PCB常见导通孔、盲孔、埋孔!印制电路板生产工艺中钻孔是非常重要的

PCB常见导通孔、盲孔、埋孔!印制电路板生产工艺中钻孔是非常重要的

PCB 常见导通孔、盲孔、埋孔!印制电路板生产工

艺中钻孔是非常重要的

导通孔(VIA),电路板不同层中导电图形之间的铜箔线路就是用这种孔导通或连接起来的,但却不能插装组件引腿或者其他增强材料的镀铜孔。印制电路板(PCB)是由许多的铜箔层堆叠累积形成的。铜箔层彼此之间不能互通是因为每层铜箔之间都铺上了一层绝缘层,所以他们之间需要靠导通孔(via)来进行讯号链接,因此就有了中文导通孔的称号。

电路板的导通孔必须经过塞孔来达到客户的需求,在改变传统的铝片塞孔工艺中,电路板板面阻焊与塞孔利用白网完成,使其生产更加稳定,质量更加可靠,运用起来更加完善。导通孔有助于电路互相连接导通,随着电子行业的迅速发展,也对印制电路板(PCB)的制作工艺和表面贴装技术提出了更高的要求。

导通孔的塞孔工艺就应运而生了,同时也要满足以下要求:

孔内只需有铜,阻焊可以塞也可以不塞;

孔内必须有锡铅,有一定的厚度要求(4um),避免阻焊油墨入孔,造成

PCB双面板通孔镀铜工艺

PCB 双面板通孔镀铜工艺 7.1 制程目的 双面板以上完成钻孔后即进行镀通孔(Plated Through Hole , PTH) 步骤,其目的使孔壁上之非导体部份之树脂及玻纤束进行金属化( metalization ), 以进行后来之电镀铜制程,完成足够导电及焊接之金属孔壁。 1986 年,美国有一家化学公司Hunt 宣布PTH 不再需要传统的贵金属及无电铜的金属化制程,可用碳粉的涂布成为通电的媒介,商名为"Black hole" 。之后陆续有其他不同base 产品上市, 国内用户非常多. 除传统PTH 外, 直接电镀(direct plating) 本章节也会述及. 7.2 制造流程 去毛头-除胶渣-PTH 一次铜 7.2.1. 去巴里(deburr) 钻完孔后,若是钻孔条件不适当,孔边缘有 1.未切断铜丝 2.未切断玻纤的残留,称为burr.因其要断不断,而且粗糙,若不将之去除,可能造成通孔不良及孔小,因此钻孔后会有de-burr 制程.也有de-burr 是放在Desmear 之后才作业.一般de-

burr 是用机器刷磨,且会加入超音波及高压冲洗的应用.可参考表4.1. 4 7.2.2. 除胶渣(Desmear) A. 目的: a. Desmear b. Create Micro-rough 增力卩adhesion B. Smear产生的原因: 由于钻孔时造成的高温Resin超过Tg值,而形成融熔状,终致产生胶渣。 此胶渣生于内层铜边缘及孔壁区,会造成P.I.(Poor In terco nn ectio n) C. Desmear的四种方法: 硫酸法(Sulferic Acid)、电浆法(Plasma)、铬酸法(Cromic Acid)、高锰酸钾

镀通孔

镀通孔 7.1製程目的 雙面板以上完成鑽孔後即進行鍍通孔(Plated Through Hole , PTH)步驟,其目的使孔壁上之非導體部份之樹脂及玻纖束進行金屬化( metalization ), 以進行後來之電鍍銅製程,完成足夠導電及焊接之金屬孔壁。 1986年,美國有一家化學公司Hunt 宣佈PTH不再需要傳統的貴金屬及無電銅的金屬化製程,可用碳粉的塗佈成為通電的媒介,商名為"Black hole"。之後陸續有其他不同base產品上市, 國內使用者非常多. 除傳統PTH外, 直接電鍍(direct plating)本章節也會述及. 7.2製造流程 去毛頭→除膠渣→PTHa一次銅 7.2.1. 去巴里(deburr) 鑽完孔後,若是鑽孔條件不適當,孔邊緣有1.未切斷銅絲2.未切斷玻纖的殘留,稱為burr.因其要斷不斷,而且粗糙,若不將之去除,可能造成通孔不良及孔小,因此鑽孔後會有de-burr製程.也有de-burr是放在Desmear之後才作業.一般 de-burr是用機器刷磨,且會加入超音波及高壓沖洗的應用.可參考表4.1.

7.2.2. 除膠渣(Desmear) A.目的: a. Desmear b. Create Micro-rough增加adhesion B. Smear產生的原因: 由於鑽孔時造成的高溫Resin超過Tg值,而形成融熔狀,終致產生膠渣。 此膠渣生於內層銅邊緣及孔壁區,會造成P.I.(Poor lnterconnection) C. Desmear的四種方法: 硫酸法(Sulferic Acid) 、電漿法(Plasma)、鉻酸法(Cromic Acid)、高錳

镀通孔制程

镀通孔制程 一、前言 有通孔的电路板,其湿式制程是自镀通孔(Plated Through Hole,PTH)开始的。镀通孔PTH本身的制程也相当长,其全部目的就是要在非导体的孔壁上,建立一层密实牢固的铜金属层(目前的标准制程为铜导体,其它镍或非金属导体之商业化还在努力中),作为导体成为后来电镀铜的基地,故良好的PTH不尽是只做上能导电的薄铜层,而且要做上好品质的铜层,才能因应要求日严的SMT到来。本刊曾在16期已将多层板必须的“除胶渣”(Desmear)制程,以标准制程(SOP)的方式介绍过,现再将PTH制程中其余的部分叙述于后。希望对于初学者有所助益。 镀通孔目前的标准制程应为: 双面板 高品级者 上接钻孔、也应除胶渣 磨损及去毛头整孔→清洗→微蚀→清洗 多层板→除胶渣 活化→清洗→速化→清洗→化学铜→酸液中和→清洗→干燥 现将各制程站以原理、操作及讨论的方式叙述于后。 二、整孔(Hole Conditioning) 电路板在PTH制程之前,可说都是干式制程,至于内层板蚀刻及黑化后,还是要回到干式压板的,之后的钻孔及去毛头也与双面板无异。故整孔这一站将是干湿之分野,居品质的重要关键。 双面板完成钻孔后进入湿式这是第一站,多层板则是要先经除胶渣。此制程一直被视为电镀制程中之前处理清洁作用,其实除了清洁作用外还有把非金属不导电的孔壁作初步情况之整理,与安排使更牢固的接受金属化反应(metallization),这才是更重要的目的,故与电镀前之纯清洁,脱脂,及除锈作用有所不同。虽然也有的原文文章是用soak cleaning叙述这一站,但此站实在不能译为”脱脂”。此种使胶面及玻璃束断面进入良好金属化反应状况的”适况”(Conditioning)处理,主要是对孔壁预先做整理,以增加铜层的覆盖性及其附着力,故知此站对于后来的电镀铜层及焊锡性都有莫大的影响。 1.原理 此一整孔适况处理窍门的被发现也是非常偶然的,早期

盲孔和通孔同步电镀工艺-solidst

印制线路板盲孔电镀填充工艺 熊海平 摘要介绍了一种利用直流电源进行微盲孔和通孔同时电镀的工艺,同时给出了相关的工艺条件和电镀效果。 关键词盲孔通孔同步电镀 Printed Circuit Board Micro-via′s Filling Process Abstract This paper introduced a copper plating process for micro-via filling and through hole plating simultaneously in DC application. Meanwhile, the plating parameters and results were been expressed Key Words Micro-via filling through hole plating 0 前言 微盲孔(Blind Micro-via)电镀铜填充多用于IC晶片载板产业,在电子产品轻、薄、短、小化的发展趋势要求下,印制线路板的布线密度越来越高,这就要求板上的孔径必须越来越小.在导通盲孔上直接叠孔的结构是实现最高布线密度的有效方法之一.就常规的垂直线电镀经验而言,一般通孔中的电镀层厚度要小于板面电镀铜层的厚度,由此可推断,盲孔在电镀过程中,由于受电镀液在孔内的对流性差以及其它客观条件的限制,要想得到理想的填充效果,存在相当大的技术难度。因此,水平电镀设备,脉冲电源等被应用来解决这类难题。是不是垂直电镀线就没办法使盲孔和通孔在同一制程中达到理想的电镀效果呢?事实并非如此,只要我们对设备合理改进,设定合理的工艺流程和参数,对孔径在180微米以下,深度不超过100微米的任意孔径/深度的盲孔,一般能得到较完美的填充。 1.设备要求 毫无疑问,传统的阴极移动加空气搅拌的垂直线电镀方式是不可能圆满完成盲孔填充任务的,必须在此基础上对设备进行适当的改造。最常见的改进方法是,添加高速循环泵,如果电镀槽尺寸许可,在阴极两侧添置两排喷射管,让经循环泵高速流出的镀液,经喷管喷射阴极范围内的有效电镀区域。很多设备商已经在此方面做了相当成功的研究,生产线上已不乏成功使用的范例。 2.工艺流程及电镀参数设定 酸性电镀铜添加剂中的各组份功能和作用原理在很多文献中有详尽的描述,一般而言,常规的全板和图形电镀添加剂中包含着加速剂、抑制剂、润湿剂等主要成分,它们的作用和功能各异,电镀的效果取决于它们的协同效应。作为盲孔电镀的添加剂,如果继续采用这种常规的方式,很难得到理想的填充效果,因为加速剂在孔周的吸附浓度远大于盲孔内壁和底部吸附浓度,铜离子在孔周的交换速率也远大于孔内,因此,在孔周镀层增长速度远大于孔底和孔壁,最终结果如果往往是在盲孔填充过程中,孔内容易出现空洞,如图1。

通孔、盲孔、埋孔的区别

通孔、盲孔、埋孔的区别 之前有网友提醒我有篇文章把PCB的盲孔(Blind hole)、埋孔(Buried hole)弄错了,为了避免类似的问题出现,所以我特地找了一些关于PCB的书籍,研究了一番,把这些PCB上面的一些导孔(Vias)给弄清楚。 我们都知道,电路板是由一层层的铜箔电路迭加而成的,而不同电路层之间的连通靠的就是导孔(via),这是因为现今电路板的制造使用钻孔来连通于不同的电路层,就像是多层地下水道的连通道理是一样的,所不同的是电路板的目的是通电,所以必须在其表面电镀上一层导电物质,如此电子才能在其间移动。 一般我们经常看到的PCB导孔有三种,分别为: 通孔:Plating Through Hole 简称PTH,这是最常见到的一种,你只要把PCB拿起来对着灯光,可以看到亮光的孔就是「通孔」。这也是最简单的一种孔,因为制作的时候只要使用钻头或雷射直接把电路板做全钻孔就可以了,费用也就相对较便宜。可是相对的,有些电路层并不需要连接这些通孔,比如说我们有一栋六层楼的房子,我买了它的三楼跟四楼,我想要在内部设计一个楼梯只连接三楼跟四楼之间就可以,对我来说四楼的空间无形中就被原本的一楼连接到六楼的楼梯给多用掉了一些空间。所以通孔虽然便宜,但有时候会多用掉一些PCB的空间。 盲孔:Blind Via Hole,将PCB的最外层电路与邻近内层以电镀孔连接,因为看不到对面,所以称为「盲通」。为了增加PCB电路层的空间利用,应运而生「盲孔」制程。这种制作方法就需要特别注意钻孔的深度(Z轴)要恰到好处,不可此法经常会造成孔内电镀困难所以几乎以无厂商采用;也可以事先把需要连通的电路层在个别电路层的时候就先钻好孔,最后再黏合起来,可是需要比较精密的定位及对位装置。 埋孔:Buried hole,PCB内部任意电路层的连接但未导通至外层。这个制程无法使用黏合后钻孔的方式达成,必须要在个别电路层的时候就执行钻孔,先局部黏合内层之后还得先电镀处理,最后才能全部黏合,比原来的「通孔」及「盲孔」更费工夫,所以价钱也最贵。这个制程通常只使用于高密度(HDI)电路板,来增加其他电路层的可使用空间。

PCB镀通孔

PCB镀通孔(PTH)常见问题及解决方法 PCB镀通孔(PTH)常见问题及解决方法 (A)孔清洁调整处理 1.问题:基板进行孔清洁处理时带出的泡沫过多,导致下工序槽液被沾污。 原因: (1)孔清洁调整液被基板带出过多 (2)后续工序清洁不够 (3)槽液配制出错 解决方法: (1)保持基板在槽上方停留一定的时间,使槽液滴回槽中。 (2)检查水量是否达到工艺要求。 (3)严格按照工艺要求与操作细则规定进行配制。 2.问题:槽液出现固体颗料 原因: 基板表面上的固体粒子无法溶于非整合性的槽液中 解决方法: A.采用间歇过滤方法。 B.去毛刺时首先进行清洗或蒸汽清洗。 3.问题:指纹或尘埃未除尽 原因: (1)配制溶液或添加药品有错 (2)温度过低

(1)重配或添加时应严格按照工艺规定执行。 (2)检测槽液温度应在工艺规定的范围内。 (B)微蚀处理 1.问题:蚀刻速率过慢或不起微蚀作用 原因: (1)如采用过硫酸铵微蚀液,则溶铜量超标 (2)如采用硫酸/双氧水,可能两成份中其中一个含量不足或溶铜量超标 (3)槽液温度过低 (4)槽液受孔清洁调整液的污染 解决方法: (1)应按照工艺规定,换新溶液。 (2)进行分析或调整。 (3)检测并检查加热装置是否失效。 (4)应按照工艺规定进行重新配制。 2.问题:硫酸/双氧水微蚀刻液蚀刻速率太快及溶液温度升高 原因: (1)溶液中双氧水含量过多 (2)处理的板量过多 (3)特别重新返工的PTH的板有时带入钯成份而加快双氧水的分解 解决方法: (1)分析和调整(按工艺规定执行)。 (2)应按槽液量,测算出最佳的处理多少面积板。 (3)重做的PTH板要采用另外槽液去剥离化学镀铜层,彻底清洗后再进入微蚀槽进行微蚀处理。 3.问题:微蚀后的板表面产生条纹或微蚀不足

PCB双面板通孔镀铜工艺

PCB双面板通孔镀铜工艺 7.1制程目的 双面板以上完成钻孔后即进行镀通孔(Plated Through Hole , PTH)步骤,其目的使孔壁上之非导体部份之树脂及玻纤束进行金属化( metalization ), 以进行后来之电镀铜制程,完成足够导电及焊接之金属孔壁。 1986年,美国有一家化学公司Hunt 宣布PTH不再需要传统的贵金属及无电铜的金属化制程,可用碳粉的涂布成为通电的媒介,商名为"Black hole"。之后陆续有其他不同base产品上市, 国内用户非常多. 除传统PTH外, 直接电镀(direct plating)本章节也会述及. 7.2制造流程 去毛头→除胶渣→PTHa一次铜 7.2.1. 去巴里(deburr) 钻完孔后,若是钻孔条件不适当,孔边缘有1.未切断铜丝2.未切断玻纤的残留,称为burr.因其要断不断,而且粗糙,若不将之去除,可能造成通孔不良及孔小,因此钻孔后会有de-burr制程.也有de-burr是放在Desmear之后才作业.一般 de-burr是用机器刷磨,且会加入超音波及高压冲洗的应用.可参考表4.1.

7.2.2. 除胶渣(Desmear) A.目的: a. Desmear b. Create Micro-rough增加adhesion B. Smear产生的原因: 由于钻孔时造成的高温Resin超过Tg值,而形成融熔状,终致产生胶渣。 此胶渣生于内层铜边缘及孔壁区,会造成P.I.(Poor lnterconnection) C. Desmear的四种方法: 硫酸法(Sulferic Acid) 、电浆法(Plasma)、铬酸法(Cromic Acid)、高锰酸钾法(Permanganate). a. 硫酸法必须保持高浓度,但硫酸本身为脱水剂很难保持高浓度,且咬

电镀填孔工艺影响因素

科技成果:电镀填孔工艺影响因素 电子产品的体积日趋轻薄短小,通盲孔上直接叠孔(viaonHole或Viaonvia)是获得高密度互连的设计方法。要做好叠孔,首先应将孔底平坦性做好。典型的平坦孔面的制作方法有好几种,电镀填孔(ViaFillingPlating)工艺就是其中具有代表性的一种。 电镀填孔工艺除了可以减少额外制程开发的必要性,也与现行的工艺设备兼容,有利于获得良好的可靠性。 电镀填孔有以下几方面的优点: (1)有利于设计叠孔(Stacked)和盘上孔(via.on.Pad): (2)改善电气性能,有助于高频设计; (3)有助于散热; (4)塞孔和电气互连一步完成; (5)盲孔内用电镀铜填满,可靠性更高,导电性能比导电胶更好。 电镀填孔是目前各PCB制造商和药水商研究的热门课题。Atotech、Shipley、奥野、伊希特化及Ebara等国外知名药水厂商都已推出自己的产品,抢占市场份额。 2电镀填孔的影响参数 电镀填孔工艺虽然已经研究了很多,但真正大规模生产尚有待时日。其中一个因素就是,电镀填孔的影响因素很多。如图1所示,电镀填孔的影响因素基本上可以分为三类:化学影响因素、物理影响因素与基板影响因素,其中化学影响因素又可以分为无机成分与有机添加剂。下面将就上述三种影响因素一一加以简单介绍。 2.1化学影响因素 2.1.1无机化学成分 无机化学成分包括铜(Cu2+)离子、硫酸和氯化物。 (1)硫酸铜。硫酸铜是镀液中铜离子的主要来源。镀液中铜离子通过阴极和阳极之间的库仑平衡,维持浓度不变。通常阳极材料和镀层材料是一样的,在这里铜既是阳极也是离子源。当然,阳极也可以采用不溶性阳极,Cu2+采用槽外溶解补加的方式,如采用纯铜角、CuO粉末、Cu

相关主题
相关文档
最新文档