土壤溶磷微生物研究进展_李海云

土壤溶磷微生物研究进展_李海云
土壤溶磷微生物研究进展_李海云

污染土壤微生物修复技术研究进展

污染土壤微生物修复技术研究进展课程论文 摘要针对2014年4月环境环保部公布的首次全国土壤污染状况调查结果,撰写我国最严重的耕地污染中主要污染物镉、砷、滴滴涕和多环芳烃的微生物修复研究进展。 关键词土壤污染;微生物修复;重金属污染;有机物污染 2005年4月至2013年12月我国开展的首次全国土壤污染状况调查结果显示全国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。全国土壤总的超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。人类赖以生存的耕地中土壤点位超标率高达19.4%,迫在眉睫的主要污染物为镉、砷、滴滴涕和多环芳烃[1]。 微生物修复是指利用天然存在的或所培养的功能微生物群,在适宜环境条件下,促进或强化微生物代谢功能,从而达到降低有毒污染物活性或降解成无毒物质的生物修复技术,它已成为污染土壤生物修复技术的重要组成部分和生力军[2]。由于我国土壤调查结果显示在农田耕地中重金属污染物镉、镍、砷、有机污染物滴滴涕和多环芳烃超标最严重,对这些污染物的治理已经迫在眉睫。所以,本文重点阐述针对这5种污染物的微生物修复技术研究进展。 1、重金属污染土壤微生物修复研究进展 土壤微生物种类繁多、数量庞大,是土壤的活性有机胶体,比表面大、带电荷和代谢活动旺盛,在重金属污染物的土壤生物地球化学循环过程中起到了积极作用。微生物可以对土壤中重金属进行固定、移动或转化,改变它们在土壤中的环境化学行为,可促进有毒、有害物质解毒或降低毒性,从而达到生物修复的目的[3]。因此,重金属污染土壤的微生物修复原理主要包括生物富集 (如生物积累、吸附作用)、生物转化(如生物氧化还原、甲基化与去甲基化以及重金属的溶解和有机络合配位降解)、生物固定(如与S2-的共沉淀)、生物滤除(如细菌的淋滤作用)等作用方式。 1.1镉污染 将具有重金属吸附能力的天然蛋白或人工合成肽展示在微生物细胞表面,可以提高微生物对重金属的吸附能力。Kuro da等[4]改造了微生物表面蛋白使得当酵母金属硫蛋白( YMT )串联体在酵母表面展示表达后,4 聚体对重金属吸附能力提高5.9 倍, 8 聚

解磷微生物研究进展

解磷微生物研究进展 康文娟 草业学院草地生物多样性 摘要:磷素是作物生长发育所必需的3大营养元素之一,然而土壤中能被植物吸收利用的有效态无机磷却很低, 一般只占全磷量的2%~3%。本文综述了解磷微生物的种类、分布、数量及作用机理等方面的研究概况,并就目前研究中存在的问题提出了展望。 关键字:解磷微生物;种类;数量及分布;解磷能力;问题及展望 磷素是作物生长发育所必需的3大营养元素之一, 我国农田土壤中的磷元素含量丰富,然而能被植物吸收利用的有效态无机磷却很低, 一般只占全磷量的2% ~ 3%[1]。原因是这些磷素大多以不易被植物吸收利用的难溶性有机态和无机态磷形式存在。为了达到高产而不断使用磷肥后,磷元素又被重新固定为难溶性的磷酸盐,磷素利用率降低,据统计,从1949年到1992年间,我国累计施入农田的磷肥达7 88019万t ( P2O5) ,其中大约有6000万t ( P2O5) 积累在土壤中不能被利用[2]。磷肥等化肥的使用不仅造成了相当程度的环境污染,如水污染、大气污染等,而且引起土壤板结、土壤保水力下降、草地退化、荒漠化严重等不良后果,对人类和食品安全造成了威胁。因此合理有效地使用化肥,研究开发新型微生物肥料已是农业生产亟待解决的重要课题之一。 解磷微生物( phosphate soluble microorganisms, PSMs)是土壤中能将难溶性磷转化为植物能够吸收利用的可溶性磷的一类特殊的微生物功能类群,可以提高植物对磷的利用效率,改善植物营养条件,提高作物产量,增加抗病能力[3];而且还可以改善土壤结构,提高有机质含量,改良盐碱地,对培育和充分发挥土壤生态肥力、保持农业生态环境的平衡等均具有极其重要的作用[4]。随着我国人口日益增长,人民生活水平不断提高,对农产品的数量和质量都提出了更高的要求,同时,由于耕地不断减少,化学磷肥施用量增大,使生产成本直线上升,环境不断恶化,在这种情况下,解磷微生物肥料和其它微生物肥料的综合作用更显示出它们在农业生产中的应用优势和良好前景。因此,对解磷微生物的研究已成为近年来的热点。本文综述了解磷微生物的种类、分布、数量及作用机理等方面的研究概况,并就目前研究中存在的问题提出了展望。 1 解磷微生物的种类 土壤中具有解磷能力的微生物种类很多,按分解底物分为两类: 一类是能够分解无机磷化合物的称为无机磷微生物, 一类是具有分解有机磷化合物能力的称为有机磷微生物。但由于解磷微生物解磷机理复杂, 相当一部分的解磷微生物既能分泌有机酸溶解无机磷盐, 又能分泌磷酸酶物质分解有机磷, 因而很难准确的区分无机磷和有机磷微生物[5]。目前研究较多的具有解磷能力微生物种类主要有解磷细菌、解磷真菌和解磷放线菌。 1.1 解磷细菌

NBRIP培养基(解磷培养基)

NBRIP 培养基(解磷培养基) 简介: 植物根际存在各种微生物,2-5%的细菌能促进植物生长,增加作物产量,被称为根际促生细菌(PGPR),植物根际促生细菌的研究对开发植物专化型微生物菌剂,促进农作物增产增收有重要意义。 Leagene NBRIP 培养基(解磷培养基)主要由葡萄糖、氯化镁、硫酸镁、氯化钾、磷酸钙等组成,经无菌处理,该试剂不含ACC(又称1-氨基羰酰-1-环丙烷羧酸)。NBRIP 培养基多用于菌株液体溶磷能力的测定。该试剂仅用于科研领域,不宜用于临床诊断或其他用途。 组成: 材料: 1、无菌离心管或培养器皿 2、接种环 3、摇床 4、比色杯 5、分光光度计 步骤(仅供参考): 1、种子液的制备:将待测菌种依次接种至NBRIP-P 培养基中,置于摇床振摇培养,获得对数生长期的菌液,以备后续接种使用。 2、取无菌离心管或培养器皿,加入适量NBRIP 培养基(解磷培养基),将活化好的菌株接种于NBRIP 培养基(解磷培养基)。 3、置于摇床振摇培养。 4、取菌液,离心,取上清液加入l 无菌水,滴加2滴二硝基苯酚作为显色剂,再滴入几滴使溶液刚好呈黄色,再用调至无色。 5、加入钼锑抗显色试剂,补水至,摇匀,静置,用分光光度计测定吸光度值,同时以未接种的空白培养基作为相应处理的作为对照。 6、通过磷标准曲线,可查出接菌处理各培养基中可溶性磷的浓度。编号 名称CM0323 Storage NBRIP 培养基(解磷培养基) 500ml 4℃使用说明书1份

注意事项: 1、注意无菌操作,避免微生物污染。 2、如果没有分光光度计,也可以使用普通的酶标仪测定。 3、为了您的安全和健康,请穿实验服并戴一次性手套操作。 有效期:6个月有效。 相关: 编号名称 CC0007磷酸缓冲盐溶液(10×PBS,无钙镁) CM0004LB培养基 DC0032Masson三色染色液 DF0135多聚甲醛溶液(4%PFA) NR0001DEPC处理水(0.1%) PS0013RIPA裂解液(强) TC1167尿素(Urea)检测试剂盒(脲酶波氏比色法)

溶磷微生物对不同磷矿粉的溶解能力_cropped

溶磷微生物对不同磷矿粉的溶解能力 林启美 ,赵海英 ,赵小蓉 ( 中国农业大学土壤和水科学系 ,北京 100094) 摘要 : 通过培养试验对微生物溶解不同来源磷矿粉的能力做了一些探索 。结果表明 ,供试细菌溶解来自湖北 宜都和贵州开阳的磷矿粉能力比较强 ,培养 7d 最高有 2 . 73 %的磷被溶解出来 ;而供试真菌溶解云南磷矿粉的能力 最强 ,也能溶解来自四川清平和贵州开阳的磷矿粉 , 培养 7d 最高有 11 . 91 %的磷被溶解出来 , 而培养 8d 高达约 25 . 40 %的磷被溶解 出 来 , 二 者 溶 解 湖 北 钟 祥 磷 矿 粉 的 能 力 比 较 弱 。预 先 对 磷 矿 粉 进 行 微 波 、超 声 波 和 高 温 (300 ℃、500 ℃、800 ℃ ) 处理 ,不能提高溶磷率 。 关键词 : 微生物 ;磷矿粉 ;溶磷量 Ro c k Pho sp h at e s Solubilizatio n of So m e Microo r gani s ms L IN Qi 2mei , ZHAO Hai 2yin , ZHAO Xiao 2ro n g ( Depa r t ment of S o il an d W ater S c iences , Chi n a A g r icul t u ral U ni versi t y , Beiji n g 100094) Ab s tra c t : The use of microo r ganisms to solubilize rock p ho s p hates was st udied. The result s indicated t hat t he tested bacteria had a st r o n ger capacit y to dissolve t he rocks f ro m Y idu of Hubei p r ovince and Kaiyang of Guizho u p r ovince . The maximal efficiency of P solubilizatio n was 2 . 71 % during 7 d incubatio n . The tested f un 2 gi showed much higher abilit y to dissolve t he rock f ro m Yunnan p r ovince . They also released a large amo u nt of P f ro m t he rocks f ro m Qingping of Sichuan p r ovince and Kaiyang of Guizho u p r ovince . The highest efficiency of P solubilizatio n was 11 . 91 % and 25 . 40 %during 7 d and 8 d incubatio n , respectively. The p r e 2t r eat ment s of ult r aso n ic wave , microwave and high temperat ure (300 ℃, 500 ℃, 800 ℃) did not significantly affect P solubi 2 lizatio n . Ke y wo r d s : Microo r ganisms ; Rock p ho s p hate ; P solubilizatio n capacit y 贮藏磷 ,其菌体含磷量很高1 。 本研究用从土壤中分离出来的溶磷菌 ,分析其 对不同来源的磷矿粉的溶解能力 ,探索利用微生物 活化磷矿粉 ,生产具有生理活性的磷肥 。 早在 300 多年前人类就认识到微生物能够分解 岩石中的矿物 ,并利用这些微生物从岩石中回收铜 、 金 、镍 、锌 、铀等金属 。磷矿石也能够被微生物分解 , 这些微生物常称之为溶磷菌 ,包括细菌 、真菌和放线 菌 ,广泛分布在作 物 种 子 表 面 、土 壤 和 根 际 等 环 境 中 。Agnihot r i 1 报道一株曲霉在 30 ℃下培养 20d , 能够 使 磷 矿 粉 中 的 磷 87 . 7 % 释 放 出 来 , Paul 和 Sundara rao 2 发现培养 14d , 一些芽孢杆菌能 够 将 磷酸 三 钙 中 近 20 %的 磷 溶 解 出 来 , Narsian 和 Pa 2 tel 3 将 1 株曲霉接种到以不同来源的磷矿粉作为唯 一磷源的培养基里 , 培养 14d 后 , 发现最高有 45 % 的磷释放出来 。有些溶磷菌株以多聚磷酸盐的形式 1 材料与方法 1 . 1 菌株 节细菌 ( A rt h r obacte r sp . ) 1 TCRi7 和假单胞细 菌 ( Pseu dom o n a s sp . ) 2V C P1 ,真菌为 2 株曲霉 ( A s 2 pe r gi l l us sp . ) 2 TCi F 2 和 4 TCi F 6 。 1 . 2 磷矿粉来源 磷矿粉采自江苏锦屏 、湖北宜都 、湖北钟祥 、四 收稿日期 :2001209213 基金项目 :国家重点基础研究发展规划项目 ( G 1999011803) 作者简介 :林启美 ( 19612) ,男 ,湖北武穴人 ,副教授 ,博士 ,主要从事土壤和环境微生物生态学研究 。Tel : 010********* ; Fax : 010********* ; E 2mail : linqm @mail . cau. edu. cn

微生物多样性对植物群落影响的研究进展(1)(1)

安庆师范学院本科毕业(学位)论文 姓名:王婷婷 年级: 2 0 0 7级 专业:环境科学 论文题目:微生物多样性对植物 群落影响的研究进展 完成日期:2011年4月27日 指导老师:潘少兵 安庆师范学院资源环境学院 二O一一年四月二十七日

微生物多样性对植物群落影响的研究进展 作者:王婷婷指导老师:潘少兵 (安庆师范学院资源环境学院安徽安庆246011) 摘要:土壤是微生物的主要存在场所,它承载了大部分生命的基因多样性。微生物群落在各种生态进程中具有重要作用,但是对于微生物多样性与执行生态功能能力的联系却研究的很有限。这篇文章以微生物多样性在植物群落方面的作用为基础,探讨微生物群落在执行生态功能中的冗余现象。 关键词:微生物多样性;功能冗余;植物多样性 Advancement of Effect of Microbial Diversity on Plant Diversity Autor:Wang Tingting Instructor: Pan Shaobing (School of Resources and environmental science,Anqing Teachers’College,Anqing 246011,Anhui) Abstract: Microbes are abundant in soil and comprise a large portion of Life's genetic diversity. Soil microbes play key roles in a large number of important ecosystem process- es. But the relativity between soil microbial diversity and their ecological functions is still poorly understood. Here we approach the functional redundances during soil microb- es influencing the ecological functions based on the various roles that they play in plant diversity. Key words:microbial diversity, functional redundances, plant diversity 引言: 土壤是微生物的主要存在场所,微生物在土壤养分转化与腐殖质形成过程中有着非常重要的作用。土壤生态系统是保证动植物生存、农业健康、持续发展的基础[1],对全球的生态环境变化有着深远的影响。土壤微生物群落是土壤中的活性组分, 包括细菌、真菌、放线菌和原生动物、病毒和小型藻类[2],每克土壤中栖息着大约100 亿个微生物[3]。土壤微生物群落对全球生态系统功能如养分转化、有机物的分解、土壤基本结构的维持、

解磷微生物的研究进展

解磷微生物的研究进展 【摘要】磷素是限制植物生长的必需营养元素之一,磷在施入土壤后90%左右被土壤固定,使其有效性降低。因此关于解磷菌的研究一直受到科学家的重视。本文对土壤中解磷微生物的研究简史、解磷微生物的种类及生态分布特征、解磷作用机制及展望等方面的研究进展进行综述。 【关键词】解磷微生物;解磷;研究进展 【Abstract】Phosphorus(P)is one of the major nutrients required for plant growth,However,the uptake of P by plants is limited due to its strong absorption onto soil.So the research on the phosphorus-dissolving microbes(PSM)has been a focus problem for many scientists.The objective of this paper was to review the brief history of the research on the PSM,the varieties,the ecological characteristics the phosphorus-dissolving mechanism and the prospect. 【Key words】Phosphorus-dissolving microbes(PSM);Phosphorus-dissolving;Research advances 磷是植物生长必需的营养元素之一,植物的光合作用和体内的生化过程都必须有磷参加。我国有74%的耕地土壤缺磷,土壤中有95%以上的磷为无效形式,植物很难直接吸收利用。其中难溶性有机磷占土壤全磷的20%~50%,占难溶性土壤磷总量的10%~85%。施用后的磷肥利用率很低,磷肥的当季利用率为5%~25%,大部分的磷与土壤中的Ca2+、Fe2+、Fe3+、Al3+结合形成难溶性磷酸盐[1,2]。因此如何提高磷的利用率一直受到国内外科学家的关注。 土壤中磷的利用率受到很多影响因素的作用,而微生物对磷的转化和有效性具有很大的影响。土壤中存在大量的微生物能够将难溶性磷酸盐转化为植物可吸收利用的形态,具有这种能力的微生物称为解磷菌或溶磷菌(Phosphate-solubilizing microorganisms,PSM)。本文主要对土壤中解磷微生物的研究简史、种类及生态分布特征、解磷作用机制及展望等方面的研究进展进行综述。 1.解磷菌的研究简史 人们关于解磷微生物的研究最早始于二十世纪初。1908年Sackett等从土壤中筛选得到50株细菌,其中36株能够在平板上形成清晰的解磷圈。1935年前苏联学者蒙金娜从土壤中分离得到了能够解磷的巨大芽孢杆菌(Bact megatherium phos-phaticum)。1948年Gerretsen发现土壤中的一些微生物能够促进植株的生长,提高磷的利用率,并且这些微生物能够促进磷矿粉的溶解。1958年Sperber等发现由于土壤的不同,土壤中解磷微生物的数量有较大的差异,植物根际土壤中解磷微生物的数量远超出周围土壤中的数量。1962年Kobus发现土壤中解磷菌的数量受很多因素的影响,如土壤物理结构和类型、有机质含量、

土壤微生物群落多样性研究方法及进展_1

第27卷增刊V ol 127,Sup 1广西农业生物科学Journal o f Guangx i A g ric 1and Biol 1Science 2008年6月June,2008 收稿日期:20080122。 基金项目:广西大学博士启动基金项目(X05119)。 作者简介:姚晓华(广西大学副教授,博士;E -mail:x hy ao@g xu 1edu 1cn 。文章编号:10083464(2008)增008405 土壤微生物群落多样性研究方法及进展 姚晓华 (广西大学农学院,广西南宁530005) 摘要:微生物多样性是指群落中的微生物种群类型和数量、种的丰度和均度以及种的分布情况。研究 土壤微生物群落多样性的方法包括传统的以生化技术为基础的方法(直接平板计数、单碳源利用模式等) 和以现代分子生物技术为基础的方法(从土壤中提取DN A ,进行G+C%含量的分析,或杂交分析,或进 行PCR,产物再进行D GGE/T GG E 等分析)。现代生物技术与传统微生物研究方法的结合使用,为更全面 地理解土壤微生物群落的多样性和生态功能提供了良好的前景。 关键词:微生物多样性;生化技术;分子生物学技术;DN A 中图分类号:.Q 938115 文献标识码:A Advancement of methods in studying soil microbial diversity YAO Xiao -hua (Co llege of Ag ricultur e,G uangx i U niv ersit y,N anning 530005,China) Abstract:Species div ersity consist o f species richness,the total number of species,species ev enness,and the distribution of species 1Methods to measure microbial diversity in so il can be categ orized into tw o g roups:biochemica-l based techniques and m olecular -based techniques 1The fo rmer techniques include plate counts,sole carbon so urce utilizatio n patterns,fatty acid methy l ester analysis,and et al 1The latter techniques include G +C%,DNA reassociation,DNA -DNA hy br idization,DGGE/TGGC,and et al 1Ov er all,the best w ay to study soil microbial diversity w o uld be to use a variety of tests w ith differ ent endpoints and degr ees o f r esolutio n to o btain the bro adest picture possible and the most inform ation r eg ar ding the microbial co mmunity 1 Key words:microbial diversity;biochem ica-l based techniques,mo lecular -based techniques,DNA 微生物多样性研究是微生物生态学最重要的研究内容之一。微生物在土壤中普遍存在,对环境条件的变化反应敏捷,它能较早地预测土壤养分及环境质量的变化过程,被认为是最有潜力的敏感性生物指标之一[1] 。但土壤微生物的种类庞大,使得有关微生物区系的分析工作十分耗时费力。因此,微生物群落结构的研究主要通过微生物生态学的方法来完成,即通过描述微生物群落的稳定性、微生物群落生态学机理以及自然或人为干扰对群落产生的影响,揭示土壤质量与微生物数量和活性之间的关系。利用分子生物学技术和研究策略,揭示自然界各种环境中(尤其是极端环境)微生物多样性的真实水平及其物种组成,是微生物生态学各项研究的基础和核心,是重新认识复杂的微生物世界的开端。

微生物研究进展论文

微生物解磷机理的研究进展 摘要:磷元素植物生长必需的矿质元素之一,而土壤中可溶性磷的含量比较低。土壤中有大量的微生物存在,其中有一些微生物能够将土壤中的不溶性磷转化成可溶性磷。本文对解磷细菌的种类分布、解磷能力、解磷机制进行了综述。希望通过对解磷机制的了解,可以选择和构建出溶磷效果明显的菌株,更好的服务于农业生产。 关键词:土壤;解磷细菌;解磷机制。 Abstract: Phosphorus is one of the essential mineral elements to plant growth, however, there is fairly less content of soluble phosphorus in soil. There are lots of microbes in soil, some of them could dissolve insoluble phosphorus that could not be utilized by plants and transform them into soluble phosphorus. In the paper the advances in research of phosphorous solubilizing microorganisms (PSMs)were reviewed in aspects of species diversity, distribution, phosphorous-solubilizing ability and phosphorous-solubilizing mechanism. Though the understanding of phosphorous-solubilizing mechanism, we can choose and build a better effect of phosphorous-solubilizing strain and serve the agricultural production better. Key words: soil; phosphorous-solubilizing bacteria; phosphorous-solubilizing mechanism. 磷是植物生长所必需的矿质元素之一,是植物体内核酸及多种酶、辅酶、ATP等重要组成成分,这些物质对于细胞来说是至关重要的。磷在土壤中主要以无机磷化合物和有机磷化合物两种形态存在,其中无机磷的含量约占全磷含量的50%以上,主要以矿物形式存在,所以土壤中可溶性磷的含量很低。为了解决土壤中的缺磷状况,每年我国要施用大量的磷肥,但是当施磷肥以后,在土壤中容易形成难溶性的磷。磷肥的利用率相当的低,当季的利用率只有10%一25%[1]。施人土壤中的磷肥除一小部分被植物吸收外,大约70%转化为Ca—P、Fe—P和Al—P等难溶性化合物而储存在土壤中,难以被植物吸收利用[2-3]。而土壤中的磷肥容易随着地表径流进入水体中,使水体出现磷素的富集氧化现象,对环境造成严重的污染。目前有机磷农药的残留在生活中也是很普遍的,我们急需对这些问题进行解决,不仅要对环境进行治理,更要从源头来进行防治。 如何提高磷素的利用率已成为研究的热点问题之一。很多研究表明从土壤中分离的某些细菌对这些难溶性的磷具有降解作用。然而,多年的实践结果表明,溶磷微生物的实际应用效

解磷解钾微生物筛选

解磷解钾微生物的筛选与初步鉴定 微生物是土壤肥力的核心,土壤中的微生物不仅数量巨大,而且种类极多。许多微生物对土壤氮、磷和钾等养分的转化和供给起非常重要的作用。氮、磷和钾均是作物生长发育必需的大量元素。根瘤菌可以与豆科植物共生固氮, 在生物固氮中占有重要的地位。溶磷菌、硅酸盐细菌(又名钾细菌)能够分解土壤中的固定态磷、固定态钾转化为作物可以直接吸收利用的有效磷、有效钾。因此,高效的解磷、解钾菌株对于提高土壤肥力具有非常重要的作用。 一、实验目的 1、从各类土样中筛选高效的解磷解钾菌株 2、熟悉菌株筛选、分离纯化、鉴定等具体操作流程 二、实验原理 分别配制以磷酸钙、钾长石为唯一磷源或钾源的筛选培养基,在该培养基上,只有能分解利用磷酸钙、钾长石的菌株才能够生长。因为磷酸钙、钾长石不能溶解于培养基,故在固体培养基平板上表现为浑浊,若菌株能够利用磷酸钙、钾长石,则在培养基中形成以菌落为中心的透明圈,因此可以通过是否产生透明圈来筛选目的菌株。 分别筛选细菌和真菌。为筛选到真菌,采用在培养基中加入链霉素方法来抑制细菌生长。 三、材料和方法 1、材料 各处取得的土样; 培养基种类如下(g/l): (1)牛肉膏蛋白胨培养基: (2)解磷菌株筛选培养基: 无机磷固体培养基:葡萄糖l0 g,(NH4)2SO40.5 g,酵母粉0.5 g,

MgSO4·7H2O 0.3 g,氯化钠0.3g,氯化钾0.3 g,FeSO4·7H2O 0.03 g,MnSO4·7H2O 0.03 g,Ca3(PO4)2 2 g,琼脂粉18 g,蒸馏水1000 mL,pH 7.2,ll5℃灭菌20 min。(3)钾长石固体培养基: 蔗糖 5 g,葡萄糖 5 g,(NH4)2SO4 0.5 g,酵母粉0.5 g,MgSO4·7H2O 0.3 g,磷酸氢二钠2 g,FeSO4·7H2O 0.03 g,MnSO4·7H2O 0.03 g,钾长石2 g,琼脂粉18 g,蒸馏水1000 mL,pH 7.2,ll5℃灭菌20 min。 2、方法 (1) 筛选: 1、配制0.85%的生理盐水,灭菌备用。 2、取5 g采集的土样溶解到45ml 0.85%的生理盐水中,37度。摇床摇30 min 左右,定为原液。制作浓度梯度10-2、10-4稀释度,分别取原液、-2、-4 各100 μl 分别涂布于解磷、解钾筛选及牛肉膏蛋白胨培养基平板上,28℃倒置培养,牛2天,筛选3天。观察菌落生长,透明圈产生情况。牛肉膏蛋白胨培养基菌落计数,计算菌数/g土壤。 (2)菌落挑取与纯化并保存: 用接种环挑取较大透明圈的单菌落至筛选培养基平板,划线分离单菌落。培养后观察是否为纯菌,菌落形态一致,且验证是否有透明圈后挑取单菌落至解磷或解钾培养基斜面中培养至长好。若不纯则分别挑取形态不同的菌落分别在筛选平板划线,确定透明圈,重复挑取和纯化步骤。挑取至斜面培养基中培养后,将斜面4度冰箱保存。 (3)菌株复筛 将有透明圈的解磷、解钾菌株各自从斜面上用接种环挑取一环,小心点种在筛选培养基上,每个平板点四个不同菌落,注意不要相互污染。28℃倒置培养2~3天观察比较透明圈大小,进行记录。 (4)菌种初步鉴定:牛肉膏蛋白胨培养基。平板菌落、显微镜菌体形态观察、革兰氏染色、半固体穿刺(运动性)等,查伯杰手册,相关生理生化,定属。

中国土壤微生物生态学研究进展汇总

第1章绪论 由来土壤微生物因其数量庞大、种类繁多而被称为丰富的生物资源库。土壤微生物包括蓝细菌、细菌、放线菌等原核微生物,还有真菌、蓝藻除外的藻类真核生物,地衣以及原生动物等,是一种形体微小,结构较简单的生物。广泛活跃于土壤中,土壤微生物对生物地球化学循环贡献着不可估量的力量,在土壤形成、有机质代谢、污染物降解、植物养分循环转化等过程中具有不可替代的作用,同时也是评价该地土壤肥力的重要指标之一,因此,对土壤微生物的生态学研究,有着非常深远的意义[1 -3]。

第2章草地土壤微生物生态研究概况 草地土壤微生物是土壤有机复合体以及草地生态系统的重要组成部分[4]。通过对土壤中微生物的活动和分布进行详细研究,可以了解对微生物特性、分布、功能等的影响的因素有哪些,同时可以知晓微生物对植物生长发育、土壤肥力以及土壤中能量流动与物质循环的影响和作用。 气候变化与季节更替对草地土壤微生物的数量与分布具有一定影响。微生物总生物量在春夏季节较高,秋季较低,冬季最少。不同类群的微生物量有各自不同的特点,但是随季节变化的总体趋势与上述相似。杨成德等[5]对东祁连山高寒草本草地土壤微生物量及酶的季节动态研究中发现,土壤微生物量碳随季节变化呈先升高后降低再升高的趋势,其中7月达到最大值,9月下降到最小值,但土壤微生物量氮、磷的季节变化与土壤微生物量碳有所不同,土壤酶活性也呈现季节性变化。金风霞等[6]在对不同种植年限苜蓿地土壤环境效应的研究中指出,各种植年限苜蓿草地土壤微生物群落以细菌占优势,而真菌的变化规律不明显,随着种植年限的变化,细菌和放线菌的数量呈现逐年递增的趋势。高雪峰等[7]研究了草原土壤微生物受放牧影响后的季节变化规律,研究结果表明,土壤中的细菌数量最低,从3月份开始逐渐增加,8月份达到最高值,8月到10月降低; 真菌数量3月份最高,5月份最低,而5月8月呈增加趋势,8月到10呈降低趋势; 放线菌数量5月份最少,5月到10月逐渐增加,10月份最高,之后又逐渐降低; 三大微生物类群的季节变化趋势不一致。任佐华等[8]研究了青藏高原腹地中,三江源自然保护区中的高寒草原土壤,分析了土壤微生物受气候变化的影响,结果表明,该区域微生物数量细菌最多,放线菌的数量次之,真菌的数量较少; 并且发现主要功能微生物菌群数量从多到少依次为氨化细菌、好气性固氮菌、硝化细菌、亚硝化细菌; 所研究区域的微生物生物量碳、氮含量差异显著; 对三江源地区高寒草原的土壤微生物活性影响明显的因素是温度的升高。

污染土壤的微生物修复研究进展

污染土壤的微生物修复研究进展 土壤污染严重影响了土壤的生产力,是急需解决的环境问题。本文全面地介绍了土壤修复的微生物筛选与降解研究,以及污染土壤的微生物修复技术及其应用,提出了今后微生物修复研究的工作重点,强调了污染物降解基因的发掘和微生物复合修复技术开发的重要性。 标签:土壤污染微生物筛选微生物修复 1简介 我国土壤污染总体形势不容乐观,局部地区污染严重,目前至少有1300-1600万hm2耕地受到农药污染,约占全国耕地的10%以上,每年因重金属污染的粮食就达到1200万t,造成的直接经济损失超过200亿元人民币[1]。与大气、水体相比,污染物更难在土壤中迁移、扩散和稀释,所以土壤污染的治理尤为重要,土壤的环境修复技术也应运而生。 80年代以前,土壤的环境修复主要侧重于研究物理、化学修复理论与技术,80年代后微生物修复受到高度重视。微生物修复主要利用土壤中的土著微生物或向污染环境补充经驯化的高效微生物,在优化的环境条件下,加速分解污染物,修复被污染的土壤。微生物不仅种类繁多,数量极大,分布广泛,而且具有繁殖迅速,个体微小,比表面积大,对环境适应能力强等特点,因而在土壤的环境修复上具有巨大的发展潜力。 2土壤修复的微生物筛选与降解研究 我国土壤污染类型中,重金属污染和有机物污染所占比重较大。自然界中存在能够对重金属或有机物进行降解的菌种和微生物,这些微生物大多存在于被相应污染物污染的土壤表层。因此,人们一般以污染土壤为对象,从中筛选相应的降解菌。 为了获得高效镉吸附微生物,刘标等[2]从重金属污染土壤中分离筛选出4株耐镉能力较强的细菌菌株2-1、2-2、4-1、7-1,其中菌株4-1的镉吸附效果最好,并研究分析了其他常见重金属离子对菌株4-1生长的影响,结果显示培养液中加入Zn2+、Cu2+对菌株生长无明显影响,但加入100mg/L Pb2+会抑制其生长。李明顺等[3]研究了微生物对锑的代谢机制,一方面微生物能够利用体内的蛋白如ArsB转运蛋白将锑外排,另一方面微生物能够对锑进行氧化,将毒性较强的Sb(Ⅲ)转化为毒性相对较弱的Sb(Ⅴ)。 为了得到高效的石油降解菌,汪杰等[4]以柴油为培养基的唯一碳源,从山东胜利油田、新疆克拉玛依油田和陕西长庆油田3处的石油污染土壤中富集纯化得到3株高效的石油烃降解菌,用这3株菌进行污染土壤的修复试验,污染土壤中石油烃降解半衰期为30d左右,为自然情况下的1/4左右。姜肸等[5]以南海

土壤微生物研究进展

哈尔滨师范大学 学年论文 题目植物与微生物关系研究进展 学生李春葳 指导教师王全伟副教授 年级 2009级 专业生物科学 系别生物科学系 学院生命科学与技术学院 哈尔滨师范大学 2012年5月

论文提要 植物与其生长环境中的微生物关系密切,两者形成了植物—微生物共生体系统。植物影响着其周围及体内的微生物的群落结构,这些微生物又通过其生命活动影响植物的生长发育。了解与认识植物与微生物的相互作用对于农业生产具有重要意义。本文就植物类型及植物根系分泌物对微生物群落结构及多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。

植物与微生物关系研究进展 李春葳 摘要:植物与其生长环境中的微生物关系密切,两者形成了植物—微生物共生体系统。植物影响着其周围及体内的微生物的群落结构,这些微生物又通过其生命活动影响植物的生长发育。了解与认识植物与微生物的相互作用对于农业生产具有重要意义。本文就植物类型及植物根系分泌物对微生物群落及其多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。 关键词:植物植物根际微生物内生菌叶围微生物 植物与微生物的相互作用主要包括植物与根际微生物的互作、植物与叶围微生物的互作、植物与内生菌的互作及植物对微生物多样性的影响等。植物与周围环境生物的相互作用在自然界中普遍存在,其中以植物与微生物的互作为重要形式之一。本文就植物类型及植物根系分泌物对微生物群落及其多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。 1植物根际有益微生生物与植物的关系 植物根际有益微生物主要指对植物生长和健康具有促进作用的土壤微生物。这些微生物可以通过一些途径,促进植物定植、生长和发育[1、2]。根据根际有益微生物主要作用可以将其分为植物根际促生微生物PGPM(plant growth promoting micribiology)和生防微生物BCA(biological control agents)2大类。 1.1植物促生微生物 植物促生微生物主要包括根瘤菌(Rhizobium)、菌根菌等。固氮微生物(自生固氮菌、联合固氮菌和共生固氮菌)可以通过固定大气中的N 从而增加植物对氮素的吸收。WuF 2 B发现,苗期海岛棉(Gossypium barbadense)接种自生固氮菌(Azotobacter sp.)、巴西固氮螺菌(Azospirillum brasilense)、多糖芽孢杆菌(Bacillus polymyxa)和根瘤菌后,其功能叶中氮、磷、叶绿素含量以及生物学产量均明显提高[3]。尽管固氮微生物在非豆科植物以外的其他植物根际所占比例很小(1%),但对某些植物来说其根际固氮微生物所固定的氮素对其生长来说仍是重要氮源[1]。有些植物根际促生微生物(主要是菌根真菌)可以通过影响植物根系形态及生理特征,如增加植物根系吸收面积、改变植物根系通透性从而影响植物对N、P、K的吸收[4]。陈洁敏等[5]研究表明,分别接种3种AMF(泡囊丛枝菌根真菌)的玉米(Zeamays)对氮和磷的吸收比未接种的玉米增加了41.14%~78.29%。一些植物根际促生微生物可以通过产生有机酸或酶一类的代谢产物作用于土壤中以螯合形式存在的营养元素,从而使其活化,特别是许多AM真菌对P直接进行活化,从而增加了土壤中植物可利用的P。也有研究表明,菌根可以增加植物对水分的吸收,从而提高植物的抗旱能力。

有机磷农药的微生物降解研究进展

有机磷农药的微生物降解研究进展 摘要:有机磷农药的广泛和大量使用给环境带来了越来越多的危害,作为有机 磷农药的主要降解方式之一,微生物降解发挥着重要的作用。从有机磷农药降解微生物的种类、降解机理和途径、影响微生物降解有机磷农药的因子、微生物降解有机磷农药的途径,并探讨有机磷农药微生物降解的发展趋势和研究展望。 关键词:微生物降解有机磷农药研究展望 前言:农药是确定农业稳定,丰产或者不缺产的重要生产资料。但农药一方面 残留在农产品中,对人体有害?另一方面,在环境中不断积累,带来了日益严重的环境与生态问题。农药的负面效应很多,但总体来说仍是功大于过,而且在未来农业可持续发展战略中,农药将继续挥作用。因此现在摆在我们面前的问题是如何尽可能降低农药的负面效应【1】。有机磷农药的降解主要有生物降解、光化学降解、化学降解等方式,其中生物降解的作用占重要地位。生物降解特别是微生物降解被认为是一种有效的措施,利用微生物或微生物产品来降解污染物的生物修复方法具有无毒、无残留、无二次污染等优点,是消除和解毒高浓度的农药残留的一种安全、有效、廉价的方法。自20世纪60年代有机氯农药在世界范围内受到限制,随之是有机磷农药的发展,到目前有机磷农药已成为应用广泛、品种最多的农药。有机磷农药容易降解,对环境的污染及对生态系统的危害和残留没有有机氯农药那么普遍和突出,且具有药效高、品种多、防治范围广、成本低、选择作高、药害小、在环境中降解快、残毒低等优点。它的降解一直是国内外学者研究的热门方向。 1、有机磷农药的生产和使用现状 随着科技的发展和进步,对农药的需求在一定程度上有所减少,但有机磷等农药在农业上的生产与应用仍占据重要地位。目前,包括杀虫剂、除草剂、杀菌剂在内,世界上的有机磷农药已达150 多种,中国使用的有机磷农药有30 余种。按照毒性大小常分为 3 大类:1.剧毒类,如甲拌磷、内吸对硫磷、保棉丰、氧化乐果等;2.高毒类,如甲基对硫磷、二甲硫吸磷、敌敌畏、亚胺磷等;3.低毒类,如敌百虫、乐果、氯硫磷、乙基稻丰散等。一些有机磷杀虫剂如甲胺磷、对硫磷、久效磷等剧毒杀虫剂在国际上已是禁用产品或限制的品种【2】。 2、有机磷降解微生物的种类 目前,人们已分离出多种能降解有机磷农药的微生物菌群,其中包括细菌、放线菌、真菌和一些藻类。由于细菌具有生化多适应性及易诱发突变菌株等优势,故其在微生物降解中占有重要地位【3】。至今,已分离到的细菌主要有:假单胞菌属(Pseu-domonas)、芽孢杆菌属(Baccillus)、黄杆菌属(Flavobacterium)、不动杆菌属(Acinetobacter)、节杆菌属(Arthrobacter sp.)、沙雷氏菌属(Serratia sp.)等。金彬明等从被有机磷污染的海水样中分离筛选出一株蜡样芽孢杆菌(Bacillus cereus)菌株,在28℃下对甲胺磷(5 mg/L)的降解率达48.9%。解秀平等从污水曝气池中分离得到一株能以甲基对硫磷及其降解中间产物对硝基苯酚为唯一碳源的节杆菌属(Arthrobacter sp.)菌株,在 5 h 内对50 mg/L 的

解磷 内容

离解磷微生物的方法一般是根据在以磷酸三钙为唯一磷源的平板上产生透明圈来确定。 一般来说要以该解磷微生物将要应用的实际环境作为筛选实验的条件,即在与应环境相同的温度,pH值,盐度等条件下培养解磷微生物,以解磷能力最强(一般以培养基中有效磷含量最高为标准)的菌株作为最优选择。 解磷微生物(PSM)包括细菌、真菌和放线菌。 目前报道的解磷细菌主要有芽胞杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、埃希氏菌属(Escherichia)、欧文氏菌属(Erwinia)、土壤杆菌属(Agrobacterium)、沙雷氏菌属(Serratia)、黄杆菌属(Flavobacterium )、肠细菌属(Enterbacter)、微球菌属(Micrococcus)、固氮菌属(Azotobacter)、沙门氏菌属(Salmonella)、色杆菌属(Chromobacterium)、产碱菌属(Alcali—genes)、节细菌属(Arthrobacter)、硫氧化硫功菌(Thiobacillus thivoxidans)和多硫杆菌属(Thiobacillus)等。 解磷真菌主要是青霉属(Penicillium)、曲霉属(Aspergillus)和根霉属(Rhizopus )。而解磷放线菌则绝大部分为链霉菌属(Streptomyces)。 按分解底物可以将解磷微生物分为两类:一类是能够分解无机磷化合物的称为无机磷微生物(包括假单孢菌属的一些种,无色杆菌属的一些种,黄杆菌属的一些种以及氧化硫硫杆菌):一类是具有分解有机磷化合物能力的称为有机磷微生物(包括芽孢杆菌属的一些种,变形菌属的一种,沙雷氏菌属的一些种)。 但由于解磷微生物解磷机理复杂,相当一部分的解磷既能分泌有机酸溶解无机磷盐,又能分泌磷酸酶物质分解有机磷(包括节杆菌属的一些种、链霉菌属的一些种),因而很难准确区分无机磷和有机磷微生物。 例如真菌无机磷培养基:蔗糖2g、葡萄糖2 g、NH4Cl 1.5g、KCl 0.3g、MgSO4 .7H2O 0.4g、NaCl 0.2g、磷酸钙20g,蒸馏水1000 mL,pH7.0。 细菌无机磷培养基:葡萄糖10g,硫酸铵0.5g,氯化钠0.3g,氯化钾0.3g,7水硫酸镁0.3g,磷酸钙5g,4水硫酸锰0.03g,7水硫酸亚铁0.03g,琼脂20g,蒸馏水1000mL,pH7.0-7.2

相关文档
最新文档