效率。

双标准曲线法的特点、注意事项及实际应用:

1. 双标准曲线法做相对定量分析的最大特点是,应用简便,无需像Delta-delta CT法那样对实验进行严格的优化。

2. 其不足之处是每次实验都必需对目的基因和看家基因做两组标准曲线。

并且,如果用于做标准曲线的标准品不同于样品,比如标准品为质粒或纯化的PCR产物,而待测样品为cDNA,那么标准曲线的扩增效率并不能真实地反映样品的扩增情况,因此以标准曲线来计算样品的实际浓度就存在一定误差。

每种相对定量方法都会有一定的局限性,对于双标准曲线法,比较适合于样本量不大,但研究的基因较多的客户,这样对不同基因条件优化相对Delta-delta Ct法更为简单。

下面是某科研用户用双标准曲线法进行相对定量分析的实例。

要用该方法进行分析,客户在一轮反应中,对目的基因和看家基因分别做了一组标准曲线,同时也分别扩增的待测样品的目的基因和看家基因。

如下图,选择软件中相应的分析方法。

软件自动给出分析结果:同样,结果自动给出了待测样品相对于对照组目的基因的表达情况。

比较定量法:

另一种相对定量分析方法叫比较定量法(ComparativeQuantitation),该方法在结果验证中的应用相对较多。

比较定量法的特点、注意事项及实际应用:

1.必需确定起始样品的总核酸浓度一致。在验证时使用较多,但同样也必需有起始浓度一致的核酸样品。

2.作为常规的基因表达调控研究,建议研究者使用前两种定量方法。

3.该方法通过拐点时的循环数来进行相对定量比较,重复性更好。

4.该方法操作非常简便,无需做标准曲线及设置内参。使用时,样品均定义为unknown,分析时选用ComparativeQuantitation,确定对照组,完成分析。

应用实例:用Comparative Quantitation法进行定量分析时,在保证起始总核酸量一致的前提下,只要对目的基因进行扩增即可,例:待测样品A、B、C,扩增目的基因。在软件中选择相应方法,即得以下结果:

上图左下方即相对表达量的结果,其中Rep.Conc为样品B、C相对于对照组A的目的基因浓度。右侧,可通过修改Calibrator Replicate改变对照组,以获得不同的比较结果。

本文来自:生物无忧网

pcr实验原理及注意事项

PCR疑难解答 当PCR结果不甚满意时,首先检查以下几方面并遵照执行: 将PCR反应的试管与反应板紧贴。 当酶反应混合物以70℃“热启动”开始循环时,切记在加入酶后稍微振荡一下,因为在0.2-ml 的PCR管中不能均匀传热。 不要随意减少dNTP的用量,它是一个系统的因素,必须与其它成份保持平衡。 对于有问题的PCR反应,例如模板的量少,模板不纯和环状模板等,先尝试加Taq酶前的体系进行预变性,后加模板进行正常PCR扩增。 没有扩增产物: 在提供MgCl2缓冲液中,以0.25mmol/L为梯度增加MgCl2浓度;无MgCl2的缓冲液以0.5 mmol/L为梯度增加MgCl2浓度。 泳道中出现模糊条带,如果DNA模板中存在RNA,则按上述提示浓度补加MgCl2,因为在PCR反应中可能缺少游离的Mg2+。 检查退火温度和变性条件,如果有需要的话,可降低退火温度。 检查模板和引物的用量。 增加循环次数和/或模板DNA的用量。 泳道中出现模糊条带: 减少循环次数或模板DNA的用量。 提高退火温度,但不要超过68℃。 重新设计引物或设计更长的引物。 其他值得注意的条件: 建议使用0.2-ml薄壁管。厚壁管在92℃时不能有效地使模板变性。 最佳反应体积为50ml,推荐用30ml矿物油覆盖(对盖子加热的PCR仪可以不加)。 大多数反应中,0.75ml(0.5~1ml)的酶量在大多数情况下可以得到满意的结果。 建议使用1.75mmol/L MgCl2∶350mmol/L dNTP或2.25mmol/L MgCl2∶500mmol/L dNTP 组合的混合物。然而要得到最佳结果,优化Mg2+的浓度是必需的。 基因组DNA模板的质量显著影响PCR反应。因此推荐使用琼脂糖凝胶电泳来检测DNA的长度。DNA片段长度可以超过50kb,传统的基因组DNA能扩增片段至10kb。 要扩增更长的片段应使用超纯或高分子量的DNA。请查阅高分子量DNA提取操作过程相关文献。 降低二级结构和引物二聚物形成的可能性。进行长片段PCR扩增时,引物长度一般为24~34个核苷酸,溶点在60~68℃间。使用这类引物可提高PCR反应的退火温度来增加反应的特异性。这点非常重要,长片段扩增的效果往往受到非特异性短片段优先扩增的影响。 变性:第一步变性在94℃下进行2分钟。在循环过程中尽可能缩短变性时间(94℃下进行20--30秒),除非模板中富含GC,则95℃下变性30秒。这可以防止DNA脱嘌啉和链断裂,对于所需扩增的基因组DNA片段终长度超过12 kb时,应该尽可能的降低变性温度。 延伸:68--72℃下进行延伸操作。 循环延伸:尽量采用循环延伸的条件,若PCR仪无此功能,则必须增加延伸的时间,例如在扩增10kb片断时,延伸时间用10分钟替代原来的8分钟。 长片断PCR系统扩增的片断其3’-末端带有一个突出的A,因此建议采用T/A克隆。若要进行平端可隆,可用Klenow酶和T4 DNA多聚酶将PCR产物补平后再进行。 测序时因酶的混合物带有3’→5’外切酶活性,用Sanger方法进行测序不能产生均一的(染色体)带型。

qPCR实验操作流程

Q-PCR实验流程 一、①实验前准备,每天早上到实验室后,先把超净工作台的紫外灯打 开15-20分钟。②超净台前做实验,需佩戴干净的橡胶手套/一次性薄膜手套,RNA抽提需带口罩。③取EP管/枪头时需用镊子,不可以用使用过的手套直接取用。取完EP管/枪头后,袋子及时封好。④橡胶手套须放入超净台照射紫外,实验操作过程中不得带出超净台,移液器在一天工作结束后调至最大量程,并用75%乙醇清洁移液器,枪头盒及超净台面。⑤实验进行的过程中或观看实验时,没有带口罩不要在超净台前讲话。 二、总RNA抽提 1)细胞培养皿中细胞样品用1*PBS洗两次后,用1ml枪将PBS吸干净,加入1ml Trizol (Invitrogen)溶液,吹打混匀,并吸至1.5ml RNase free EP管中使细胞充分裂解,室温静置5min; 组织样品用液氮充分研磨,加入1ml Trizol (Invitrogen)溶液,混匀,室温放置5min使其充分裂解;(管盖与管壁都需标记样品名称) 2)加入200μl氯仿,剧烈振荡混匀30s,使水相和有机相充分接触,室温静置3-5min;(离心时离心管按顺序排放,离心完毕,离心管的顺序也按顺序排好,与第一步的顺序一致) 3)4℃下,14,000g离心15min,可见分为三层,RNA在上层水相,移至另一个新的RNase free EP管;(用20-200ul的枪吸取上清,吸上清时,枪头应沿着液面上层吸取上清,枪头不可碰到、吸到中间层) 4)沉淀RNA:加入等体积异丙醇,轻柔地充分混匀(颠倒6-8次)(不应用振荡器混匀),室温静置10min; 5)4℃下,14,000g离心10min,收集RNA沉淀(如离心后仍不见EP管底部有沉淀,应将EP管放置在-80度冰箱过夜,继续在4℃下,14,000g 离心10min,收集RNA沉淀),去上清; 6)用75%乙醇洗涤两次(12,000g离心5min)(加入乙醇后只需轻轻颠倒EP管即可,不用振荡器震荡或枪头吸打沉淀),超净台风干;沉淀不

QPCR原理及应用

QPCR原理及应用 由于Real-time qPCR的众多优点,现在已经是生命科学领域的一项常规技术。越来越多的研究文章中涉及RT-PCR的实验,也基本上被real-time qPCR 所代替。由于real-time aPCR 输出的数据不同于常规的PCR 电泳检测,很多没有做过real-time qPCR的研究者常常感到高深莫测,不知从何入手;甚至一些做过次实验的研究者也会对数据处理分析感到迷惑,不知所措。 本文就从real-time qPCR的发展史说起,包括real-time qPCR的原理,实验设计,实际操作,数据分析,常见问题解答五个方面,手把手教你从各个方面了解real-time qPCR,彻底的从菜鸟到高手! 一、Real-time qPCR发展史 Real-time qPCR就是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。由于常规的PCR的缺点,real-time qPCR 由于其操作简便,灵敏度高,重复性好等优点发展非常迅速。现在已经涉及到生命科学研究的各个领域,比如基因的差异表达分析,SNP检测,等位基因的检测,药物开发,临床诊断,转基因研究等。 在Real-time qPCR技术的发展过程中,定量PCR仪的发展起了至关重要的作用。1995年,美国PE公司(已经并入Invitrogen公司)成功研制了Taqman 技术,1996年推出了首台荧光定量PCR检测系统,通过检测每个循环的荧光强度,通过Ct值进行数据分析。从而荧光定量PCR获得广泛应用。现在的定量PCR 仪有ABI7000、7300、7500,7700、7900HT、StepOnePlusTM、StepOneTM、PRISM@StepOneTM系列;BIO-RAD的CFX96、iCycler iQ5@、MyiQ@、MJ Research Chromo4TM Opticon 系列;Stratagene MxTM系列;Roche LightCycler@系列;Eppendorf Masercycler@;Corbett Rotor-GeneTM;Cepheid SmartCycler@和BIOER的LineGene系列。 随国内生命科学的快速发展,科研水平不断提高,发高水平文章已不再是新鲜事。与其同时,国内公司经过长期不懈的努力,也有自主研发的real-time PCR

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用 荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。下面介绍常用的几种检测方法: 1、双链DNA内插染料 某些染料如SYBR Green Ⅰ能选择性地与双链DNA结合,同时产生强烈荧光。在PCR过程中SYBR Green Ⅰ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。 SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。因此,在一个体系内,其信号强度代表了双链DNA分子的数量。SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green染料与DNA双链结合时发出荧光。2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。3、在聚合延伸过程中,引物退火并形成PCR产物。4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

SYBR Green I荧光染料与DNA双链的结合 SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。在此前提下,本法是 一种成本低廉的选择。 2、TaqMan探针技术原理 TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。在TaqMan探针法的定量PCR反应体系中,包括一对PCR引物和一条探针。探针只与模板特异性地结合,其结合位点在两条引物之间。探针的5′端标记有报告基团(Reporter, R),如FAM、VIC等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。当探针完整的时候,报告基团所发射的荧光能量被淬灭基团吸收,仪器检测不到信号。随着PCR的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′→3′外切核酸酶活性就会将探针切断,报告基团远离淬灭基团,其能量不能被吸收,即产生荧光信号。所以,每经过一个PCR循环,荧光信号也和目的片段一样,有一个同步指数增长的

pcr技术原理简介

PCR技术的基本原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。(Plateau)。到达平台期所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多 数情况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引

实时荧光定量PCR原理和实验

实时荧光定量PCR原理和实验 陈云地 作者单位:200030 美国应用生物系统公司(Applied Biosystems) 无论是对遗传病(如地中海贫血和血友病)、传染病(如肝炎和艾滋病)或肿瘤进行基因诊断,还是研究药物对基因表达水平的影响,或者监控药物和疗法的治疗效果,定量PCR技术都可以发挥很大作用。定量PCR技术的最新进展是实时荧光定量。该技术借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA拷贝数,做到了真正意义上的DNA定量。这是DNA定量技术的一次飞跃。 根据最终得到的数据不同,定量PCR可以分为相对定量和绝对定量两种。典型的相对定量如比较经过不同方式处理的两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。根据所使用的技术不同,荧光定量PCR 又可以分为TaqMan探针和SYBR Green I 荧光染料两种方法。比较而言,探针杂交技术在原理上更为严格,所得数据更为精确;荧光染料技术则成本更为低廉,实验设计更

为简便。在选择实验方案时要根据实验目的和对数据精度的要求来决定。 定量实验与定性实验最大的不同,是要考虑统计学要求并对数据进行严格的校正,以消除偶然误差。因此重复实验和设立内对照非常重要。由于各种各样的客观原因,这一点在实践中往往被轻视或忽视,需要着重强调。当然,与定性实验一样,定量PCR也要设立阴性和阳性对照,以监控试剂和实验操作方面可能出现的问题。 1 为什么终点定量不准确? 我们都知道理论上PCR是一个指数增长的过程,但是实际的PCR扩增曲线并不是标准的指数曲线,而是S形曲线。这是因为随着PCR循环的增多,扩增规模迅速增大,Taq酶、dNTP、引物,甚至DNA模板等各种PCR要素逐渐不敷需求,PCR的效率越来越低,产物增长的速度就逐渐减缓。当所有的Taq酶都被饱和以后,PCR就进入了平台期。由于各种环境因素的复杂相互作用,不同的PCR反应体系进入平台期的时机和平台期的高低都有很大变化,难以精确控制。所以,即使是重复实验,各种条件基本一致,最后得到的DNA拷贝数也是完全不一样的,波动很大(图1)。

PCR原理及过程

PCR技术原理、实验步骤和应用 来源:易生物实验浏览次数:3623 网友评论0 条 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。 关键词:PCR技术PCR聚合酶链反应 一、实验目的 1.掌握聚合酶链式反应的原理。 2. 掌握移液枪和PCR仪的基本操作技术。 二、实验原理 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus 公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。它不仅是DNA分析最常用的技术,而且在DNA重组与表达、基因结构分析和功能检测中具有重要的应用价值。 PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应做准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。 重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。 三、实验试剂与器材 模板DNA、L dNTP Taq DNA聚合酶(5U/μL)、SSR引物 O 10 ×buffer、15mmol/L Mg2+、ddH 2 PCR仪、移液枪、PCR板 四、实验步骤 1、配制20μL反应体系,在PCR板中依次加入下列溶液: 模板DNA 2μL 引物1 1μL 引物2 1μL dNTP μL

(待分)rtpcr原理和实验步骤

原理与实验步骤 一、知识背景: 、基因表达: 单拷贝基因表达存在逐步放大机制,如一个蚕丝心蛋白基因个丝心蛋白(每个存活,可以合成个丝心蛋白)共合成个丝心蛋白。因此单拷贝基因的表达水平对于其功能水平的调控是非常重要的。 、技术( ):即聚合酶链式反应。 在模板、引物和四种脱氧核苷酸存在的条件下依赖于聚合酶的酶促反应,其特异性由两我工合成的引物序列决定。反应分三步: .变性:通过加热使双螺旋的氢键断裂,形成单链。 .退火:将反应混合液冷却至某一温度,使引物与模板结合。 .延伸:在聚合酶和及+存在下,退火引物沿’’方向延伸。 以上三步为一个循环,如此反复。 、逆转录酶和 逆转录酶()是存在于病毒体内的依赖的聚合酶,至少具有以下三种活性: 、依赖的聚合酶活性:以为模板合成第一条链。 、水解活性:水解杂合体中的。 、依赖的聚合酶活性:以第一条链为模板合成互补的双链. 二、的准备: .引物的设计及其原则: ) 引物的特异性决定反应特异性。因此引物设计是否合理对于整个实验有着至关重要的影响。在引物设计时要充分考虑到可能存在的同源序列,同种蛋白的不同亚型,不同的剪切方式以及可能存在的对引物的特异性的影响。尽量选择覆盖相连两个内含子的引物,或者在目的蛋白表达过程中特异存在而在其他亚型中不存在的内含子。 ) 引物设计原则的把握 引物设计原则包括 : 、引物长度:一般为~,引物太短会影响的特异性,引物太长的最适延伸温度会超过酶的最适温度,也影响反应的特异性。 、碱基分布:四种碱基最好应随机分布,避免嘌呤或嘧啶的聚集存在,特别是连续出现个以上的单一碱基。含量(值):%~%,扩增的复性温度一般是较低值减去~度。 、’端要求:’端必须与模板严格互补,不能进行任何修饰,也不能有形成任何二级结构的可能。末位碱基是时错配的引发效率最低,、居中间,因此引物的’端最好选用、、而尽可能避免连续出现两个以上的。 、引物自身二级结构:引物自身不应存在互补序列,否则会自身折叠成发夹状结构或引物自身复性。 、引物之间的二级结构:两引物之间不应有多于个连续碱基互补,’端不应超过个。、同源序列:引物与非特异扩增序列的同源性应小于连续个的互补碱基存在。 、’端无严格限制:’末端碱基可以游离,但最好是或,使产物的末端结合稳定。还可以进行特异修饰(标记、酶切位点等)等等。 根据实验目的选择适当的引物。常用引物设计软件如,等对于这些条件都可以自行设置。 、耗材:

实时荧光定量PCR原理

实时荧光定量PCR原理 所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1. Ct 值的定义 在荧光定量PCR技术中,有一个很重要的概念-- Ct值。C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。 2. 荧光域值(threshold)的设定 PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ′ SDcycle 3-15 3. Ct值与起始模板的关系 研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 4. 荧光化学 荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料。现将其原理简述如下:1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。而新型TaqMan-MGB探针使该技术既可进行基因定量分析,又可分析基因突变(SNP),有望成为基因诊断和个体化用药分析的首选技术平台。2)SYBR荧光染料:在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA 双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。 内标在传统定量中的意义 1.几种传统定量PCR方法简介: 1)内参照法:在不同的PCR反应管中加入已定量的内标和引物,内标用基因工程方法合成。上游引物用荧光标记,下游引物不标记。在模板扩增的同时,内标也被扩增。在PCR 产物中,由于内标与靶模板的长度不同,二者的扩增产物可用电泳或高效液相分离开来,分别测定其荧光强度,以内标为对照定量待检测模板。2)竞争法:选择由突变克隆产生的含有一个新内切位点的外源竞争性模板。在同一反应管中,待测样品与竞争模板用同一对引物同时扩增(其中一个引物为荧光标记)。扩增后用内切酶消化PCR产物,竞争性模板的产物被酶解为两个片段,而待测模板不被酶切,可通过电泳或高效液相将两种产物分开,分别测定荧光强度,根据已知模板推测未知模板的起始拷贝数。3)PCR-ELISA法:利

RT-PCR的实验原理与操作步骤

提取组织或细胞中的总RNA以其中的mRN作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA再以cDNA为模板进行PCR扩增,而获得目的基因或检测基因表达。RT-PCF使测的灵敏性提高了几个数量级,使一些极为微量 RNA羊品分析成为可能。该技术主要用于:分析基因的转录产物、获取目的基因、合成cDNA探针、构建RNA高效转录系统。 (一)反转录酶的选择 1. Moloney 鼠白血病病毒(MMLV)反转录酶:有强的聚合酶活性,RNA酶H活 性相对较弱。最适作用温度为37 C。 2. 禽成髓细胞瘤病毒(AMV)反转录酶:有强的聚合酶活性和 RNA 酶 H 活性。 最适作用温度为42 C。 3. Thermus thermophilus 、 Thermus flavus 等嗜热微生物的热稳定性反转录 酶:在Mn2存在下,允许高温反转录 RNA,以消除RNA模板的二级结构。 4. MMLV 反转录酶的 RNase H- 突变体:商品名为 SuperScript 和 SuperScript U。此种酶较其它酶能多将更大部分的RNA转换成cDNA,这一 特性允许从含二级结构的、低温反转录很困难的 m 模板合成较长 cDNA 。 (二)合成 cDNA 引物的选择 1. 随机六聚体引物:当特定 mRNA 由于含有使反转录酶终止的序列而难于拷贝 其全长序列时,可采用随机六聚体引物这一不特异的引物来拷贝全长 mRNA 。 用此种方法时,体系中所有RNA分子全部充当了 cDNA第一链模板,PCR引物在扩增过程中赋予所需要的特异性。通常用此引物合成的 cDNA 中 96%来源 于 rRNA。 2. Oligo(dT) :是一种对 mRNA 特异的方法。因绝大多数真核细胞 mRNA 具有

Real-time qPCR手册---手把手教你从菜鸟到高手_生物吧

Real-time qPCR手册---手把手教你从菜鸟到高手 时间:2012-03-05 21:22来源:生物吧作者:刘浩点击: 13338 次 由于Real-time qPCR的众多优点,现在已经是生命科学领域的一项常规技术。越来越多的研究文章中涉及RT-PCR的实验,也基本上被real-time qPCR所代替。由于real-time aPCR 输出的数据不同于常规的 由于Real-time qPCR的众多优点,现在已经是生命科学领域的一项常规技术。越来越多的研究文章中涉及RT-PCR的实验,也基本上被real-time qPCR所代替。由于real-time aPCR 输出的数据不同于常规的PCR 电泳检测,很多没有做过real-time qPCR的研究者常常感到高深莫测,不知从何入手;甚至一些做过次实验的研究者也会对数据处理分析感到迷惑,不知所措。 本文就从real-time qPCR的发展史说起,包括real-time qPCR的原理,实验设计,实际操作,数据分析,常见问题解答五个方面,手把手教你从各个方面了解real-time qPCR,彻底的从菜鸟到高手! 一、Real-time qPCR发展史 Real-time qPCR就是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。由于常规的PCR 的缺点,real-time qPCR由于其操作简便,灵敏度高,重复性好等优点发展非常迅速。现在已经涉及到生命科学研究的各个领域,比如基因的差异表达分析,SNP检测,等位基因的检测,药物开发,临床诊断,转基因研究等。 在Real-time qPCR技术的发展过程中,定量PCR仪的发展起了至关重要的作用。1995年,美国PE公司(已经并入Invitrogen公司)成功研制了 Taqman技术,1996年推出了首台荧光定量PCR检测系统,通过检测每个循环的荧光强度,通过Ct值进行数据分析。从而荧光定量PCR获得广泛应用。现在的定量PCR仪有ABI7000、7300、7500,7700、7900HT、StepOnePlusTM、StepOneTM、 PRISM@StepOneTM系列;BIO-RAD的CFX96、iCycler iQ5@、MyiQ@、MJ Research Chromo4TM Opticon 系列;Stratagene MxTM 系列;Roche LightCycler@系列;Eppendorf Masercycler@;Corbett Rotor-GeneTM;Cepheid SmartCycler@和BIOER的LineGene系列。 随国内生命科学的快速发展,科研水平不断提高,发高水平文章已不再是新鲜事。与其同时,国内公司经过长期不懈的努力,也有自主研发的real-time PCR仪器生产比如西安天隆科技公司的TL系列仪器。 二、Real-time qPCR概述 1. Real-time qPCR原理 实时PCR就是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。一般来讲,定量PCR仪包括:实时荧光定量PCR仪主要由样品载台、基因扩增热循环组件、微量荧光检测光学系统、微电路控制系统、计算机及应用软件组成。其中基因扩增热循环组件工作原理与传统基因扩增仪大致相同,不同厂家不同型号的产品分别采用空气加热、压缩机制冷、半导体加热制冷等工作方式。独特是这个微量荧光检测系统。有由荧光激发光学部件、微量荧光检测部件、光路、控制系统组成。 常用的荧光激发方式有两种:卤钨灯和LED;荧光检测元件常用两种方式:光电倍增管和冷光CCD摄像机,光单色元件有滤光片和光栅。在实时PCR扩增过程中,荧光信号被收集,转化为成为扩增和熔解曲线。具体数据就是基线,荧光阈值和Ct值。 2. Real-time qPCR的数学原理 首先来看一个real-time qPCR中的重要参数Ct值(Ct value),阈值(threshold),和基线(baseline)。一般来讲,第3-15个循环的荧光值就是基线,是由于测量的偶然误差引起的。阈值一般是基线的标准偏差的10倍。在实际操作中也可以手动调节,位于指数期就可以。Ct值就是荧光值达到阈值时候的PCR

PCR技术原理模板

PCR技术原理 PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。 一.假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq 酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖

凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul后,再做大体积时,一定要模索条件,否则容易失败。 物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR 失败的原因之一。 靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其

定量PCR原理及实验方法

定量PCR原理及实验方法 方法简介 所谓的实时荧光定量PCR 就是通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线。 RT-qPCR是由三个步骤组成: 1.反转录:依赖反转录酶将RNA反转录成cDNDA; 2.扩增:用PCR的方法扩增cDNA; 3.检测:实时检测和定量扩增的产物. RT-qRCR影响分析可靠性关键点(Key porint): 1.分析结果依赖于模板的数量、质量以及合理的检测方法设计 2.反转录反应的非标准化影响试验的稳定性 3.数据分析应该高度客观,如果不合理的分析,从分析结果中会得到混淆的错误结果,因此通过对RT-qPCR的每一组分进行质量评价以达到最小化变异性,最大化可重复性,而且还需要沿用一个通用的数据分析的指南。对基因表达分析的标准化的需要是与人类临床诊断分析相适应的。存在的问题 由于各个学术团体和科研机构使用不同的操作流程,必然导致大家使用不同定量的来源物以及数据分析: 1.新鲜、冰冻、甲醛固定的样品 2.整个组织样本,显微切割样本,单个细胞,组培细胞 3.总RNA或者mRNA 4.RNA反转录成cDNA的不同的引发策略 5.不同的酶以及酶的不同组合 6.变异系数、灵敏度 7.多类型的检测化学方法,反应的条件,热循环仪的分析以及汇报方式。 8.每一步骤缺乏标准化分析流程造成了在样品的处理,内参的使用,归一化的方法,质量控制等等因素严重影响RT-qPCR的可信度,重复性。 RNA质量评价 现在RNA 定量的程序很多。最近EMBO qPCR course (http://www-db.embl.de/jss/EmblGroupsOrg/conf_28) 比较了用Ribogreen, Agilent BioAnalyser, spectrophotometer,Nanodrop and the BioRad Experion 来定量同样的样品。结果显示没有哪两种方法得到同样的分析数据。所以用不同的方法进行定量是不明智的。因此,我们需要用统一套定量分析方法来完成所有RNA样品的评价。

PCR技术及原理

PCR定义:PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。是一项DNA 体外合成放大技术,能快速特异地在体外扩增任何目的DNA。可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。 PCR技术的基本原理 一、PCR反应成分: 1、模板DNA; 2、引物; 3、四种脱氧核糖核苷酸; 4、DNA聚合酶; 5、反应缓冲液、Mg2+等。 二、PCR反应基本步骤: 1、变性(denaturation):通过加热使模板DNA的双链之间的氢键断裂,双链分开而成单链的过程,高温使双链DNA解离形成单链(94℃,30s)。 2、退火(annealling):当温度降低时,引物与模板DNA中互补区域结合成杂交分子,低温下,引物与模板DNA互补区结合(55℃,30s)。 3、延伸(extension):在DNA聚合酶、dNTPs、 Mg2+存在下,DNA聚合酶催化引物按5’→3’方向延伸,合成出与模板DNA 链互补的DNA子链,中温延伸,DNA聚合酶催化以引物为起始点的DNA链延伸反应(70~72℃,30~60s)以上述三个步骤为一个循环,每一循环的产物均可作为下一个循环的模板,经过n次循环后,目的DNA以2n的形式增加。 PCR扩增的基本方法 PCR反应的成分和作用

总体积:一般为25μl~100μl 一、无Mg2+buffer:由纯水、kcl、Tris组成。Tris用于调节反应体系pH值,使Taq酶在偏碱性环境中反挥活性。kcl可降低退火温度,但不能超过50?mmol/L,否则会抑制DNA聚合酶活性。二、Mg2+:终浓度为1.5~2.0mmol/L,其对应dNTP 为200?μmol/L,注意Mg2+与dNTPs之间的浓度关系,由于dNTP与Taq酶竟争Mg2+,当dNTP浓度达到1?mmol/L时会抑制Taq酶的活性。?Mg2+能影响反应的特异性和产率。、 三、BSA:一般用乙酰化的BSA,起着减少PCR管对Taq酶的吸附作用,对Taq酶有保护作用。 四、底物(dNTPs):dNTPs具有较强酸性,其储存液用NaOH调pH值至7.0~7.5,一般存储浓度为10 mmol/L,各成份以等当量配制,反应终浓度为20~200μmol/L。高浓度可加速反应,但同时增加错误掺入和实验成本;低浓度可提高精确性,而反应速度会降低。 五、Taq酶:能耐95℃高温而不失活,其最适pH值为8.3~8.5,最适温度为75~80℃,一般用72℃。能催化以DNA 单链为模板,以碱基互补原则为基础,按5’→3’方向逐个将dNTP分子连接到引物的3’端,合成一条与模板DNA互补的新的DNA子链。无3’→5’的外切酶活性,没有校正功能。某种dNTP或Mg2+浓度过高,会增加其错配率。用量一般为0.5~5个单位/100μl。 六、模板:PCR对模板DNA的纯度不要求很高,但应尽量不含有对PCR反应有抑制作用的杂质存在,如蛋白酶、核酸酶、TqaDNA聚合酶抑制剂、能与DNA结合的蛋白质。模板DNA的量不能太高,否则扩增可能不会成功,在此情况下可适当稀释模板。 七、引物:引物浓度一般为0.1~0.5μmol/L,浓度过高会引起错配和非特异扩增,浓度过低则得不到产物或产量过低。引物长度一般15~30个碱基,引物过长或过短都会降低特异性。其3’末端一定要与模板DNA配对,末位碱基最好选用A、C、G(因T错配也能引发链的延伸)。 引物G+C约占45~55%,碱基应尽量随机分布,避免嘧啶或嘌呤堆积,两引物之间不应有互补链存在,不能与非目的扩增区有同源性。 PCR反应条件的选择(影响因素) 温度参数: 1、变性:模板变性完全与否是PCR成功的关键,一般先于94℃(或95℃)变性3~10min,接着94℃变性30~60s。 2、退火:退火温度一般低于引物本身变性温度5℃。引物长度在15~25bp可通过公Tm=(G+C)×4℃+(A+T)×2℃计算退火温度,一般退火温度在40~60℃之间,时间为30~45s。如果(G+C)低于50%,退火温度应低于55℃。较高的退火温度可提高反应的特异性。 3、延伸:延伸温度应在Taq酶的最适温度范围之内,一般在70~75℃。延伸时间要根据DNA聚合酶的延伸速度和目的扩增片段的长度确定,通常对于1kb以内的片段1min是够用的。 循环数: PCR的循环数主要由模板DNA的量决定,一般20~30次循环数较合适,过多的循环数会增加非特异扩增产物,具体要多少循环数可通过预试验确定。 PCR产物积累规律: 反应初期产物以2n呈指数形式增加,至一定的循环数后,引物、模板、DNA聚合酶形成一种平衡,产物进入一个缓慢增长时期(“停滞效应”),即“平台期”。到达平台期所需PCR循环数与模板量、PCR扩增效率、聚合酶种类、非特异产物竟争有关。

半定量RT-PCR的实验原理和方法步骤

半定量RT-PCR的实验原理和方法步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

RT-qPCR原理

Quanti?cation of mRNA using real-time RT-PCR Tania Nolan1, Rebecca E Hands2 & Stephen A Bustin2 1Sigma-Aldrich, Home?eld Road, Haverhill, UK. 2Institute of Cell and Molecular Science, Barts and the London, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London E1 1BB, UK. Correspondence should be addressed to S.A.B. (s.a.bustin@https://www.360docs.net/doc/378555769.html,). Published online 9 November 2006; doi:10.1038/nprot.2006.236 中文翻译(原理) 实时RT-PCR定量测定mRNA 实时RT-PCR应用于明确要求定量数据分析的分子医学、生物工程、微生物学和诊断学定量测定mRNA所用的的方法。尽管他被描述成“黄金”标准,但他还远远未达到成为标准检测的程度。由RNA模板的多变性、含量测定的设计和方案造成的很重要的问题,与不恰当的数据标准化和数据分析一样,也是被众人所知却又忽视掉了。标准化的第一步,我们描绘了一系列RT-qPCR草案的基本的技术步骤,要求产生的数据具有可靠性和重演性。我们更愿意强调说,无论如何,RT-qPCR数据只是关于一个细胞或组织给定转录物的量的快速测定的信息。任何可变的mRNA水平的生物结果分析必须包括关于调节RNA、蛋白含量和蛋白活性的附注信息。这里描述的整个试验,包含了最初的含量设计到qPCR数据分析,需要大约15小时。 INTRODUCTION RT-qPCR包括三部分:①依靠逆转录酶将RNA转变成cDNA; ②用PCR扩增cDNA; ③实时监测和定量测定cDNA的量 尽管已经选用为定量测定RNA的方法,这种含量测定的安全性依然值得商榷。首要的是以下几点:①结果依赖于模板的量、质量和最佳的方案设计;②逆转录反应不是标准化的,因此,可能多变性高;③数据分析高度主观化,如果操作不恰当含量测定的结果就会混乱。因此,通过质量评估每一个RT-qPCR组分含量和保持数据分析的统一性来降低多变性和扩大重现性是必要的。基因表达测定标准化明确要求,与人类临床诊断分析有显而易见的关系。因此,我们关注这个实验的遍及整个实验指导的质量控制。 THE ASSAY RT-PCR (qPCR)在单管PCR的扩增和测定步骤结合使用荧光指示染料。含量的测定依赖于测定增加的荧光信号,其强度与每一次PCR循环的产物量成正比。此外,在单次反应中,用不同染料标记的探针能够监测和定量多标记的目的基因。在一次循环中,单次PCR荧光第一次超过既定的或背景荧光阈值,这个参数就称为循环阈值(Ct)或交叉点(Cp).起始浓度越高,Ct值越小。当维持PCR分析滴定终点敏感性和特异性时,这种荧光和扩增物的相关性使目的基因能够在一个较大的范围内被精确定量。闭管(均质)形式消除了扩增后手工操作的需要,显著的减少了手工操作的时间和污染的风险。 Current problems 这种技术的广泛应用造成大量的可定量测定数据的方法的产生,利用①新鲜的、冷冻的或FFPE样品;②整体活组织检查、显微切割、单个细胞、组织培养细胞;③总RNA或mRNA; ④一系列不同cDNA引发机制;⑤不同的酶或酶切反应体系;⑥不同效率、灵敏度和活跃的检测⑦多样的检测试剂、反应条件、热循环仪⑧个人的分析方式及报告方法。每一步都明显不具有标准化的检测,在样品处理、对照的使用、数据处理和质量控制处理的不同使这种不标准化进一步加剧,并且与RT-qPCR的可靠性、相关性和重复性有及其密切的关系。

相关文档
最新文档