组合数学引论课后答案部分

组合数学引论课后答案部分
组合数学引论课后答案部分

组合数学引论课后答案

习题一

1.1任何一组人中都有两个人,它们在该组内认识的人数相等。

1.2任取11个整数,求证其中至少有两个数,它们的差是10的倍数

1.3任取n+1个整数,求证其中至少有两个数,它们的差是n的倍数

1.4在1.1节例4中证明存在连续的一些天,棋手恰好下了k盘棋(k=1,2,…,21).

问是否可能存在连续的一些天,棋手恰好下了22盘棋

1.5将1.1节例5推广成从1,2,…,2n中任选n+1个数的问题

1.6从1,2,…,200中任取100个整数,其中之一小于16,那么必有两个数,一个

能被另一个整除

1.7从1,2,…,200中取100个整数,使得其中任意两个数之间互相不能整除

1.8任意给定52个数,它们之中有两个数,其和或差是100的倍数

1.9在坐标平面上任意给定13个整点(即两个坐标均为整数的点),则必有一个以

它们中的三个点为顶点的三角形,其重心也是整点。

1.10上题中若改成9个整点,问是否有相同的结论?试证明你的结论

1.11证明:一个有理数的十进制数展开式自某一位后必是循环的。

1.12 证明:对任意的整数N ,存在着N 的一个倍数,使得它仅有数字0和7组成。

(例如,N=3,我们有3259=777?;N=4,有41952=7700?;N=5,有514=70?;……)

1.13

(1) 在一边长为1的等边三角形中任取5个点,则其中必有两个点,该两点的距离

至多为1

2;

(2) 在一边长为1的等边三角形中任取10个点,则其中必有两个点,该两点的距离

至多为

13;

(3) 确定

n m ,使得在一边长为1的等边三角形中任取n m 个点,则其中必有两个点,

该两点的距离至多为1

n ;

1.14 一位学生有37天时间准备考试,根据以往的经验,她知道至多只需要60个小

时的复习时间,她决定每天至少复习1小时,证明:无论她的复习计划怎样,在此期间都存在一些天,她正好复习了13个小时。

1.15 从1,2,…,2n 中任选n+1个整数,则其中必有两个数,它们的最大公约数为1

出的数属于同一个鸽巢,即它们的最大公约数为1

1.16 针对1.1节的例6,当m,n 不是互素的两个整数时,举例说明例中的结论不一

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学题库答案.docx

填空题 1.将 5 封信投入 3 个邮筒,有 _____243_种不同的投法. 2. 5 个男孩和 4 个女孩站成一排。如果没有两个女孩相邻,有43200方法. 3. 22 件产品中有 2 件次品,任取 3 件,恰有一件次品方式数为__ 380 ______. 4.( x y)6所有项的系数和是_64_ _.答案:645.不定方程 x1x2x3 2 的非负整数解的个数为 _ 6 ___. 6 .由初始条件 f (0)1, f (1) 1 及递推关系 f ( n2) f (n1) f ( n) 确定的数列{ f (n)} ( n0) 叫做Fibonacci数列 10 7.( 3x-2y )20的展开式中 x10y10的系数是c20310( 2)10. 8.求 6 的 4 拆分数P4(6)2. 9.已知在Fibonacci数列中,已知 f (3)3,f (4)5, f (5) 8 ,试求Fibonacci 数f (20)10946 10 .计算P4(12) 4 P4 (12)P k (12)P1 (8)P2 (8)P3 (8)P4 (8) k1 34 P1 (8) P2 (8)P k (5)P k (4)14 5 515 k1k 1 11.P4(9)( D) A. 5 B. 8 C. 10 D. 6 12.选择题 1.集合 A{ a1 , a 2 ,L , a10 } 的非空真子集的个数为(A) C. 1024 2.把某英语兴趣班分为两个小组,甲组有 2 名男同学, 5 名女同学;乙组有 3 名男同学, 6名女同学,从甲乙两组均选出 3 名同学来比赛,则选出的 6 人中恰有 1 名男同学的方式数是( D ) A. 800 B. 780 C. 900 D.850 3.设( x , y) 满足条件x y10 ,则有序正整数对( x, y) 的个数为(D) A. 100 C. 50 4.求( x03x12x2x3 )6中 x02 x13 x2项的系数是(C) B. 60 5.多项式(2 x0x14x2x3 )4中项 x02x12x2的系数是(C) A. 78 B. 104 C. 96 D. 48 6.有 4 个相同的红球, 5 个相同的白球,那么这9 个球有( B)种不同的排列方式 A. 63 B. 126 C. 252 7.递推关系 f (n ) 4 f ( n1) 4 f (n 2) 的特种方程有重根2,则( B )是它的一般解 A.c12n 1c2 2n B.(c1c2n)2 n C.c(1n)2 n D.c1 2n c2 2n 8.用数字 1,2,3,4(数字可重复使用)可组成多少个含奇数个1、偶数个 2 且至少含有一个 3 的n (n1) 位数()运用指数生产定理 A. 4n 3n ( 1)n B.4n3n14n2n 1 .4n3n( 1)n 4433

组合数学作业答案

第二章作业答案 7. 证明,对任意给定的52个整数,存在两个整数,要么两者的和能被100整除,要么两者的差能被100整除。 证明 用100分别除这52个整数,得到的余数必为0, 1,…, 99这100个数之一。将余数是0的数分为一组,余数是1和99的数分为一组,…,余数是49和51的数分为一组,将余数是50的数分为一组。这样,将这52个整数分成了51组。由鸽巢原理知道,存在两个整数分在了同一组,设它们是a 和b 。若a 和b 被100除余数相同,则b a -能被100整除。若a 和b 被100除余数之和是100,则b a +能被100整除。 11. 一个学生有37天用来准备考试。根据过去的经验,她知道她需要不超过60小时的学习时间。她还希望每天至少学习1小时。证明,无论她如何安排她的学习时间(不过,每天都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13小时。 证明 设从第一天到第i 天她共学习了i a 小时。因为她每天至少学习1小时,所以 3721,,,a a a 和13,,13,133721+++a a a 都是严格单调递增序列。因为总的学习时间 不超过 60 小时,所以6037≤a ,731337≤+a 。3721,,,a a a , 13,,13,133721+++a a a 是1和73之间的74个整数,由鸽巢原理知道,它们中存在相 同的整数,有i a 和13+j a 使得13+=j i a a ,13=-j i a a ,从第1+j 天到第i 天她恰好学习了13小时。 14. 一只袋子装了100个苹果、100个香蕉、100个桔子和100个梨。如果我每分钟从袋子里取出一个水果,那么需要多少时间我就能肯定至少已拿出了1打相同种类的水果? 解 由加强形式的鸽巢原理知道,如果从袋子中取出451)112(4=+-?个水果,则能肯定至少已拿出12个相同种类的水果。因此,需要45分钟。 17. 证明:在一群1>n 个人中,存在两个人,他们在这群人中有相同数目的熟人(假设没有人与他/她自己是熟人)。 证明 因为每个人都不是自己的熟人,所以每个人的熟人的数目是从0到1-n 的整数。若有两个人的熟人的数目分别是0和1-n ,则有人谁都不认识,有人认识所有的人,这是不可能的。因此,这n 个人的熟人的数目是1-n 个整数之一,必有两个人有相同数目的熟人。 第三章作业答案 6. 有多少使下列性质同时成立的大于5400的整数? (a) 各位数字互异。 (b) 数字2和7不出现。 解 因为只能出现数字0, 1, 3, 4, 5, 6, 8, 9,所以整数的位数至多为8。

组合数学课后答案

作业习题答案 习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 方法二: 对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。 2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.9将一个矩形分成(m +1)行112m m +?? + ??? 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有12m +?? ??? 种,这样一列中两个同色单元格的位置组合共有 12m m +?? ??? 种情况 (3)现在有112m m +?? + ??? 列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

完整版排列组合练习题及答案

排列组合》 一、排列与组合 1. 从9 人中选派2 人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有90 种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13 个 C.14 个 D.15 个 5.用0,1 ,2,3,4,5 这六个数字, (1 )可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000 的自然数? (5)可以组成多少个大于3000,小于5421 的数字不重复的四位数? 二、注意附加条件 1.6 人排成一列(1 )甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2. 由1 、2、3、4、5、6 六个数字可组成多少个无重复数字且是6 的倍数的五位数? 3. 由数字1 ,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379 个数是 A.3761 B.4175 C.5132 D.6157 4. 设有编号为1、2、3、4、5 的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

组合数学课后标准答案

组合数学课后标准答案

————————————————————————————————作者:————————————————————————————————日期:

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学题目及标准答案

组合数学 例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。问共有多少种不同的安全状态? 解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。 用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。这种对应显然是一对一的。因此,安全状态的总数等于这8个数的全排列总数8!=40320。 例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。证明n 偶数。 证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。 例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。 证 设n +1个数是a 1, a 2, ···, an +1。每个数去掉一切2的因子,直至剩下一个奇数为止。组成序列r 1, r 2,, ···, rn +1。这n +1个数仍在[1 , 2n ]中,且都是奇数。而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。若ai >aj ,则ai 是aj 的倍数。 例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k h ,使得 ah+1+…+ ak= 39 证 令Sj= ,j =1 , 2 , …,100。显然 ∑=j i i a 1 ∑=h i i a 1

李凡长版-组合数学课后习题答案-习题3

李凡长版-组合数学课后习题答案-习题3

第三章递推关系 1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n. 2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求 f(n)满足的递推关系. 解:设a n-1a n-2 …a 1 是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1) 表示。 a n 可以有两种情况: 1)不管上述序列中是否有2,因为a n 的位置在最左边,因此0 和1均可选; 2)当上述序列中没有1时,2可选; 故满足条件的序列数为 f(n)=2f(n-1)+2n-1 n 1, f(1)=3 解得f(n)=2n-1(2+n). 3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足 的递推关系. 解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。 则有 h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2) 将(1)得到的h(n)=(2n+4n)/2代入(2),可得 n+4n)/2-2f(n), 4.求满足相邻位不同为0的n位二进制序列中0的个数f(n). 解:这种序列有两种情况: 1)最后一位为0,这种情况有f(n-3)个; 2)最后一位为1,这种情况有2f(n-2)个; 所以 f(1)=2,f(2)=3,f(3)=5. 5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n). 解:最后两位是“00”的序列共有2n-2个。 f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能; f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能; 依此类推,有 17

组合数学作业答案1-2章2016

组合数学作业 第一章引言 Page 13, ex3,4,7,30 ex3. 想象一座有64个囚室组成的监狱,这些囚室被排列成8 8棋盘。所有相邻的囚室间都有门。某角落处意见囚室例的囚犯被告知,如果他能够经过其它每一个囚室正好一次之后,达到对角线上相对的另一间囚室,那么他就可以获释。他能获得自由吗? 解:不能获得自由。 方法一:对64个囚室用黑白两种颜色染色,使得横和竖方向相邻的囚室颜色不同。则对角线上两个囚室颜色为同黑或同白。总共偶数个囚室,若能遍历且不重复,则必然是黑出发白结束,矛盾。 方法二:64个囚室,若要经过每个囚室正好一次,需要走63步,即奇数步。 不妨假设该囚犯在第1行第1列,那么到第8行第8列,横着的方向需要走奇数步,竖着的方向需要走奇数步,即总共需要偶数步。 所以不能恰好经过每个囚室一次到达对角线上的囚室。 ex4. (a) 设f(n)是用多米诺牌(2-牌)对2×n棋盘作完美覆盖的个数。估计一下f(1),f(2),f(3),f(4)和f(5). 试寻找(或证明)这个计数函数f满足的简单关系。利用这个关系计算f(12)。 (b) 设g(n)是用多米诺牌(2-牌)对3×n棋盘作完美覆盖的个数。估计g(1),g(2),…,g(6). 解:(a) f(1)=1, f(2)=2, f(3)=3, f(n+2)=f(n+1)+f(n) f(4)=f(3)+f(2)=5, f(5)=f(4)+f(3)=8 f(6)=f(5)+f(4)=13 f(7)=f(6)+f(5)=21 f(8)=f(7)+f(6)=34 f(9)=f(8)+f(7)=55 f(10)=f(9)+f(8)=89 f(11)=f(10)+f(9)=144 f(12)=f(11)+f(10)=233 (b) g(1)=0, g(2)=3, g(3)=0, g(4)=9+2=11, g(n+4)=4g(n+2)-g(n), g(5)=0, g(6)=41. ex7. 设a和b是正整数,且a是b的因子。证明m×n棋盘有a×b的完美覆盖当且仅当a 既是m又是n的因子,而b是m或n的因子。(提示: 把a×b牌分割成a个1×b牌。) 解:充分性。当a既是m又是n的因子,而b是m或n的因子,则m×n棋盘有a×b的平凡完美覆盖。 必要性。假设m×n棋盘有a×b牌的完美覆盖。则m×n棋盘必有b牌的完美覆盖。根据书中的定理,b是m的因子或n的因子。 下面证明a既是m的因子又是n的因子。 方法一: 因为a是b的因子,所以a×b牌可以分割成b/a个a×a牌。m×n棋盘有a×a的完美覆盖,则必然有a×a牌的完美覆盖。而a×a牌是正方形的,所以只有唯一的一种平凡覆盖方式。从而m是a的倍数,n也是a的倍数。 方法二: 因为a是b的因子,不妨设b=ka。由m×n棋盘有a×b牌的完美覆盖,可任取一个完美覆盖。设第一行的n个方格由p个a×b牌和q个b×a牌盖住,则有n=pb+qa=(pk+q)a,所以n是a的倍数。同理,m也是a的倍数。

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

组合数学 课后答案

习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

2.2任取11个整数,求证其中至少有两个数的差是10的整 数倍。 证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有 两个点,由它们所连线段的中点的坐标也是整数。 2.3证明: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通 过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.5一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果? 证明: 根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学 试题及答案09

组合数学试题 共 5 页 ,第 1 页 电子科技大学研究生试卷 (考试时间: 至 ,共 2 小时) 课程名称 组合数学 教师 学时 40 学分 2 教学方式 讲授 考核日期 2009 年 12 月 日 成绩 考核方式: (学生填写) 一、(14分) 现安排从星期一至星期五对5个项目A, B, C, D, E 进行评审,每个项目安排一天,每天安排一个项目。但要求项目A 不安排在星期二评审,项目B 不安排在星期三和星期五评审,项目C 不安排在星期四评审,项目D 不安排在星期一评审,项目E 不安排在星期三和星期四评审。问有多少种不同的评审安排方案? 解 原问题可模型化为一个5元有禁位的排列. 其禁区棋盘C 如下图的阴影部分。 -----------------4分 由图,可得C 的棋盘多项式为 R(C)= = 1+7x+17x 2+18x 3+8x 4+x 5 -----------------5分 所以安排方案数为 5! - 7·4! + 17·3! - 18·2! + 8-1 -----------------4分 = 25 即共有25种。 -----------------1分 二、(10分)用2种颜色对下图的小圆点着色,证明必存在两列,其着色完全相同。 证明:因每个小圆点有2种颜色可选,故每列恰有8 种着色方案, -------------5分 学 号 姓 名 学 院 …… … …… …… …密 …… …… … 封 … … … … … 线 … … … … … 以 … … … … … 内 … … … … … 答 … …… … … 题 … …… … … 无 … … … … … 效… … … …… …… … A B C D E 1 2 3 4 5

组合数学6章作业答案

第6章 容斥原理及应用 6.7 练习题 3、求出从1到10000既不是完全平方数也不是完全立方数的整数个数。 解:∵100001002=,9261213=,10648223= ∴从1到10000,共有100个平方数,21个立方数 又∵409646=,1562556= ∴从1到10000,共有4个6次方数,也就是共有4个数既是平方数又是立方数 计算:10000-100-21+4=9883 ∴从1到10000既不是完全平方数也不是完全立方数的整数有9883个 □ 4、确定多重集{}d c b a S ????=5,4,34,的12-组合的个数。 解:设T :{}d c b a S ?∞?∞?∞?∞=,,,*的所有12-组合 1A :a 的个数大于4的12-组合 2A :b 的个数大于3的12-组合 3A :c 的个数大于4的12-组合 4A :d 的个数大于5的12-组合 要求的是: 4321A A A A ??? = T )(4321A A A A +++- )(434232413121A A A A A A A A A A A A ?+?+?+?+?+?+ )(432431421321A A A A A A A A A A A A ??+??+??+??- )(4321A A A A ???+ T =??? ? ??-+121412=455 1A =???? ??-+7147=120 2A =???? ??-+8148=165 3A =???? ??-+7147=120 4A =??? ? ??-+6146=84

21A A ?=???? ??-+3143=20 31A A ?=???? ??-+2142=10 41A A ?=???? ??-+1141=4 32A A ?=???? ??-+3143=20 42A A ?=???? ??-+2142=10 43A A ?=???? ??-+1141=4 321A A A ??=421A A A ??=431A A A ??=432A A A ??=4321A A A A ???=0 455-(120+165+120+84)+(20+10+4+20+10+4)=34 ∴多重集{}d c b a S ????=5,4,34,的12-组合的个数是34 □ 9、确定方程 204321=+++x x x x 满足 611≤≤x ,702≤≤x ,843≤≤x ,624≤≤x 的整数解的个数。 解:设 116x y -=, 227x y -=, 338x y -=, 446x y -= 则原方程等价于 确定方程 74321=+++y y y y 满足 501≤≤y , 702≤≤y , 403≤≤y , 404≤≤y 的整数解的个数。 设S :74321=+++y y y y 的所有非负整数解的集合 1A :74321=+++y y y y 的所有满足61≥y 的非负整数解的集合 2A :74321=+++y y y y 的所有满足82≥y 的非负整数解的集合 3A :74321=+++y y y y 的所有满足53≥y 的非负整数解的集合 4A :74321=+++y y y y 的所有满足54≥y 的非负整数解的集合 若j i ≠,则?=?j i A A ,那么要求的是:

组合数学题库答案备课讲稿

组合数学题库答案

填空题 1.将5封信投入3个邮筒,有_____243 _种不同的投法. 2.5个男孩和4个女孩站成一排。如果没有两个女孩相邻,有 43200 方法. 3.22件产品中有2件次品,任取3件,恰有一件次品方式数为__ 380 ______. 4.6()x y +所有项的系数和是_64_ _.答案:64 5.不定方程1232++=x x x 的非负整数解的个数为_ 6 ___. 6.由初始条件f f (0)1,(1)1==及递推关系)()1()2(n f n f n f ++=+确定的数列f n n {()}(0)≥叫做Fibonacci 数列 7.(3x-2y )20 的展开式中x 10y 10的系数是101010 20)2(3-c . 8.求6的4拆分数P 4(6)= 2 . 9.已知在Fibonacci 数列中,已知f f f (3)3,(4)5,(5)8===,试求Fibonacci 数f (20)=10946 10.计算P 4(12)= k k P P P P P P 4 412341(12)(12)(8)(8)(8)(8) ===+++∑k k k k P P P P 34 121 1 (8)(8)(5)(4)145515===+++=+++=∑∑ 11.P 4(9)=( D )A .5 B. 8 C. 10 D. 6 12.选择题 1.集合A a a a 1210{,,,}=的非空真子集的个数为( A )A.1022 B.1023 C. 1024 D.1021 2.把某英语兴趣班分为两个小组,甲组有2名男同学,5名女同学;乙组有3名男同学,6名女同学,从甲乙两组均选出3名同学来比赛,则选出的6人中恰有1名男同学的方式数是( D ) A .800 B. 780 C. 900 D. 850 3.设x y (,)满足条件x y 10+≤,则有序正整数对x y (,)的个数为( D ) A. 100 B.81 C. 50 D.45 4.求60123(32)+++x x x x 中x x x 23 012项的系数是( C ) A.1450 B. 60 C.3240 D.3460 5.多项式40123(24)x x x x +++中项2 20 12x x x ??的系数是( C ) A .78 B. 104 C. 96 D. 48 6.有4个相同的红球,5个相同的白球,那么这9个球有( B )种不同的排列方式 A. 63 B. 126 C. 252 D.378 7.递推关系f n f n f n ()4(1)4(2)=---的特种方程有重根2,则(B )是它的一般解

组合数学习题解答

第一章: 1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。 解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。 1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。 1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10 ! 10 种方式。 两人坐在一起的方式数为9 ! 92? ,故两人不坐在一起的方式数为:9!-2*8!。 1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=??? ? ??-+=515456 (2)分为求: x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1 将它们相加即得, F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。 第二章: 2.3. 在边长为1的正三角形任意放置5个点,则其中至少有两个点的距离≤1/2。 解:将边为1的正三角形分成边是为1/2的四个小正三角形,将5个点放入四个小正三角形中,由鸽笼原理知,至少有一个小正三角形中放有2个点,而这两点的距离≤1/2。 1/2 1/2 1/2

李凡长版组合数学课后习题标准答案习题

第二章 容斥原理与鸽巢原理 1、1到10000之间(不含两端)不能被4,5和7整除的整数有多少个? 解 令A={1,2,3,…,10000},则 |A|=10000. 记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除的整数集合,则有: |A 1| = L 10000/4」=2500, |A 2| = L 10000/5」=2000, |A 3| = L 10000/7」=1428, 于是A 1∩A 2 表示A 中能被4和5整除的数,即能被20 整除的数,其个数为 | A 1∩A 2|=L 10000/20」=500; 同理, | A 1∩A 3|=L 10000/28」=357, | A 2∩A 3|=L 10000/35」=285, A 1 ∩A 2 ∩ A 3 表示A 中能同时被4,5,7整除的数,即A 中能被4,5,7的最小公倍数lcm(4,5,6)=140整除的数,其个数为 | A 1∩A 2∩A 3|=L 10000/140」= 71. 由容斥原理知,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - (|A 1| + |A 2| +|A 3|) + (|A 1∩A 2| + |A 1∩A 3| +|A 3∩A 2|) - |A 1∩A 2∩A 3| = 5143 2、1到10000之间(不含两端)不能被4或5或7整除的整数有多少个? 解 令A={1,2,3,…,10000},记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除 的整数集合,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - ||321A A A ?? - 2 = 10000 - L 10000/140」- 2 = 9927 3、1到10000之间(不含两端)能被4和5整除,但不能被7整除的整数有多 少个? 解 令A 1表示在1与10000之间能被4和5整除的整数集,A 2表示4和5整除, 也能被7整除的整数集。则: |A 1| = L 10000/20」= 500, |A 2| = L 10000/140」= 71, 所以1与10000之间能被4和5整除但不能被7整除的整数的个数为:500-71=429。 4、计算集合{2·a, 3·b, 2·c, 4·d }的5组合数. 解 令S ∞={∞·a, ∞·b,∞·c,∞·d},则S 的5组合数为()1455 -+ = 56 设集合A 是S ∞的5组合全体,则|A|=56,现在要求在5组合中的a 的个数小于等 于2,b 的个数小于等于3,c 的个数小于等于2,d 的个数小于等于4的组合数. 定义性质集合P={P 1,P 2,P 3,P 4},其中: P 1:5组合中a 的个数大于等于3; P 2:5组合中b 的个数大于等于4; P 3:5组合中c 的个数大于等于3; P 4:5组合中d 的个数大于等于5. 将满足性质P i 的5组合全体记为A i (1≤i ≤4). 那么,A 1中的元素可以看作是由 S ∞的5-3=2组合再拼上3个a 构成的,所以|A 1| =()142 2 -+ = 10.

相关文档
最新文档