磷化液中促进剂主要配方成分

磷化液中促进剂主要配方成分
磷化液中促进剂主要配方成分

磷化液配方总

1.配方原料质量份 磷酸110~180 氧化锌30~50 硝酸锌150~170 氯化镁15~30 酒石酸5~10 十二烷基苯磺酸钠2~4 重铬酸钾0.2~0.4 钼酸铵0.8~1.2 水1000 2. 锌钙系磷化液重量比的物质组成 磷酸二氢锌∶硝酸钙∶磷酸∶硝酸镍∶柠檬酸或葡萄糖酸∶柠檬酸或葡萄糖酸的钠盐或钙盐∶氟化钠∶水=2.5∶3.5∶4.9∶-8.4∶0.5-1∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.002-0.8∶4-60。 3. 锌钙系磷化液重量比的物质组成 氧化锌:磷酸:硝酸:碳酸钙:碳酸氢铵:硝酸镍:有机酸:有机酸盐:氟化钠:水=0.8-1.1∶3-4∶4.5-6∶3.5-5.5∶0.1-0.3∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.006-0.08∶4-60; 4. 中温锰基磷化 用浓度为40~65g/1马日夫盐,配成总酸点40~60,游离酸点4~6,酸比 1:9~13的磷化液。本发明的特征在于:磷化液加入浓度为0.8~1.5g/1的添加剂EDTA二钠盐或浓度为1~2g/1的添加剂硼酸,浸泡式磷化时,磷化温度为70~85℃。磷化时间10~40分钟,磷化温度与磷化时间成反比。 5. 硝酸钙,磷酸锌,硝酸镍,硝酸钴,硝酸锡,柠檬酸,酒石酸,E.D.T.A,表面活性剂OP和水组成。 6. 酸洗液和磷化液 1)酸洗液:磷酸,5-50硫尿,0.005-0.015十二烷基磺酸钠,0.0 5-0.15平平加,0.05-0.15氯化十六烷基三甲铵,0.05-0.15柠檬酸,1-10水,93.845-39.535(2)磷化液:硝酸钙,5-15磷酸锌,5-15硝酸镍,0.15-0.25硝酸钴,0.045-0.055硝酸锡,0.045-0.055柠檬酸0.15-0.25酒石酸,0.045-0.055E.D.T.A,0.045-0.055表面活性剂OP,0.008-0.02水89.512-69.26。 7. 除油除锈磷化液 磷酸、柠檬酸、硫脲、磷酸三钠,聚氧乙烯辛基酚醚,其特征是该液还有添加剂,添加剂是 蓖麻油衍生物。 8. 常温下制作和操作的防锈磷化液 磷酸、硝酸、氧化锌、亚硝酸钠、碳酸钠、水,按其重量成份的配比为:H↓[3]PO↓[4]27.2kg HNO↓[3]24.5kgZuO22kgNa↓[2]CO↓[3]10kgH↓[2]O800kg。 9. 钢铁表面防腐处理的磷化液 磷酸、氧化锌、氧化剂、络合剂A、促进剂B等组成, 磷化处理需加温35℃ 10. 常温快速磷化液 磷酸、氧化锌、亚硝酸钠、磷酸二氢锌、氧化剂、络合剂A、促进剂B组成,它在0℃~37℃温 度范围内使用,配方按克/升配比如下:A、磷酸25~35克/升(工业级)氧化锌18~23克/升(工业级)磷酸二氢锌22~30克/升(工业级)亚硝酸钠5~10克/升(工业级)氧化剂0.2~0.5克/升(试剂纯)络合剂A0.2~0.6克/升(试剂纯)促进剂B0.2~0.6克/升(试剂纯)B、当没有络合剂A、促进剂B存在时,以上磷化液也具相对的效果,C、磷化液处理的钢铁表面呈彩色至灰色磷化膜。 11. 新型磷化液 磷化液的配方为:(克 /升)磷酸,5—15硝酸,3—10氧化锌, 3—15催化剂,0.01—2硝酸镍,0.3—3 水,余量。

磷化处理及工艺

磷化 目录 总述 原理及应用 磷化基础知识 1. 一、磷化原理 2. 二、磷化分类 3. 三、磷化作用及用途 4. 四、磷化膜组成及性质 5. 五、磷化工艺流程 6. 六、影响因素 7. 七、磷化后处理 8. 八、磷化渣 9. 九、磷化膜质量检验 10. 十、游离酸度及总酸度的测定 11. 十一、有色金属磷化 总述 原理及应用 磷化基础知识 总述 磷化( phosphorization )是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。磷化处理工艺应用于工业己有90 多年的历史,大致可以分为三个时期:奠定磷化技术基础时期、磷化技术迅速发展时期和广泛 应用时期。 磷化膜用作钢铁的防腐蚀保护膜,最早的可靠记载是英国Charles Ross 于186 9 年获得的专利 (B.P.No.3119) 。从此,磷化工艺应用于工业生产。在近一个世纪的漫长岁月中,磷化处理技术积累了丰富的经验,有了许多重大的发现。一战期间,磷化技术的发展中心由英国转移至美国。1909 年美国T.W.Coslet 将锌、氧化锌或磷酸锌盐溶于磷酸中制成了第一个锌系磷化液。这一研究成果大大促进了磷化工艺的发展, 拓宽了磷化工艺的发展前途。Parker 防锈公司研究开发的Parco Power 配制磷化液,克服T 许多缺点,将磷化处理时间提高到lho 1929 年Bonderizing 磷化工艺将磷化时间缩短至10min, 1934 年磷化处理技术在工业上取得了革命性的发展,即采用了将磷化液喷射到工件上的方法。二战结束以后,磷化技术很少有突破性进展,只是稳步

无渣磷化液配方组成,磷化机理作用及技术开发

无渣磷化液配方组成,磷化机理作用及技术开发 导读:本文详细介绍了无渣磷化液的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 无渣磷化液广泛应用汽车、机械加工、电子加工行业金属表面处理,禾川化学专业从事磷化液成分分析、配方还原、研发外包服务,为磷化液相关企业提供一整套配方技术解决方案。 一.背景 无渣磷化液广泛应用汽车、机械加工、电子加工行业金属表面处理,专业从事磷化液成分分析、配方分析、配方检测、配方还原、配方研制,为磷化液相关企业提供整套技术解决方案一站式服务。磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。磷化是常用的前处理技术,原理上应属于化学转化膜处理。工程上应用主要是钢铁件表面磷化,但有色金属如铝、锌件也可应用磷化。钢铁表面涂装前处理工艺指脱脂(除油)、除锈、表调、磷化。然而由于工件表面的状况不同,则生产工艺也有所不同,有的工艺中没有脱脂或没有除锈工序,有的工艺则没有表面调整工序,但磷化工序是绝对不可缺少的。 在涂装处理过程中,如果不清除油脂、氧化皮和锈层,不进行磷化处理,直接进行涂漆和静电喷涂,就会使钢铁表面的涂层产生脱落,失去了涂装的意义。 目前,国内外的金属加工业、薄板加工业、石油行业及汽车、自行车、高低压开关柜、防盗门、铁路等制造业普遍采用的是中、高温磷化,存在着操作不方

便、能源和材料消耗大、调整频繁、成膜不均、成本高等问题。为解决以上问题,常温磷化已成为国际磷化行业的必然和研究课题。常温磷化不仅可以有效地降低能源消耗,还可以解决操作不方便、材料消耗大、调整频繁、成膜不均、成本高等问题。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 二、磷化液 2.1磷化概念 磷化液的主要成分是磷酸二氢盐,如zn(h2po4)2以及适量的游离磷酸和加速剂等。加速剂主要起降低磷化温度和加快磷化速度的作用。作为化学加速剂用得最多的氧化剂如no3-、no2-、cio3-、h2o2等。磷化是金属与稀磷酸或酸性磷酸盐反应而形成磷酸盐保护膜的过程。 工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成不溶于水的结晶型磷酸盐转化膜的过程,称之为磷化.把金属放入含有锰、铁、锌的磷酸盐溶液中进行化学处理,使金属表面生成一层难溶于水的磷酸盐保护膜的方法,叫做金属的磷酸盐处理。磷化膜层为微孔结构,与基体结合

磷化分类与用途

磷化分类与用途 1、按磷化处理温度分类 (1)高温型 80—98℃处理时间为10-20分钟,形成磷化膜厚达10-30g/m2,溶液游离酸度与总酸度的比值为1:(7-8) 优点:膜抗蚀力强,结合力好。 缺点:加温时间长,溶液挥发量大,能耗大,磷化沉积多,游离酸度不稳定,结晶粗细不均匀,已较少应用。 (2)中温型 50-75℃,处理时间5-15分钟,磷化膜厚度为1-7 g/m2,溶液游离酸度与总酸度的比值为1:(10-15) 优点:游离酸度稳定,易掌握,磷化时间短,生产效率高,耐蚀性与高温磷化膜基本相同,应用较多。 (3)低温型 30-50℃节省能源,使用方便。 (4)常温型

10-40℃常(低)温磷化(除加氧化剂外,还加促进剂),时间10-40分钟,溶液游离酸度与总酸度比值为1:(20-30),膜厚为0.2-7 g/m2。 优点:不需加热,药品消耗少,溶液稳定。 缺点:处理时间长,溶液配制较繁。 2、按磷化液成分分类 (1)锌系磷化 (2)锌钙系磷化 (3)铁系磷化 (4)锰系磷化 (5)复合磷化磷化液由锌、铁、钙、镍、锰等元素组成。 3、按磷化处理方法分类 (1)化学磷化 将工件浸入磷化液中,依靠化学反应来实现磷化,应用广泛。 (2)电化学磷化 在磷化液中,工件接正极,钢铁接负极进行磷化。 4、按磷化膜质量分类

(1)重量级(厚膜磷化)膜重7.5 g/m2以上。 (2)次重量级(中膜磷化)膜重4.6-7.5 g/m2。 (3)轻量级(薄膜磷化)膜重1.1-4.5 g/m2。 (4)次轻量级(特薄膜磷化)膜重0.2-1.0 g/m2。 5、按施工方法分类 (1)浸渍磷化 适用于高、中、低温磷化特点:设备简单,仅需加热槽和相应加热设备,最好用不锈钢或橡胶衬里的槽子,不锈钢加热管道应放在槽两侧。 (2)喷淋磷化 适用于中、低温磷化工艺,可处理大面积工件,如汽车、冰箱、洗衣机壳体。特点:处理时间短,成膜反应速度快,生产效率高,且这种方法获得的磷化膜结晶致密、均匀、膜薄、耐蚀性好。 (3)刷涂磷化 上述两种方法无法实施时,采用本法,在常温下操作,易涂刷,可除锈蚀,磷化后工件自然干燥,防锈性能好,但磷化效果不如前两种。 磷化用途

磷化配方中的主要成分

磷化配方中的主要成分 磷化配方中的主要成分 1:新型磷化药剂的种类: 对于新型涂装前处理的磷化药剂来说,一般指的是低温磷化药剂和常温磷化药剂。这两大药剂还进一步分为亚硝酸盐药剂和非亚硝酸盐药剂或内含促进剂药剂和外加促进剂药剂。如果按配方是否含镍盐来分,还可以分为有镍和无镍两种药剂。概括的说,新型磷化药剂是指低温的亚硝酸盐含镍的磷化药剂,低温内含促进剂非镍磷化药剂,常温亚硝酸盐含镍药剂,常温内含促进剂无镍药剂。 2:新型磷化药剂的特点 A:磷化温度低,能源消耗少。这类磷化药剂主要是指磷化温度在35-55度的低温磷化药剂和冬天也不需要加温的常温磷化药剂。 B:低污染,低毒性。这类磷化药剂是指无亚硝酸盐的药剂。尤其是不含亚硝酸盐也不含镍的药剂。当然类似铬离子等污染中的成分也没有。 C:长寿命,低成本。这类药剂是使用寿命长,单耗少,综合成本低的磷化药剂。 D:可以满足新型涂装方式,即可以满足电泳涂装和静电喷涂等新型涂装方式的磷化药剂。 E:操作简便,管理简单。这类药剂的组分少,添加方便,管理简单。 3:新型磷化药剂的基本成分和作用 新型的磷化药剂成分要比普通的中温和高温磷化药剂组分要复杂的多,除了成膜物质外,通常含有促进剂,改性剂,降渣剂,添加剂等多种成分。 成膜物质

A:磷酸二氢锌 新型磷化药剂的主要成分仍然是磷酸二氢锌,碱金属磷酸盐。磷酸二氢锌的制备一般用氧化锌和磷酸反应制得。制取1克的磷酸二氢锌约用锌0.28克磷酸0.8克。在锌系磷化液(粉)中,锌离子的含量对磷化膜的影响较大。一般的说,锌离子的含量高,可以形成更多的结晶核心,可以加速磷化反应。使磷化膜致密,光泽性好。但是锌离子含量过高,磷化膜结晶粗大,膜脆,挂灰,影响涂膜附着力。锌离子含量过低时,磷化膜薄,不利于磷化膜的形成。磷化时间延长。且磷化膜颜色发暗。根据磷化液中锌离子含量的不同,把锌系磷化液(粉)分为高锌,中锌,低锌。对于电泳涂装,主要采用含量在0.3-1.3克每升的低锌磷化液。对于镀锌钢铁工件的磷化主要采用含锌量在0.9-1.1克的低锌磷化液。 B:碱金属磷酸盐, 这类成膜物质主要在磷化液中。常用的碱金属磷酸盐包括碱金属一代磷酸盐,二代焦磷酸盐,多磷酸盐。它使磷酸与金属离子形成磷酸盐,构成磷化膜的成分。碱金属磷酸盐通常在金属表面形成均匀,致密的彩色磷化膜。碱金属磷酸盐所形成的磷化反应,产生的磷化沉渣少。槽液易于管理,使用成本低,但是由于磷化膜薄,耐蚀性较差。 C:磷酸 磷酸是与金属离子形成磷酸盐的成膜物质,其含量过多过少都直接影响磷化膜的质量。磷酸含量过高时,游离酸就会增加,磷化膜易返锈。磷酸含量过低时,槽液的稳定性就会降低,磷化沉渣就会增加。磷化膜发暗,多孔,甚至磷化不上。磷酸在磷化槽液中的含量一般为14-16克每升为宜。磷酸根和硝酸根的比值会直接影响磷化效果。 D:硝酸钙盐 作为成膜物质的硝酸钙盐主要在锌钙系磷化液(粉)中,它的制取一般用碳酸钙与硝酸反应,钙离子的加入,使磷化膜的结晶得到改善。并可以减少磷化前的表调工序。但是钙离子和锌离子的比值在磷化槽液中有个临界值的问题。当钙

磷化液配方

磷化液配方 说明书页数: 3 权项数: 002 文摘: 一种除锈磷化液,能实现酸洗磷化一步法工艺.它是由磷酸、酒石酸、油酸酰胺丙烯二甲胺、磷酸三钠、聚氧乙烯辛烷基酚醚、邻二甲苯硫脲和水配制而成.另外还配有添加剂--咪唑啉衍生物,从而达到消除"三废"污染、提高金属表面的涂装质量和降低成本的目的. 权利要求: 一种除锈磷化液,其中含有磷酸、酒石酸、油酸酰胺丙烯二甲胺、磷酸三钠、聚氧乙烯辛烷基酚醚、邻二甲苯硫脲。本发明的特征在于该除锈磷化液还配有一种添加剂,该添加剂为咪唑啉衍生物。 文摘: 本发明属于金属表面化学防腐用的锌钙系磷化液,由下述重量比的物质组成,磷酸二氢锌∶硝酸钙∶磷酸∶硝酸镍∶柠檬酸或葡萄糖酸∶柠檬酸或葡萄糖酸的钠盐或钙盐∶氟化钠∶水= 2.5∶ 3.5∶ 4.9-8.4∶1.5-1∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.002-0.8∶4-60。本发明的磷化液不仅低成本、低能耗、省漆、磷化速度快,而且磷化膜质量好。 权利要求:

一种金属表面化学防腐用的锌钙系磷化液,其特征在于由下列重量比的物质所组成: 1)磷酸二氢锌:硝酸钙:磷酸:硝酸镍:有机酸:有机酸盐:氟化钠:水=2.5-3.5∶4.9-8.4∶0.5-1∶0.02-0.16∶0.015-0.06∶0.0002-0.08∶4-60; 2)氧化锌:磷酸:硝酸:碳酸钙:碳酸氢铵:硝酸镍:有机酸:有机酸盐:氟化钠:水=0.8-1.1∶3-4∶4.5-6∶3.5-5.5∶0.1-0.3∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.006-0.08∶4-60; 所述的有机酸是柠檬酸或葡萄糖酸,所述的有机酸盐是这二种酸的钠盐或钙盐。 文摘: 本发明采用革新方案,提供一种含丹宁酸的钢铁表面涂漆前处理液 — 一步磷化液,适用于普碳钢、低合金钢、铸铁构件的涂装前处理,采用本发明一步磷化液处理的钢铁构件,在7-30分钟可一步完成除油、除锈、磷化、钝化全过程,并在钢铁件表面形成4~9μ 的防腐膜,硫酸铜检验指标为3~14分钟,用3%氯化钠溶液浸泡8小时无锈迹,室内存放一年半无锈蚀,与油漆附着力达一级,处理方法采用槽浸、喷射和刷涂

磷化工艺流程

磷化工艺 开放分类:化学工程、化学工艺、化工术语 (I)基本原理及分类 磷化工艺过程是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。 1 基本原理 磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理: 8Fe+5Me(H2PO4)2+8H2O+H3PO4 Me2Fe(PO4)2?4H2O(膜)+Me3(PO4)?4H2O(膜)+7FeHPO4(沉渣)+8H2↑ Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:①酸的浸蚀使基体金属表面H+浓度降低 Fe –2e→ Fe2+ 2H2-+2e→2[H] (1) H2 ②促进剂(氧化剂)加速 [O]+[H] → [R]+H2O Fe2++[O] → Fe3++[R] 式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。 ③磷酸根的多级离解 H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3) 由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。 ④磷酸盐沉淀结晶成为磷化膜 当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数Ksp时,就会形成磷酸盐沉淀 Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2?4H2O↓ (4) 3Zn2++2PO43-+4H2O=Zn3(PO4)2?4H2O↓ (5) 磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。 磷酸盐沉淀的副反应将形成磷化沉渣 Fe3++PO43-=FePO4 (6) 以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和

磷化液配方

磷化液配方与配制 磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护,用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。按用途可分为三类:涂装性磷化;冷挤压润滑磷化;装饰性磷化。按所用的磷酸盐分类有:磷酸锌系、磷酸锌钙系、磷酸铁系、磷酸锌锰系、磷酸锰系。根据磷化温度分类有:高温(80°C 以上)磷化、中温(50~70°C)磷化、低温磷化(40°C左右)和常温磷化(10~30°C)。 除了能产生灰色到黑色磷化膜外,还可以做黑色磷化。目前,有关黑色磷化技术可以分成两种类型。一种是改造原磷化液的配方,使磷化膜的颜色变为黑色;另外一种是将常温发黑和磷化分两步对钢铁进行表面处理。即先用常温发黑工艺对钢铁进行发黑,得到较好的黑色外观,再进行磷化处理以提高表面膜的附着力和耐蚀性。 微谱技术长期做磷化液配方还原,磷化液配方分析,对其组分做定性定量分析,产品性能改进等——微谱分析法提供了“金属表面处理剂”行业的综合技术解决方案。 常温磷化液配方(质量份) 原料1号2号原料1号2号 磷酸 4 3 硼氟酸钠0.8 0.5 氧化锌0.55 0.5 氯酸钠 2.5 2.5 硝酸锌 1.5 1 柠檬酸 2 1 硝酸镍 3 3.5 软化水加至100 硝酸锰 3.5 3 制备方法首先将氧化锌用少量混合湿润,加入磷酸,溶解完全后,再加入其他原料,搅拌均匀即可。 原料配伍本品各组分质量份配比范围为:磷酸2~4、氧化锌0.4~0.6、硝酸锌0.5~1.5、硝酸镍3~5、硝酸锰2~4、硼氟酸钠0.2~1、氯酸钠2~3、柠檬酸0.5~2、软化水加至100 本品由于加入了复合加速剂和复合钝化剂——硝酸镍、硝酸锰、硼氟酸钠和氯酸钠,使磷化膜与工件的结合速度快,结合更牢固。使磷化液磷化速度加快,并使成膜和强度大。 产品特性本品方法简单,被处理工件先要经预处理、脱脂、表调等工艺,使用工件表面无油、无锈及赃物,采用浸渍或喷淋方法施工,在常温下处理3~5min,无需加热,节省能源,操作方便。被处理的工件成膜致密、均匀、连续,成膜时间短,成膜强度大,能够满足汽车灯工件的要求。 低温锌系磷化液配方(g/L) 氧化锌100 乙二胺四乙酸0.66 80%磷酸230 柠檬酸 5 30%硝酸280 过硼酸钠 1 硫酸镍(NiSO4·6H2O) 2.67 碳酸钠 2.3 碳酸锰0.2 水加至1L 制备方法将各组分溶于水混合均匀即可

磷化液msds

第一部分:化学品名称 化学品中文名称:磷酸 化学品英文名称: phosphoric acid 中文名称2: 英文名称2: or the phosphoric acid 技术说明书编码: 947 CAS No.: 7664-38-2 分子式: H3PO4 分子量: 第二部分:成分/组成信息 有害物成分含量 CAS No. 磷酸≥% 7664-38-2 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:蒸气或雾对眼、鼻、喉有刺激性。口服液体可引起恶心、呕吐、腹痛、血便或体克。皮肤或眼接触可致灼伤。慢性影响:鼻粘膜萎缩、鼻中隔穿孔。长期反复皮肤接触,可引起皮肤刺激。 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:本品不燃,具腐蚀性、刺激性,可致人体灼伤。 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分:消防措施

危险特性:遇金属反应放出氢气,能与空气形成爆炸性混合物。受热分解产生剧毒的氧化磷烟气。具有腐蚀性。 有害燃烧产物:氧化磷。 灭火方法:用雾状水保持火场中容器冷却。用大量水灭火。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿防酸碱工作服。不要直接接触泄漏物。小量泄漏:用洁净的铲子收集于干燥、洁净、有盖的容器中。大量泄漏:收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,注意通风。操作尽可能机械化、自动化。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿橡胶耐酸碱服,戴橡胶耐酸碱手套。远离易燃、可燃物。避免产生粉尘。避免与碱类、活性金属粉末接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。稀释或制备溶液时,应小心把酸慢慢加入水中,防止发生过热和飞溅。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。包装密封。应与易(可)燃物、碱类、活性金属粉末分开存放,切忌混储。储区应备有合适的材料收容泄漏物。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):未制定标准 TLVTN: OSHA 1mg/m3; ACGIH 1mg/m3 TLVWN: ACGIH 3mg/m3 监测方法: 工程控制:密闭操作,注意通风。尽可能机械化、自动化。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其蒸气时,必须佩戴自吸过滤式防毒面具(半面罩);可能接触其粉尘时,建议佩戴自吸过滤式防尘口罩。 眼睛防护:戴化学安全防护眼镜。

磷化液配方组成,磷化液成分分析技术及生产工艺

磷化液配方成分分析,磷化机理及技术工艺导读:本文详细介绍了磷化液的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 磷化是金属材料防腐蚀的重要方法之一,禾川化学引进尖端配方破译技术,专业从事磷化液成分分析、配方还原、研发外包服务,为金属表面处理相关企业提供一整套配方技术解决方案。 一、背景 磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。磷化是常用的前处理技术,原理上应属于化学转化膜处理。工程上应用主要是钢铁件表面磷化,但有色金属如铝、锌件也可应用磷化。 钢铁表面涂装前处理工艺指脱脂(除油)、除锈、表调、磷化。然而由于工件表面的状况不同,则生产工艺也有所不同,有的工艺中没有脱脂或没有除锈工序,有的工艺则没有表面调整工序,但磷化工序是绝对不可缺少的。 在涂装处理过程中,如果不清除油脂、氧化皮和锈层,不进行磷化处理,直接进行涂漆和静电喷涂,就会使钢铁表面的涂层产生脱落,失去了涂装的意义。 目前,国内外的金属加工业、薄板加工业、石油行业及汽车、自行车、高低压开关柜、防盗门、铁路等制造业普遍采用的是中、高温磷化,存在着操作不方便、能源和材料消耗大、调整频繁、成膜不均、成本高等问题。为解决以上问题,常温磷化已成为国际磷化行业的必然和研究课题。常温磷化不仅可以有效地降低

能源消耗,还可以解决操作不方便、材料消耗大、调整频繁、成膜不均、成本高等问题。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 二、磷化机理 2.1磷化概念 磷化液的主要成分是磷酸二氢盐,如Zn(H2PO4)2以及适量的游离磷酸和加速剂等。加速剂主要起降低磷化温度和加快磷化速度的作用。作为化学加速剂用得最多的氧化剂如NO3-、NO2-、CIO3-、H2O2等。磷化是金属与稀磷酸或酸性磷酸盐反应而形成磷酸盐保护膜的过程。 工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成不溶于水的结晶型磷酸盐转化膜的过程,称之为磷化。 把金属放入含有锰、铁、锌的磷酸盐溶液中进行化学处理,使金属表面生成一层难溶于水的磷酸盐保护膜的方法,叫做金属的磷酸盐处理。磷化膜层为微孔结构,与基体结合牢固,具有良好的吸附性、润滑性、耐蚀性、不粘附熔融金属(Sn、Al、Zn)性及较高的电绝缘性等。 2.2磷化液的分类

磷化处理技术+配方

磷化处理技术(1) 所谓磷化处理是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面的化学处理方法。所形成的膜称为磷化膜。它的成膜机理为:(以锌系为例) a)金属的溶解过程 当金属浸入磷化液中时,先与磷化液中的磷酸作用,生成一代磷酸铁,并有大量的氢气析出。其化学反应为; Fe+2H 3PO 4 =Fe (H 2 PO 4 ) 2 +H 2? ↑ (1) 上式表明,磷化开始时,仅有金属的溶解,而无膜生成。 b)促进剂的加速 上步反应释放出的氢气被吸附在金属工件表面上,进而阻止磷化膜的形成。因此加入氧化型促进剂以去除氢气。其化学反应式为: 3Zn(H 2PO 4 ) 2 +Fe+2NaNO 2 =Zn 3 (PO 4 ) 2 +2FePO 4 +N 2 ↑+2NaH 2 PO 4 +4H 2 O (2) 上式是以亚硝酸钠为促进剂的作用机理。 c)水解反应与磷酸的三级离解 磷化槽液中基本成分是一种或多种重金属的酸式磷酸盐,其分子式 Me(H 2PO 4 ) 2 ,这些酸式磷酸盐溶于水,在一定浓度及PH值下发生水解泛音法,产 生游离磷酸: Me(H 2PO 4 ) 2 =MeHPO 4 +H 3 PO 4 ( 3 ) 3MeHPO 4=Me 3 (PO 4 ) 2 +H 3 PO 4 ( 4 ) H 3PO 3 =H 2 PO 4 -+H+=HPO 4 2-+2H+=PO 4 3-+3H+ ( 5 ) 由于金属工件表面的氢离子浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。 d)磷化膜的形成 当金属表面离解出的三价磷酸根与磷化槽液中的(工件表面)的金属离子(如

磷化液的基本成分及其作用

磷化液的基本成分及其作用 1成膜物质 1.1磷酸二氢锌:锌系磷化液中,锌离子含量对磷化膜的影响较大。一般来说,锌离子含量高能形成更多的结晶核心,能加速磷化反应,磷化膜致密,光泽性好;但锌离子含量过高时,磷化膜结晶粗大,膜脆,挂灰,影响涂膜附着力;锌离子含量过低时,磷化膜变薄,磷化时间延长,且磷化膜颜色发暗。按锌离子含量不同,锌系磷化液分为高锌系、中锌系和低锌系。对于阴极电泳涂装,主要采用锌含量在0.3-1.3g/l的低锌系磷化液;对于镀锌钢板工件的磷化,则主要采用锌含量在0.9-1.1g/l的低锌系磷化液。 1.2碱金属磷酸盐:这类成膜物质主要用在铁系磷化液中,常用的包括碱金属一代磷酸盐、碱金属二代焦磷酸盐、碱金属多磷酸盐等,它使磷酸与金属离子形成磷酸盐,构成磷化膜的成分。碱金属磷酸盐通常在金属工件表面形成均匀、致密的彩虹色磷化膜。碱金属磷酸盐所形成的磷化反应,产生的磷化沉渣少,槽液易于管理,使用成本较低,但由于磷化膜极薄,抗腐蚀性较差。 1.3磷酸:它是与金属离子形成磷酸盐的成膜物质,其含量过多或过少都会直接影响磷化膜的质量。含量过高时,游离酸度增加,磷化膜易返锈;含量过低时,槽液稳定性会降低,磷化沉渣增加,磷化膜易发暗、多孔,甚至磷化不上。磷酸在磷化槽液中含量一般为14-16g/l为宜。 1.4硝酸钙盐:主要用在锌钙系磷化液中。钙离子的加入,使磷化膜的结晶得到改善,并可以减少磷化前的表调工序,但钙、锌离子的比值在磷化槽中有个临界值问题。当钙离子/锌离子 0.8时,钙离子才能参与成膜,低于0.8,钙离子便不能作为成膜剂。之所以存在这个临界值,是因为磷酸锌的溶度积要比磷酸钙小的多,而在磷化时,锌离子比钙离子更容易进入磷化膜的缘故。 2促进剂 促进剂又称催化剂,但却参与槽液反应,主要作用是促进磷化膜的生长,加快磷化速度,降低磷化温度,其种类与含量对磷化槽液的影响很大。新型磷化液与传统磷化液的区别主要体现在促进剂的差别上。促进磷化膜生长的方法有三类:氧化法、重金属盐法和物理法。 2.1硝酸盐:包括锌盐、钠盐、钾盐、钙盐、镁盐、镍盐等,既可单独使用,也可复合使用。优点是水溶性好、热稳定性高、促进能力强、亚铁离子积累减少、磷化沉渣少。硝酸盐促进剂的浓度范围较宽,一般使用浓度为硝酸根的1-3%。其在锌系磷化槽液中的促进能力,可用硝酸根与磷酸根的比值来衡量。比值越高,生成最大膜重所需时间就越短,膜重的值也越低,同时可有效减少单位膜重的沉渣量。由于硝酸盐促进剂的磷化槽液温度一般在65-93度范围,温度较高,因此一般将其与其它促进剂复合使用。 2.2亚硝酸盐:既是氧化剂,又是还原剂,但在磷化槽液中是一种强有力的氧化促进剂。其优点是:成本低廉,水溶性好,促进能力强,且自身可以产生一定的中和作用,在低温和常温条件下都是特别好的促进剂,磷化质量高,用量少(仅0.1-1g/l以下),但在磷化槽液的酸性条件下极不稳定,因而必须在使用使用过程中频繁补加或连续滴加。亚硝酸盐在磷化槽液中易分解产生二氧化氮,即使在不磷化工件时也会自行分解而消耗,所以在重新开始磷化工件时,必须单独补加。亚硝酸盐的用量是关键。如果用量太少,磷化速度慢,不能在规定的时间内生成连续的磷化膜,磷化膜也易泛黄;如果用量过多,

磷化、脱脂原理和经验配方

磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。 1 基本原理 磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理: 8Fe+5Me(H2PO4)2+8H2O+H3PO4 Me2Fe(PO4)2?4H2O(膜)+Me3(PO4)?4H2O(膜)+7FeHPO4(沉渣)+8H2↑ Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成: ①酸的浸蚀使基体金属表面H+浓度降低 Fe –2e→ Fe2+ 2H2++2e→2[H] (1) H2 ②促进剂(氧化剂)加速 [O]+[H] → [R]+H2O Fe2++[O] → Fe3++[R] 式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。 ③磷酸根的多级离解 H3PO4+H2PO4-+H+ +HPO42-+2H+ +PO43-+3H-(3) 由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。 ④磷酸盐沉淀结晶成为磷化膜 当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数K sp时,就会形成磷酸盐沉淀 Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2?4H2O↓ (4) 3Zn2++2PO43-+4H2O=Zn3(PO4)2?4H2O↓ (5) 磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。 磷酸盐沉淀的副反应将形成磷化沉渣 Fe3++PO43-=FePO4(6) 以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和即可形成磷酸盐沉淀晶核;磷化沉渣的产生取决于反应(1)与反应(2),溶液H+浓度高,促进剂强均使沉渣增多。相应,在实际磷化配方与工艺实施中表面为:适当较强的促进剂(氧化剂);较高的酸比(相对较低的游离酸,即H+浓度);使金属表面调整到具备活性点均能提高磷化反应速度,能在较低温度

磷化液中的各组成的作用及影响

磷化液中的各组成的作用及影响 4.1 pH值的影响 成膜金属离子浓度越低,所要求的溶液的pH值越大,反之,随着成膜离子浓度的提高,可适当降低溶液的pH值。 4.2 游离酸度的影响 游离酸度指磷化液中游离磷酸的含量。酸度太低不利于金属基体的溶解,因此也就不能成膜。但如果酸度太高则大大提高了磷化膜的溶解速度,也不利于成膜,甚至根本不会上膜。 4.3 总酸度的影响 总酸度主要指磷酸盐、硝酸盐和游离酸的总和,反映磷化内动力的大小。总酸度高,磷化动力大,速度快,结晶细。但如果总酸度过高,则产生的沉渣多和粉末附着物多;如果过低,则磷化慢,结晶粗。 4.4 酸比值γ的影响 酸比值是磷化必须控制的重要参数。它是总酸度和游离酸度的比值,以及表示总酸度和游离酸度的相互关系。酸比小,则意味着游离酸度太高,反之,则意味着游离酸度低。酸比值随温度升高而变小,随温度降低而增大。一般常温下控制在20--25:1。 4.5 加速剂的影响 4.5.1 氧化性加速剂 氧化性加速剂有两个十分重要的作用。1)限制甚至停止氢气的释出。这个作用限于金属/溶液接口处,决定磷化膜沉积的速度,是磷化液具有良好性能所必须的条件。2)使溶液中某些元素(特别是还原性化合物)发生化学转化,如把二价铁离子氧化成三价铁,生成不溶性磷酸铁沉渣,从而控制磷化液中亚铁的含量。此外,还可以迅速氧化初生态氢,可大大减少金属发生氢脆的危险。 4.5.1.1 硝酸盐的影响 硝酸盐是常用的氧化剂,可直接加入到磷化液中。NO3-/PO43-比值越高,磷化膜形成越快。但过高会导致膜泛黄。单一使用NO3-会使磷化膜结晶粗大。 4.5.1.2 亚硝酸盐的影响 亚硝酸盐是常用的促进剂,常与NO3-配合使用,以亚硝酸钠的形式加入到磷化液中。但亚硝酸盐不稳定,易分解,用亚硝酸盐做促进剂的磷化液都采用双包装,使用时定量混合,并定期补加。含量过少,促进作用弱;含量过高,则沉渣过多,且形成的膜粗厚,易泛黄。一般含量在0.7-1克/升。 4.5.2 金属离子促进剂的影响 磷化剂中添加金属盐(一般为硝酸盐),如Cu2+、Ni2+、Mn2+等电位较正的金属盐,有利于晶核的形成和晶粒细化,加速常温磷化的进程。 4.5.2.1 铜离子影响 极少量的铜盐会大幅度提高磷化速度。工作液中含Cu2+在0.002-0.004%时,使磷化速度提高6倍以上。但铜离子的添加量一定要适度,否则铜膜会代替磷化膜,其性能下降。 4.5.2.2 镍离子的影响 Ni2+是最有效、最常用的磷化促进剂。它不仅能加速磷化,细化结晶,而且能提高膜的耐腐蚀性能。Ni2+含量不能过低,否则膜层薄;与铜盐不同的是,大量添加镍盐时,并无不良影响,但会增加成本。一般控制Ni2+含量在1.0-5.0克/升

常温磷化液

新型常温磷化液 一、概述 磷化处理是指用酸性磷酸盐溶液处理金属,经过化学和电化学反应使其表面形成一层主要由难溶磷酸盐组成的膜层,其目的是为了在一定程度上提高金属的耐蚀性和抗粘着磨损能力。由于磷化处理工艺简单,操作容易,成本低廉,故广泛应用于机械、汽车、航空、造船以及家庭日用品制造等工业。石油钻采工具在设计和加工制造时,对连接螺纹都要求进行磷化处理,中石油行业标准《钻具螺纹电刷镀镀铜和磷化方法(SY/T5711─95)》明确规定了石油钻具螺纹的磷化方法及标准。 传统磷化工艺分为高温磷化(80~98℃)、中温磷化(60~70℃)、低温磷化(35~55℃)和常温磷化(35℃以下)。就其膜层质量和耐蚀性来讲,高、中温磷化要高于低、常温磷化。但是,由于这些传统磷化工艺都需要将工件浸渍在磷化液中或对其进行连续喷淋,才能实现磷化的目的,因此,使其在一些大型工件应用中受到限制,例如修复后的石油钻具(钻杆)接头螺纹部位,就无法应用传统的磷化工艺对其磷化。 石油钻具是钻井施工中传递扭矩、输送钻井液的重要工具,工作中钻具与钻具连接和卸扣非常频繁,钻具接头螺纹腐蚀与磨损现象较为严重。为了提高钻具接头螺纹的使用寿命,新出厂的钻具,接头螺纹部位都进行了高温磷化或者槽镀铜处理。修复钻具(钻杆),由于体积太大且接头螺纹的工况条件与整体钻杆不同,因此,如何提高修复钻具(钻杆)接头螺纹的使用寿命,是石油界科技人员一直在探讨的问题。 二、修复钻具(钻杆)接头螺纹磷化现状 正因为磷化能在一定程度上提高金属的耐蚀性和抗粘着磨损能力,而且工艺简单、操作容易,成本低廉,因此,磷化处理一直是所有从事钻具修理企业采用的钻具螺纹处理工艺。中石油行业标准《钻具螺纹电刷镀镀铜和磷化方法(SY/T5711─95)》中规定石油钻具螺纹的磷化方法,是依据上世纪八十年代大庆石油管理局研制的一种应用“磷化膏”对钻具螺纹磷化工艺而制定的。该项技术是在常温下采用刷涂的方法进行施工,比较适合于大批量的修复钻具应用,很快在国内修复钻具的企业得到推广和应用。该工艺中的“磷化膏”像稀泥一样,施

磷化液成分与毒性

磷化液成分与毒性 国外环保型涂装前处理工艺逐渐成为业内研究的热点。由于磷化液处理工艺中毒性较大、污染比较严重的主要是亚硝酸盐,重金属Ni2+、Cr6+、Mn2+等离子。所以,该领域的研究也主要集中在为这些物质寻找替代品上,主要分为无亚硝酸盐磷化和无镍磷化。 不过,营口康如科技有限公司技术人员研究发现,这种环保型无毒磷化工艺只是在原有的磷化体系中“兜圈子”,虽然减少了磷化液工艺中的有毒有害物质除油剂,却不能从根本上解决问题。无限降低磷化液毒性是非常必要的,但金属表面前处理工艺的发展方向不应该只是减少有毒有害物质,而应该从根本上解决磷化的污染问题。 在磷化液中添加金属盐(一般为硝酸盐)除油剂,如Cu、Ni、Mn、Ca、Co 等电位较正的金属盐,有利于晶核生成和晶粒细化,有利于加速常温磷化的进程。 Ni2+ 是最有效、最常用的磷化。它不仅能加速磷化、细化结晶,而且能提高膜的抗腐蚀能力。Ni2+含量不宜过低,否则膜层薄;与Cu盐不同的是,大量添加Ni盐并无不良影响,但会增加成本。一般控制Ni2+含量为0.7~5.0 g/L。 Mn2+ 降低磷化处理温度、提高反应速度、降低膜厚,还可降低昂贵的金属镍的用量(Mn/Ni比值应在0.5 以下);此外,Mn的加入还可提高基材表面的耐磨损性能。国外大量采用Zn-Ni-Mn磷化体系,Ni、Mn在成膜过程中被结合到磷化膜晶体内,形成耐蚀性优良的磷酸锰或磷酸镍锰。 一般说来,常温磷化体系均同时含有氧化除油剂、金属离子及成膜助剂。氧化保证常温磷化反应在热力学上是可行的;金属离子及成膜助剂确保常温磷化反应在动力学上是可行的,并起改善膜性能、稳定运行条件等作用。可以说,常温磷化体系均为复合体系。 本文由营口康如科技有限公司整理。

磷化溶液中离子浓度对磷化液的影响

磷化槽中的离子浓度对液体的影响分析 分析离子浓度对磷化液的影响,是关系到磷化膜质量的好坏,也关系到后续工艺中电泳成膜的影响。在整个电泳工艺中,每一个步骤处理的好坏都关系到电泳质量的好坏,有时候为了避免由于电泳质量差带来的问题,对每个步骤的分析处理都显得很有必要。下面我们就来说说在磷化槽中离子的浓度对磷化液有何影响。磷化液中有铁离子、锰离子、锌离子、酸根离子等等。 (1)Fe2+离子,在常温和中温磷化液中保持一定数量的Fe2+离子,能提高磷化膜厚度和抗蚀性能。但Fe2+离子易被氧化成Fe3+而沉淀。当它转变成磷酸高铁,溶液呈乳白色时,磷化膜几乎不能生成,膜的质量恶化。 Fe2+离子含量过高,会使磷化膜晶粒粗大表面白色浮灰,耐蚀性和耐热性能降低。一般中常温磷化中Fe2+离子宜控制在NaH0.5~2.5g/L之间。过多的Fe2+离子可用H2O2除去,每降低1gFe2+约需加30﹪H2O21mL和ZnO0.5g. 在高温磷化液中,Fe2+很不稳定,易氧化成Fe3+离子,并转变为Fe(PO4)3沉淀,使磷化液变浑浊游离酸度升高,需过滤和调整溶液成分后才能使用。(2)Mn2+离子Mn2+能提高磷化膜硬度结合力和耐蚀性,并能使膜层结晶均匀呈深灰色,但在常温和中温磷化液中Mn2+离子含量不宜过高,否则磷化膜不易生成。 (3)Zn2+离子Zn2+离子可加快磷化速度,使膜层致密,闪烁有光。Zn2+离子含量过高时使膜层晶粒粗大、脆弱、表面呈灰白色。Zn2+离子含量过低时,膜层疏松且发暗。 内容不够完整,我来补充下: (1)No3-离子No3-离子可加快磷化速度,降低磷化槽液工作温度。在适当条件 下它与Fe作用生成少量No-,促使Fe2+离子稳定,No3-离子是常、中温磷化液 的重要组成部分,但含量过高就会使磷化膜层粗而薄,易出现黄点或白点。 (2)No2-离子能大大提高常温磷化液的磷化速度,促使磷化膜结晶细致,减少 孔隙,提高抗蚀性。含量过多时,膜层易出现白点。 (3)温度磷化液温度升高,可加快磷化速度并能提高膜层结合力、硬度,耐蚀 性。但温度不宜过高,否则Fe2+离子易氧化成Fe3+离子而沉淀物增加使溶液不 稳定。

相关文档
最新文档