汽车发动机氧传感器信号波形分析

汽车发动机氧传感器信号波形分析
汽车发动机氧传感器信号波形分析

汽车发动机氧传感器信号波形分析(图)

2011-04-13 15:25:18 来源:易拓软件浏览:309次

内容提要:着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷

随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配置。这种发动机采用了混合气成分的闭环控制和三元催化反应装置的联合使用技术,是汽油机有效的排气净化方法。在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况。因此,当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。很多资料显示其效果很好。

1. 氧传感器的一般作用

如图1所示,要使三元催化转化器全面净化CO、HC和NOX这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14.7)附近的狭小范围内。一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降。保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解决方案。

图1 转换效率随空燃比变化曲线

氧传感器检测排气中的氧浓度,并随时向微机控制装置反馈信号。微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之,如信号

反映混合气较稀,则延长喷油时间。这样使混合气的空燃比始终保持在理论空燃比附近(见图2),这就是燃料闭环控制或称燃料反馈控制。

图2 反馈控制原理图

2. 氧传感器的正常波形

常用的汽车氧传感器有氧化锆式和氧化钛式两种。以氧化锆式为例,正常情况下当闭环控制时(见图3),氧传感器的电压信号大约在0至1V之间波动,平均值约450mV。当混合气浓度稍浓于理论空燃比时,氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mV的低电压信号。当然,不同类型的氧传感器其实际波形并不完全相同。朱军老师曾总结说:“一般亚洲和欧洲车氧传感器(博世)信号电压波形上的杂波要少,尤其是丰田凌志车氧传感器信号电压波形的重复性好,而且对称、清楚,美国车(不是采用亚洲的发动机和电子反馈控制系统)杂波要多。”但需要指出,氧化钛型氧传感器反馈给发动机电控单元的电压,一般是1V范围内变化,也有少数的是5V范围内变化的。

图3 正常的多点喷射发动机氧传感器波形

汽车发动机上各传感器的位置以及作用

进气压力传感器和进气温度传感器整个系统有6个传感器随时感知发动机的工作状况。其中进气压力、进气温度是两个重要的参数。在早期的电喷发动机上,这两个参数的传感器制成一体;在AJR发动机上是独立的。一为硅电容绝对压力传感器,探测进气压力,它被安装在进气管上,也可安装在进气管附近。进气温度传感器也安装在进气管上。大气环境,如季节变化、地理位置高低,都会影响进气温度与进气的绝对压力,根据工况随时测得上述两参数,传输到ECU中。当传感器出现故障时,发动机控制单元能够检测到,并能使发动机进入挂帐应急状态下运行,通过V.A.G.1552或V.A.G.1551故障阅读仪,可以知道故障信息。进气温度传感器是一个负热敏电阻,代号G72。(3)冷却液温度传感器(也叫水温传感器)装在发动机冷却液出水管上,由此测出发动机温度,转变为电信号传给ECU,用来修正喷油定时,从而获得浓度更合适的混合气。它也是一个负热敏电阻,当该传感器发生故障时,上述故障阅读仪可读取此有关信息。而且,ECU能检测到这种故障,并使发动机转入故障应急状态运行(4)节气门位置传感器安装在节气门下方,节气门轴带动节气门位置传感器内的可变电阻转动,用来改变阻值大小。它将节气门开度大小转变为电信号传给发动机控制单元ECU,ECU根据节气门开度大小获得发动机的工况,如怠速工况、部分负荷工况、满负荷工况、调节、修正喷油定时。该传感器发生故障时,ECU能检测到,并能使发动机进入故障应急状态下运行,通过V.A.G.1522或V.A.G.1521故障阅读仪可以知道故障信息。(5)氧传感器是完成混合气闭环控制的重要组件,它又称λ传感器,其外侧电极面暴露在废气流中,而其内侧电极面与外界空气相接触。该传感器由一个特殊陶瓷体(ZiO2或TiO2)构成,在它的表面涂有透气性好的铂电极。其工作原理为:陶瓷材料表面多孔,能够允许空气的氧分子在其中扩散。着种陶瓷在温度较高时成为导电体。如果电极两面上的氧含量不一样的话,电极两侧就会有一个电压形成。当λ=1时,混合气完全燃烧,外侧电极面无氧分子存在,这时输出电压就会产生一个突变。氧传感器通过探测废气中含氧量的多少,能获得上次喷油时间过长或过短的信号,并将该信号??修正。混合气通过氧传感器闭环调节后,能将空燃比控制在λ=0.98—1.02之间范围内,从而得到一个最佳的混合气浓度,同时也使废气中的有害物排放量大大减少。氧传感器在满足下述条件后才能进行正常调节:发动机温度>60℃;氧传感器温度>300℃;发动机在怠速或部分负荷下工作。为了使氧传感器迅速加热,尽早正常工作,在氧传感器中装有加热装置。桑塔纳2000型轿车发动机氧传感器出现故障时,ECU不能检测,但发动机仍能运转,此时发动机工作状况不是最好。通过V.A.G.1552或V.A.G.1551故障阅读仪,读取氧传感器的数据,获得其发生故障的信息(6)爆震传感器。将一只爆震传感器设于二缸与三缸之间缸体侧面,爆震传感器能把发动机爆震产生的震动变为电信号,传递给发动机控制单元ECU。ECU根据爆震传感器传递来的信号,对点火提前角进行修正,从而使点火提前角的值始终处于最佳状态。当爆震传感器发生故障,发动机控制单元在一定条件下能够检测到,并能使发动机转入故障应急状态下,通过V.A.G.1551或V.A.G.1522故障阅读仪,可以了解故障信息

汽车传感器的种类和作用.

汽车传感器的种类和作用 汽车传感器把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。 车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。下面我们来认识一下汽车上的主要传感器。 空气流量传感器 空气流量传感器是将吸入的空气转换成电信号送至电控单元(ecu,作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田previa旅行车、卡门涡游式空气流量传感器(丰田凌志ls400轿车、热线式空气流量传感器(日产千里马车用vg30e发动机和国产天津三峰客车tj6481aq4装用的沃尔沃b230f发动机和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。 进气压力传感器 进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(v6发动机、桑塔纳2000型轿车、北京切诺基(25l发动机、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。 节气门位置传感器 节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ecu,从而控制不同的喷油量。它有三种型式:开关触点式节气门位

汽车点火波形分析

汽车点火波形分析 摘要 汽车电子化的发展,应用之广与日俱增,尤其是计算机、网络技术的发展为汽车电子化带来了根本性的变革。因此,当代汽车的维修不是单纯的机械维修,而是机械与电子为一体的维修。由于电子控制元件的维修比较抽象,给汽车维修技术提出了新的挑战,使许多维修人员望而止步,感到神秘莫测。 汽车电控系统技术的发展,使现代的汽车成为了一个高科技的结晶体,这就要求汽车故障诊断技术也向高新技术方向发展。传统的故障诊断方式根本不能适应现代汽车故障诊断的要求,尤其对电控系统故障的诊断,必须采用先进的检测设备,先进的工作模式。 波形分析技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确性,利用波形分析检测时,示波器可以显示出电子信号的各种参数,利用这些参数就能够判定这个电子信号的波形是否正常,然后,通过波形分析便可以进一步检查出电路中传感器,执行 器以及电路和控制电脑等各部分的故障,从而进行修理。 本文叙述了汽车点火系统波形连接、检测、分析方法;并结合波形图形象深刻的分析汽车故障类型、位置、原因。使学者有一目了然的深刻视觉感受,发掘学习者的兴趣。 【关键词】:点火系统;点火波形图;波形分析;故障波形分析

目录 第1章绪论 (1) 1.1引言 (1) 1.2 点火系统概述 (1) 第2章点火系统检测连接及点火波形种类、特点 (3) 2.1点火系统检测连接方法 (3) 2.2点火波形种类 (4) 2.3次级点火波形的特点 (5) 第3章点火波形分析 (7) 3.1点火波形分析方法 (7) 3.2各类点火系波形 (8) 3.2.1触点式点火系波形 (8) 3.2.2无触点点火系波形 (9) 3.2.3 无分电器点火系统波形 (9) 3.3次级点火波形可查明的故障 (9) 3.4分析次级点火波形的要点(五常看) (10) 3.5点火系统的加载调试 (12) 第4章故障波形分析 (13) 4.1典型故障波形分析 (13) 4.1.1初级电压分析 (14) 4.1.2次级电压波形分析 (15) 4.2次级点火故障波形分析 (16) 4.3点火波形分析举例 (17) 结论 (20) 参考文献 (21) 致谢 (22) 2

汽车节气门位置传感器波形分析

线性输出型节气门位置传感器信号波形分析 波形检测方法 1.连接好波形测试设备,探针接传感器信号输出端子,鳄鱼夹搭铁。 2.打开点火开关,发动机不运转,慢慢地让节气门从关闭位置到全开位置,并重新返回至节气门关闭位置。慢慢地反复这个过程几次。这时波形应如图所示铺开在显示屏上。 线性输出型节气门位置传感器信号波形分析如图所示。 1、查阅车型规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1V到节气门全开时的低于5V。 2、波形上不应有任何断裂、对地尖峰或大跌落。 3、应特别注意在前1/4节气门开度中的波形,这是在驾驶中最常用到传感器碳膜的部分。传感器的前1/8至1/3的碳膜通常首先磨损。 4、有些车辆有两个节气门位置传感器。一个用于发动机控制,另一个用于变速器控制。 5、发动机节气门位置传感器传来的信号与变速器节气门位置传感器操作相对应。 6、变速器节气门位置传感器在怠速运转时产生低于5V电压,在节气门全开时变到低于1V。 7、特别应注意达到2.8V处的波形,这是传感器的碳膜容易损坏或断裂的部分。 8、在传感器中磨损或断裂的碳膜不能向发动机ECU提供正确的节气门位置信息,所以发动机ECU不能为发动机计算正确的混合气命令,从而引起汽车驾驶性能问题。 9、如果波形异常,则更换线性输出型节气门位置传感器。 开关量输出型节气门位置传感器信号波形分析

1、开关量输出型节气门位置传感器的信号波形检测同线性输出型节气门位置传感器。 2、它是由两个开关触点构成的一个旋转开关,一个常闭触点构成怠速开关,节气门处在怠速位置时,它位于闭合状态,将发动机ECU的怠速输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入怠速控制,或者控制发动机“倒拖”状态时停止喷射燃油,另一个常开触点(构成全功率触点),节气门开度达到全负荷状态时,将发动机ECU的全负荷输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入全负荷加浓控制状态。 开关量输出型节气门位置传感器的信号波形及其分析如图所示。如果波形异常,则应更换开关量输出型节气门位置传感器。

(汽车行业)汽车点火系统波形分析

(汽车行业)汽车点火系统 波形分析

汽车点火系统分析 现代汽车采用了大量的电子控制系统,以往常规的检测方式已无法适应现代汽车的要求。特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。 由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的影响,所以示波器能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障。而且壹个波形的不同部分仍能够分别指明在汽缸中的哪个部件或哪个系统有故障。点火次级单缸波形测试主要用途有: 1.分析单缸的点火闭合角(点火线圈充电时间分析); 2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析); 3.检查单缸混合气空燃比是否正常(燃烧线分析); 4.分析电容性能(白金或点火系统分析); 5.查出造成汽缸断火的原因(燃烧线分析,如污染或破裂的火花塞)。 分电器点火次级标准波形如图1所示。通过观察该波形,能够得到击穿电压、燃烧电压、燃烧时间以及点火闭合角等信息。 由于点火次级波形受到发动机、燃油系统和点火条件的影响,所以它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障非常有用。同时每个点火波形的不同部分仍能分别表明其相应汽缸点火系统的相应部件和系统的故障。对应于每壹部分,能够通过参照波形图的指示点及观见波形特定段相应的变化来判定。 壹、分电器点火次级波形分析 1.充磁开始:点火线圈在开始充电时,应保持相对壹致的波形下降沿,这表明各缸闭合角相同而且点火正时准确。 2.点火线:观察击穿电压高度的壹致性,如果击穿电压太高(甚至超过了示波器的显示屏),表明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);如果击穿电压太低,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。 3.跳火或燃烧电压;跳火或燃烧电压的相应壹致性,它说明火花塞工作各缸空燃比正常和否。如果混合气太稀,燃烧电压就比正常值低壹些。 4.燃烧线:跳火或燃烧线应十分“干净”,即燃烧线上应没有过多的杂波。过多的杂波表明汽缸点火不良,这是由于点火过早、喷油器损坏、污浊的火花塞等原因造成的。燃烧线的持续时间长度和汽缸内混合气浓或稀有关。燃烧线太长(通常超过2ms)表示混合气过浓,燃烧线太短(通常少于0.75ms)表示混合气过稀。 5.点火线圈振荡观察在燃烧线后面最少有2个(壹般多于3个)振荡波,这表明点火线圈和电容器(在白金点火系统中)是正常的。 二、电子点火次级单缸急加速波形 电子点火次级单缸急加速波形测试用于确定最大击穿电压或指定汽缸燃烧峰值电压和其他缸峰值电压的关系。这个测试是用来诊断当大负荷或急加速时是否出现断火现象。 1.试验方法:在加速或高负荷下检查对应特定部件的波形部分的故障。 2.波形分析:观察各缸击穿电压高度是否壹致。在急加速或高负荷时,由于燃烧压力的增加,其峰值电压将随之增高。当和其他缸信号峰值高度出现偏差时,意味着此缸相应系统存在故障。过高的峰值电压表明在该缸点火次级电路中存在高电阻,它意味着电路断路、高压线电阻过高、火花塞间隙过大。如果峰值电压过低,表明点火高压线短路、火花塞间隙过小、火花塞破裂和火花塞有油污。出现有负荷时断火或急加速时所有汽缸的点火峰值都低的情况,意味着点火线圈不良。

汽车点火系统波形分析报告

汽车点火系统分析 现代汽车采用了大量的电子控制系统,以往常规的检测方式已无法适应现代汽车的要求。特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。 由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的影响,所以示波器能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障。而且一个波形的不同部分还能够分别指明在汽缸中的哪个部件或哪个系统有故障。点火次级单缸波形测试主要用途有: 1.分析单缸的点火闭合角(点火线圈充电时间分析); 2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析); 3.检查单缸混合气空燃比是否正常(燃烧线分析); 4.分析电容性能(白金或点火系统分析); 5.查出造成汽缸断火的原因(燃烧线分析,如污染或破裂的火花塞)。 分电器点火次级标准波形如图1所示。通过观察该波形,可以得到击穿电压、燃烧电压、燃烧时间以及点火闭合角等信息。

由于点火次级波形受到发动机、燃油系统和点火条件的影响,所以它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障非常有用。同时每个点火波形的不同部分还能分别表明其相应汽缸点火系统的相应部件和系统的故障。对应于每一部分,可以通过参照波形图的指示点及观看波形特定段相应的变化来判定。 一、分电器点火次级波形分析 1.充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这表明各缸闭合角相同而且点火正时准确。 2.点火线:观察击穿电压高度的一致性,如果击穿电压太高(甚至超过了示波器的显示屏),表明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);如果击穿电压太低,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。

汽车发动机氧传感器信号波形分析

汽车发动机氧传感器信号波形分析(图) 2011-04-13 15:25:18 来源:易拓软件浏览:309次 内容提要:着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷 随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配置。这种发动机采用了混合气成分的闭环控制和三元催化反应装置的联合使用技术,是汽油机有效的排气净化方法。在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况。因此,当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。很多资料显示其效果很好。 1. 氧传感器的一般作用 如图1所示,要使三元催化转化器全面净化CO、HC和NOX这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14.7)附近的狭小范围内。一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降。保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解决方案。 图1 转换效率随空燃比变化曲线 氧传感器检测排气中的氧浓度,并随时向微机控制装置反馈信号。微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之,如信号

反映混合气较稀,则延长喷油时间。这样使混合气的空燃比始终保持在理论空燃比附近(见图2),这就是燃料闭环控制或称燃料反馈控制。 图2 反馈控制原理图 2. 氧传感器的正常波形 常用的汽车氧传感器有氧化锆式和氧化钛式两种。以氧化锆式为例,正常情况下当闭环控制时(见图3),氧传感器的电压信号大约在0至1V之间波动,平均值约450mV。当混合气浓度稍浓于理论空燃比时,氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mV的低电压信号。当然,不同类型的氧传感器其实际波形并不完全相同。朱军老师曾总结说:“一般亚洲和欧洲车氧传感器(博世)信号电压波形上的杂波要少,尤其是丰田凌志车氧传感器信号电压波形的重复性好,而且对称、清楚,美国车(不是采用亚洲的发动机和电子反馈控制系统)杂波要多。”但需要指出,氧化钛型氧传感器反馈给发动机电控单元的电压,一般是1V范围内变化,也有少数的是5V范围内变化的。 图3 正常的多点喷射发动机氧传感器波形

汽车传感器的波形分析

汽车传感器的波形分析 一、热线式空气流量传感器波形分析 空气流量计是用来计量单位时间内进入进气总管中的空气量,发动机ECU根据所测得的进气量及其他一些辅助信号确定喷油量。空气流量传感器是非常重要的传感器,发动机ECU 可以根据此信号测算出发动机负荷、点火正时、怠速控制等参数,不良的空气流量计会造成喘震和怠速不稳的现象。 常见的空气流量计一般有卡门涡旋式、翼板式以及热线式,热线式空气流量计是一种模拟输出电压信号传感器,随着进气流量的增大输出电压随之增大。 启动发动机并预热至正常工作温度,运用汽车专用示波器读取各种工况下的空气流量计波形,将发动机节气门从全关闭状态逐渐打开直至全开并持续2S,再关闭节气门使发动机怠速运转2S,接着再急加速至节气门全开,最终再回到怠速状态并读取波形。 空气流量计波形如图一所示,怠速的时候空气流量计输出信号电压为0.2V左右,随着节气门开度的增大输出电压也随之增大,当节气门全开的时候,输出电压为4V左右,当急减速的时候空气流量计输出电压会比怠速时的电压稍低。如果实测波形与标准波形存在明显差异则表明空气流量计存在故障。 二、节气门位置传感器波形分析 节气门位置传感器是用来检测发动机节气门开度大小的传感器,它一般安装在节气门转轴上,分为模拟式节气门位置传感器和开关式节气门位置传感器。节气门位置传感器是一个非常重要的传感器,发动机ECU根据它检测到的信号可推算得出发动机的负荷、点火正时以及怠速控制等参数,如果节气门位置传感器损坏会引起发动机故障,比如说加速滞后。 节气门位置传感器有三根线,其中一根是ECU提供给它的电源线,另一根为传感器的接地

线。模拟式节气门位置传感器实为一个可变电位计,它由一个与节气门转轴相连的滑动触针构成,所以第三根线是连接到这个可变电位计的可动触点上,输出信号电压是和节气门的开度成正比的。 模拟式节气门位置传感器波形的读取方法如下:打开点火点开,ECU的传感器电源给传感器供电,缓慢地转动节气门转轴使得节气门从全闭到全开再从全开到全闭,反复几次即可读取信号波形,在整个读取过程中发动机是不需要启动运转的。节气门位置传感器信号输出波形如图二所示。当节气门关闭发动机怠速的时候其输出信号电压不足1V,随着节气门开度的增大其输出电压也随之增大,当节气门全开时输出信号电压不足5V整个波形应该是连续的,不应有断裂出现,同时也不应该出现对地尖峰或大的跌落。 节气门位置传感器波形中经常会出现一种异样波形,当节气门开度到达不足一半的时候波形出现了对地大跌落,当节气门从全开后逐渐关闭到同样位置的时候又出现了对地大跌落,由此可以判断触点在该位置的时候出现了故障,经检查发现传感器该位置处的碳膜损坏断裂了,,在日常驾驶过程中节气门开度一般都不超过50% ,所以前段碳膜会更容易磨损,这样就不能向ECU提供正确的节气门位置信息,从而影响发动机的正常运行。 三、进气压力传感器波形分析 进气压力传感器是用来检测进气管真空度的,分为模拟式和数字式进气压力传感器。模拟式进气压力传感器也有三条线,其中一条是ECU提供的5V参考电压线,另一条是搭铁,第三条是输出信号线。在信号读取过程中,应该关闭其他附属电气设备,启动发动机待怠速稳定后方可读取输出信号波形。 具体操作步骤如下:发动机怠速运转逐步缓慢增大节气门开度至全开,并保持全开2秒,然后再逐渐关闭节气门,保持怠速运转2秒,接看急加速至节气门全开,最后再关闭节气门,此刻即可读取进气压力传感器的输出信号波形。不同的进气压力对应不同的输出电压,可以

关于国内外汽车传感器方面的知识

关于国内外汽车传感器方面的知识

关于国内外汽车传感器方面的知识技术分类:汽车电子 | 2007-12-19 来源:新浪汽车 汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。目前,一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只。据报道,2000年汽车传感器的市场为61.7亿美元(9.04亿件产品),到2005年将达到84.5亿美元(12.68亿件),增长率为6.5%(按美元计)和 7.0%(按产品件数计)。汽车传感器在汽车上主要用于发动机控制系统、底盘控制系统、车身控制系统和导航系统中。 发动机控制系统用传感器 发动机控制系统用传感器是整个汽车传感 器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,

以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。 由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃- 120℃)以及蒸汽 、盐雾、腐蚀和油泥污染的恶劣环境中,因此发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高1-2个数量级,其中最关键的是测量精度和可靠性。否则,由传感器带来的测量误差将最终导致发动机控制系统难以正常工作或产生故障。 1.温度传感器 温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。三种类型传感器各有特点,其应用场合也略有区别。线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。

汽车传感器五大常见类型

汽车传感器功能简介 车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。 汽车传感器常见类型 1、节气门位置传感器 原理:节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ECU),从而控制不同的喷油量。 种类:它有三种型式——开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型V6发动机)。 2、进气压力传感器 原理:进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。 应用:国产奥迪100型轿车(V6发动机)、桑塔纳2000型轿车、北京切诺基(25L发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。 3、曲轴位置传感器 原理:也称曲轴转角传感器,是计算机控制的点火系统中最重要

的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。 应用:曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式和控制精度也不同。曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端,也有的安装于分电器(桑塔纳2000型轿车)。 4、空气流量传感器 原理:空气流量传感器是将吸入的空气转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一。 应用:根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志LS400轿车)、热线式空气流量传感器(日产千里马车用VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃尔沃B230F发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。 5、爆震传感器 爆震传感器安装在发动机的缸体上,随时监测发动机的爆震情况。目前采用的有共振型和非共振型两大类! 车用传感器很多,判断传感器出现的故障时,不应只考虑传感器

汽车发动机故障灯亮常见故障原因及解决方法

汽车发动机故障灯亮 7大因素 发动机故障灯亮是每位车主都不能够忽视的问题,这直接关系到发动机寿命和行车安全等。盛德世通整理了发动机故障灯亮常见故障原因,通常是由于以下几个原因造成:

1.汽油品质差,不达标 计大部分车主都有这个经历,车子加完油不久,汽车仪表盘上就亮起了发动机故障灯;这一般是因为在不规范的加油站加了质量较差的汽油,导致发动机工作时油气混合气燃烧不充分,发动机故障灯亮。这不会影响行车安全,但或多或少会对发动机造成危害。 2.氧传感器故障 如今汽车上安装有两个氧传感器,三元催化器前后各放一个。前氧传感器的作用是检测发动机不同工况的空燃比,同时ECU电脑根据该信号调整喷油量和计算点火时间。后方的主要是检测三元催化器的工作好坏!所以如果氧传感器损坏或者传感器插头损坏、松动,会导致混合气过稀或过浓,从而引起故障灯亮。

而实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。所以新车的故障灯亮,不妨查看一下氧传感器插头是否松动。 3.空气流量传感器故障 空气流量传感器也称为空气流量计,它检测吸入的空气量转换成电信号传递给电控单元ECU,根据最佳空燃比,间接让ECU决定喷出多少燃油。如果空气流量传感器或线路出现故障,ECU将得不到正确的进气量信号,就不能进行正常的燃油量控制,从而造成混合气过稀或过浓,发动机无法正常工作。

虽然空气流量传感器失常不至于造成发动机无法启动,但诸如怠速不稳、加速不良、进气管回火以及排气管冒黑烟等现象还是极有可能的。 4.火花塞积碳 市面上质量参差不齐的燃油和拥堵的城市交通使得汽车火花塞很容易产生积碳,火花塞积碳会导致发动机工作不良,出现启动困难、怠速不稳、加速不良、急加油回火、尾气超标、油耗增多等不正常现象。 5.发动机爆震

发动机传感器执行器波形分析

发动机电控系统传感器、执行器、点火器波形分析
报告人:车辆zy1201班 第一组 毛威
2015/5/11

目录
一、实验目的及意义 二、发动机电控系统概述 三、实验基本原理与方法 四、主要仪器设备及耗材简介 五、实验方案与技术路线 六、实验结果分析
2015/5/11

一、实验目的及意义
1.通过对富康TU-5发动机电子控制系统中有关传感器、执行器及 点火系统的波形测量,了解发动机电控系统的构造以及工作原理 以及发动机分析仪的使用方法。 2.使用示波器测量发动机在不同工况时“ECU”输入、输出信号 的变化规律。
3.测量双极性点火系统各缸点火波形。了解无分电器(双极性) 点火系统的工作原理。
2015/5/11

二、发动机电控系统概述
组成
发动机电控系统主要由传感器、电子控制器和执行器构成。
功能
ECU根据各传感器的实时输入信号,修正且控制发动机的 进气量、供油量及点火提前角等控制参数。保障发动机处于最 佳的工作状态。发动机工作时,各传感器输出信号的准确性、 稳定性以及执行器的工作状态将直接影响发动机的工作状态。
2015/5/11

二、发动机电控系统概述
传感器
传感器的作用是将发动机的工况及状态物理参量转变 为电 信 号, 输送 给电 子控 制 器。传感 器 是电 子 控制 系 统的 “眼 睛”和“耳朵” 。
汽车上的传感器主要有发动机转速与曲轴位置传感器、空 气流量传感器、进气压力传感器、温度传感器、节气门位置传 感器、氧传感器等
2015/5/11

(推荐)汽车总线-CAN波形测量分析

CAN波形测量分析 1 查询资料理解CAN-H/CAN-L在车载网络的故障形式,理解检测计划的作用、触发的定义。 2 A/B组各出两套方案,实车检测CAN信号波形及终端电阻,方案包括:节点、易不易拆装、有无适配器;测量必须使用ISID、IMIB、MFK1、MFK2,万用表只作验证。 (1)CAN-H对负极或对地短路 (2)CAN-H对正极短路 (3)CAN-L对负极或对地短路 (4) CAN-L对正极短路 检测计划的作用: 根据系统与维修人员的交互,能够对故障作出推断。 一是可以提高全球宝马车辆诊断的效率,提高客户满意度。 二是宝马技术更新快,培训跟不上,利用检测计划可以弥补维修人员诊断能力的不足。 1)故障代码存储器 2)故障症状 3)服务功能 触发:我们要在示波器的屏幕上观察到稳定的波形,必要的条件是示波器的扫描信号要与被观察的信号保持同步关系。为了使扫描信号与被测信号同步,我们可以设定一些条件,将被测信号不断地与这些条件相比较,只有当被测信号满足这些条件时才启动扫描,从而使得扫描的频率与被测信号相同或存在整数倍的关系,也就是同步。这种技术我们就称为“触发”,而这些条件我们称其为“触发条件” 。用作触发条件的形式很多,最常用最基本的就是“边沿触发”,即将被测信号的变化(即信号上升或下降的边沿) 与某一电平相比较,当信号的变化以某种选定的方式达到这一电平时,产生一个触发信号,启动一次扫描。 测试方案书

测量内容:318i K-CAN波形 准备工作:FRM模块 功能:(1)控制外部照明和车内照明灯 (2)控制外后视镜(后视镜调节、翻折、记忆功能、后 视镜加热和防昡) (3)控制前部车窗升降机驱动装置(驾驶员侧和前乘客 测) 612340适配器 X14260、46 K-CAN-H针脚 X14260、45 K-CAN-L针脚 测量思路:(1)为什么测这个模块? FRM模块在日常维修中比较经常用到,所以想对其波形进行了解,除外,在E90车型上易于拆装。 (2)波形分析: 在FRM模块中,正常情况下K-CAN-H和K-CAN-L波形如图所示:

传感器在汽车行业的应用

汽车传感器 百科名片 汽车传感器 车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。 详细介绍

一、传感器特性 传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。简单地说,传感器是把非电量转换成电

量的装置。 传感器通常由敏感元件、转换元件和测量电路三部分组成。 1)、敏感元件是指能直接感受(或响应)被测量的部分,即将被测量通过传感器的敏感元件转换成与被测量有确定关系的非电量或其它量。 2)、转换元件则将上述非电量转换成电参量。 3)、测量电路的作用是将转换元件输入的电参量经过处理转换成电压、电流或频率等可测电量,以便进行显示、记录、控制和处理的部分。 传感器的静态特性参数指标 1.灵敏度 灵敏度是指稳态时传感器输出量y和输入量x之比,或输出量y的增量和输入量x的增量之比,用k表示为 k=dY/dX 2.分辨力 传感器在规定的测量范围内能够检测出的被测量的最小变化量称为分辨力。 3.测量范围和量程 在允许误差限内,被测量值的下限到上限之间的范围称为测量范围。 4.线性度(非线性误差) 在规定条件下,传感器校准曲线与拟合直线间的最大偏差与满量程输出值的百分比称为线性度或非线性误差。 5.迟滞 迟滞是指在相同的工作条件下,传感器的正行程特性与反行程特性的不一致程度。 6.重复性 重复性是指在同一工作条件下,输入量按同一方向在全测量范围

汽车发动机波形分析七

汽车发动机波形分析(七)---爆震传感器信号 2009年11月10日星期二 14:44 爆震传感器是交流信号发生器,但它们与其他大多数汽车交流信号发生器大不相同,除了像磁电式曲轴和凸轮轴位置传感器一样探测转轴的速度和位置,它们也探测振动或机械压力。与定子和磁阻器不同,它们通常是压电装置。它们能感知机械压力或振动(例如发动机起爆震时能产生交流电压)的特殊材料构成。(有的通过点控制模诀)提供爆震信号,使得电脑能重新调整点火正时以阻止进一步爆震。它们实际上是充当点火正时反馈控制循环的“氧传感器”角色。5至15千赫范围的频率。当控制单元接收到这些频率时,电脑重修正点火正时,以阻止继续爆震,爆震传感器通常十分耐用。所以传感器只会因本身失效而损坏。(峰高度或振幅)和频率(振荷的次数)将随发动机的负载和每分钟转速而增加,如果发动机因点火过早、燃烧温度不正常、排气再循环不正常流动等引起爆燃或敲击声,其幅度和频率也增加。50毫伏/分度。2 点火过早,排气再循环不良,低标号燃油等原因引起的发动机爆震会造成发动机损坏。爆震传感器向电脑 爆震传感器安放在发动机体或汽缸的不同但置。当振动或敲缸发生时,它产生一个小电压峰值,敲缸或振动越大。爆震传感器产主峰值就越大。一定高的频率表明是爆震或敲缸,爆震传感器通常设计成测量 测试传感器方法1,参见图14。 对发动机加载,看示波器显示。 波形结果 波形的峰值电压 为做关于爆震传感器的试验,必须改变示波器的电压分度至 测试传感器方法 打开点火开关,不起动发动机,用一些金属物敲击发动机(在传感器附近地方)。--这通常是因为某些东西碰伤,它会造成传感器物理损坏(在传感器内晶体断裂,这就是使它不能使用)。 在敲击发动机体之后,紧接着在示波器显示上应有一振动,敲击越重,振动幅度就越大。 从一种型式的传感器至下一种传感器的峰值电压将有些变化。爆震传感器是极耐用的。最普通的爆振传感器失效的方式是传感器根本不产生信号 波形显示只是一条直线,但如果你转动发动机或敲击传感器时的波形是平线,检查传感器和示波器的连接,确定该回路没有接地,然后再判断传感器。

专家指点如何检修汽车氧传感器故障

专家指点如何检修汽车氧传感器故障氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。 氧传感器的信号电压作为反映空燃比状况的最直接数据,在故障诊断中是一个非常重要的参考数据。闭环状态下,氧传感器的工作电压一般为0.1—0.9V。通常情况下,维修人员使用示波器检测或用电控检测仪读取相应数据流。这些诊断设备在很多中小型维修厂都没有。 在没有设备的情况下,又将如何检修氧传感器呢? 用一个发光二极管搭到信号输出端和搭铁。氧传感器正常工作时,在每一个浓稀循环,信号电压达到发光二极管0.6—0.7V的门坎电压时,发光二极管便会闪亮一次;如果混合气过稀,发光二极管一直不亮;如果混合气过浓,发光二极管会一直亮着;如果氧传感器损坏,一般会长亮或不亮。 检查氧传感器的好坏,还有一个简单便捷的方法,在氧传感器的信号输出端再从蓄电池正极引入一根电源线,发光二极管发亮,这样便可以在回路中形成0.6—0.7V的模拟信号电压。根据发动机的工作状况是否改善,便可以轻松判断出氧传感器是否损坏。 如果氧传感器性能不良,并非一定要更换才行,氧传感器由于积炭和汽油中铅元素的影响,会在长久的工作时,在外壁上附着一种灰白

色的物质,即俗名“铅中毒”,这样会影响测量精度。所以应对氧传感器进行还原。方法如下:驾驶车辆,将连接口固定在1挡,油门踩到底,车高速行驶后突然松开,并重复多次。或将氧传感器卸下,用氧焊枪对准,直至烧白为止。 维修中有很多人将发光二极管作为试灯使用,但真正用来检测氧传感器却并不多见。巧妙利用发光二极管0.6~0.7V门坎电压特性,可以取代对氧传感器读取数据流、设定示波器的操作。能够快速检查出空燃比的状况。另外,模拟0.6~0.7V的信号电压,可以快速诊断出氧传感器的好坏。 在低档位、高负荷的工况下多次重复,为“铅中毒”的氧传感器的还原提供了最佳催化环境。在氧焊枪的高温灼烧下,也可以快速还原。目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。其中应用最多的是氧化锆式氧传感器。 一、氧化锆式氧传感器的构造 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。氧传感器位于排气管的第一节,在催化转化器的前面。氧传感器有个二氧化锆(一种陶瓷)制造的元件,其里外都镀有一层很薄的白金。陶瓷化锆体在一端用镀薄铂层来封闭。后者被插到保护套中,并安装在一个金属体内。保护套起到进一步保护作用并使传感

汽车发动机上的传感器.

简介汽车发动机上的传感器 简介汽车发动机上的传感器 发动机管理系统 (Engine Man-agement System简称 EMS ,采用各种传感器,将发动机吸入空气量、冷却水温度、发动机转速与加减速等状况转换成电信号,送入控制器。控制器将这些信息与储存信息比较、精确计算后输出控制信号。 EMS 不仅可以精确控制燃油供给量,以取代传统的化油器,而且可以控制点火提前角和怠速空气流量等,极大地提高了发动机的性能。 通过喷油和点火的精确控制,可以降低污染物排放 50%;如果采用氧传感器和三元催化转化器,在λ=1的一个狭小范围内可以降低排放达 90%以上。在怠速调节范围内,由于采用了怠速调节器,怠速转速降低约 100转 /分到 150转 /分, 使油耗下降3%~4%。如果采用爆震控制, 在满负荷范围内可提高发动机功率 3%~ 5% 随着世界范围内排放法规的日益严格, 采用 EMS 系统已成为不可阻挡的潮流,在推进中国汽车工业现代化的进程中,具有广阔的应用前景。 控制系统 ME7 原理:通过安装在加速踏板上的踏板传感器,将踏板信息传递到电子控制器中的节气门控制模块,节气门控制模块通过一定的处理程序计算出节气门的开度并驱动直流电机完成节气门进气通道面积的调整,从而控制进气量,满足发动机不同工况下的进气需求。 特点: -取消了机械传动装置,更易于模块化和标准化。 -系统具有自学习功能,可实现巡航控制。 -怠速进气可通过控制模块驱动节气门体完成,而不需旁通通道和怠速调节器。

-由于进气精确可控,故可实现低排放控制。 -驾驶性能更优。 爆震传感器 KS 功能 :检测发动机缸体振动情况,以供电子控制器识别发动机爆震工况。原理:爆震传感器是一种振动加速度传感器。它装在发动机气缸体上,可装一只或多只。传感器的敏感元件为一压电晶体,发动机爆震时,发动机振动通过传感器内的质块传递到晶体上。压电晶体由于受质块振动产生的压力,在两个极面上产生电压,把振动转化为电压信号输出。 特点 :结构牢固、紧凑;测量敏感度高。 怠速调节器 EWD3 功能 :提供怠速旁通空气通道,并通过改变通道截面积影响旁通气量,实现发动机怠速工况时转速闭环控制。 原理 :怠速调节器内一块可在轴上自由转动的永久磁铁上刚性连接着一块旋转滑块,永久磁铁可以在电缆线圈驱动下旋转,使滑块随之旋转。滑块的角位置决定了执行器旁通气流通道的开度,因而可以调节旁通气量的大小。电子控制器通过改变输送给执行器脉冲信号的占空比决定滑块的角位置,从而决定了旁通空气流量。 特点 :能耗低,结构紧凑,对尘垢不敏感,具有安全回家功能。 电动燃油泵 EKP13.3, EKP13.5 功能 :将燃油从油箱送往发动机,并提供足够的燃油压力和富余燃油。 原理 :燃油泵为直流电机驱动的叶片泵,置于油箱内,为燃油浸没,利用燃油散热和润滑。蓄电池通过油泵继电器向燃油泵供电,而继电器只有在起动时和发动机运

汽车传感器波形

测试传感器打开点火开关,不运转发动机,慢慢地让节气门从关到全开,并重新返回至节气门,气门全关,反复这个过程几次。慢慢地做,波形像例子中的显示在显示屏上是较好的。波形结果如是传感器是坏的话,翻阅制造商规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1伏到油门全开的的低于5伏,波形上不应有任何断裂,对地尖峰或大跌落。特别应注意达到的2.8伏处的波形;这是传感器的炭膜容易损坏或断裂的部分。在传感器中磨损或断裂的炭膜不能向电脑提供正确的油门位置信息。所以电脑不能为发动机计算正确的混合气命令,引起驾驶性能问题。 ,

进气温度传感器通常用于检测进气管中的空气温度,当用示波器或万用表测试时,从表中读出的是传感器热敏电阻两端电压降,进气温度低时,传感器电阻值及电压降就高,进气温度高时传感器的电阻值和电压降就低。试验方法:除非发现的故障依赖于温度,否则应在发动机完全冷的情况下开始测试工作,用这种方法,可以更好地从怀疑有故障的温度段开始测试。起动发动机加速至2500rpm,稳住转速看示波器屏幕上波形从左端开始直到右端结束,示波器上时间轴每格5秒钟,总共一次记录传感器工作为50秒钟,将屏幕上的波形定住,停止测试。此时传感器已经通过从完全冷的发动机到全部的工作范围,测试进气温度传感器另一种方法是用喷射清洗剂或水喷雾器喷射传感器,这样会使传感器降温,当打开点火开关,发动机又转动的情况下,喷射传感器其波形电压会向上升。波形结果:按照制造厂的资料确定输出电压范围,通常传感器的电压应在3V-5V(完全冷车状态)之间,在运行温度范围内电压降大约在1V-2V左右,这个直流信号的关键是电压幅度,在各种不温度下传感器必须给出对应的输出电压信号。当IAT电路开路时将出现电压向上直到接地电压值的蜂尖;当IAT电路对地短路时将出现电压向下直到参考电压值为零。

汽车发动机上各传感器.

汽车发动机上各传感器 进气压力和进气温度传感器整个系统有 6个传感器随时感知发动机的工作状况。其中进气压力、进气温度是两个重要的参数。在早期的电喷发动机上,这两个参数的传感器制成一体;在 AJR 发动机上是独立的。一为硅电容绝对压力传感器,探测进气压力,它被安装在进气管上,也可安装在进气管附近。进气温度传感器也安装在进气管上。 大气环境,如季节变化、地理位置高低,都会影响进气温度与进气的绝对压力,根据工况随时测得上述两参数,传输到 ECU 中。 当传感器出现故障时,发动机控制单元能够检测到,并能使发动机进入挂帐应急状态下运行,通过 V.A.G.1552或 V.A.G.1551故障阅读仪,可以知道故障信息。 进气温度传感器是一个 ,代号 G72。 (3冷却液温度传感器(也叫水温传感器装在发动机冷却液出水管上, 由此测出发动机温度,转变为电信号传给 ECU ,用来修正喷油定时,从而获得浓度更合适的混合气。它也是一个负热敏电阻, 当该传感器发生故障时, 上述故障阅读仪可读取此有关信息。而且, ECU 能检测到这种故障,并使发动机转入故障应急状态运行 (4节气门位置传感器安装在节气门下方,节气门轴带动节气门位置传感器内的可变电阻转动, 用来改变阻值大小。它将节气门开度大小转变为电信号传给发动机控制单元 ECU , ECU 根据节气门开度大小获得发动机的工况,如怠速工况、部分负荷工况、满负荷工况、调节、修正喷油定时。 该传感器发生故障时, ECU 能检测到,并能使发动机进入故障应急状态 下运行,通过 V.A.G.1522或 V.A.G.1521故障阅读仪可以知道故障信息。 (5氧传感器是完成混合气闭环控制的重要组件,它又称λ传感器,其外侧电极面暴露在废气流中, 而其内侧电极面与外界空气相接触。该传感器由一个特殊陶瓷体(ZiO2或 TiO2构成,在它的表面涂有透气性好的铂电极。其工作原理为:材料表面多

相关文档
最新文档