03章 热力学第二定律

03章 热力学第二定律
03章 热力学第二定律

第三章热力学第二定律

1. 5 mol He(g)从273.15 K和标准压力101.325 kPa变到298.15K和压力

p=10×101.325 kPa, 求过程的ΔS。(已知C(V,m)=3/2 R)

2. 0.10 kg 28

3.2 K的水与0.20 kg 313.2 K 的水混合,求ΔS。设水的平均比热为

4.184kJ/(K·kg)。

3. 实验室中有一大恒温槽(例如是油浴)的温度为400 K,室温为300 K。因恒温槽绝热不良而有4000 J的热传给空气,用计算说明这一过程是否为可逆?

4. 在298.15K的等温情况下,两个瓶子中间有旋塞连通。开始时,一放0.2 mol O2,压力为0.2×101.325kPa,另一放0.8 mol N2,压力为0.8×101.325 kPa,打开旋塞后,两气体互相混合。计算:

(1)终了时瓶中的压力。

(2)混合过程中的Q,W,ΔU,ΔS,ΔG;

(3)如果等温下可逆地使气体回到原状,计算过程中的Q和W。

5.(1)在298.2 K时,将1mol O2从101.325 kPa 等温可逆压缩到6×101.325 kPa,求Q,W,ΔU m,ΔH m,ΔF m,ΔG m,ΔS m,ΔS iso

(2)若自始至终用6×101.325 kPa的外压等温压缩到终态,求上述各热力学量的变化值。

6. 在中等的压力下,气体的物态方程可以写作pV(1-βp)=nRT。式中系数β与气体的本性和温度有关。今若在273K时,将0.5 mol O2由1013.25kPa的压力减到101.325 kPa,试求ΔG。已知氧的β=-0.00094。

7. 在298K及101.325 kPa下,一摩尔过冷水蒸汽变为同温同压下的水,求此过程的ΔG m。已知298.15K时水的蒸汽压为3167Pa。

8. 将298.15K 1 mol O2从101.325 kPa绝热可逆压缩到6×101.325 kPa,试求Q,W,ΔU m, ΔH m, ΔF m, ΔG m, ΔS m和ΔS iso(C(p,m)=7/2 R)。已知

(298K,O2)=205.03 J/(K·mol) 。

9. 在298.15K和101.325 kPa时,反应H2(g)+HgO(s)=Hg(l)+H2O(l) 的为195.8 J/mol。若设计为电池,在电池

H2(101.325 kPa)|KOH(0.1 mol/kg)|HgO(s)+Hg(l)中进行上述反应,电池的电动势为0.9265 V,试求上述反应的

Δr S m和Δr G m。

10. 某一化学反应若在等温等压下(298.15K,101.325 kPa)进行,放热40 kJ,若使该反应通过可逆电池来完成,则吸热4.0 kJ。

(1)求该化学反应的Δr S m。

(2)当该反映自发进行时(即不做电功时),求环境的熵变及总熵变。

(3)计算体系可能做的最大功。

11.一摩尔单原子理想气体始态为273 K,101.325 kPa ,计算经过下列变化后的各个ΔG m。设该条件下气体摩尔熵为100 J/(K·mol)。

(1)恒压下体积加倍。

(2)恒容下压力加倍。

(3)恒温下压力加倍。

12.将1 mol H2O(g)在373 K下小心等温压缩,在没有灰尘情况下获得了压力为2×101.325 kPa的过热蒸汽,但不久全凝聚成液态水,请计算这凝聚过程的

ΔH m,ΔG m和ΔS m。

H2O(g,373K,2×101.325 kPa) --> H2O(l,373K, 2×101.325 kPa) 已知:在这条件下,水的汽化热为46.024 kJ/mol,设气体为理想气体,水的密度为1000 kg*m-3,液体体积不受压力影响。

13.在温度为298 K,压力为101.325 kPa下,C(金刚石)和C(石墨)的摩尔熵分别为2.45和5.71 J/(K·mol),其燃烧热依次为-395.40和-393.51 kJ/mol, 又其密度分别为3513和2260 kg·m-3。试求:

(1)在298.15K及101.325 kPa下,石墨到金刚石的;

(2)哪一种晶形较为稳定?

(3)增加压力能否使不稳定的晶体变成稳定的晶体,如有可能,则需要加多大的压力?

14.设某气体其状态方程式为 pV=RT+ap(式中a 是常数)。求等温可逆膨胀过程中W,Q和ΔH的表示式。

15.当外压降到66.87 kPa时,水的沸点为若干度?已知(298K,H2O)

为40.67 kJ/mol 。

16.溜冰鞋下面的冰刀与冰接触的地方,长度为7.62 cm,宽度为2.45× cm。(1)若某人的体重为60 kg,试问施加于冰的压力为若干?

(2)在该压力下冰的熔点为若干?

(已知冰的融化热为6.01 kJ/mol, =273.16 K,冰的密度为920 kg·m-3, 水的密度为1000 kg·m-3 )。

17.正已烷的沸点是342.2 K,假定他服从楚顿规则,试估计298.2 K时正己烷的蒸汽压。

18.乙烯的蒸汽压与温度的关系可写作

试求乙烯在正常沸点169.3 K的蒸发热。

19.纯水蒸汽压在298.2 K时为3167.4 Pa,试问水在压力的空气中其蒸汽压为若干?

20.苯在正常沸点353K下的 =30.77 kJ/mol,今将353K及101.325 kPa

下的 1 mol C6H6(l) 向真空等温蒸发为同温同压的苯蒸汽(设为理想气体)(1)请求计算在此过程中苯吸收的热量Q与作的功W。

(2)求苯的摩尔气化熵和摩尔气化自由能。

(3)求环境的熵变ΔS环。

(4)应用有关原理,判断上述过程是否为不可逆过程?

(5) 298 K是苯的蒸汽压为多大?

热力学第二定律习题详解(汇编)

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能 不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;

大学物理化学2-热力学第二定律课后习题及答案

热力学第二定律课后习题答案 习题1 在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。求整个过程的?S 为若干?已知C V ,m ,A = 1.5 R ,C V ,m ,B = 2.5 R [题解] ?? ? ??B(g)2mol A(g)2mol ,,纯态 3001001K kPa ,() ?→???? 混合态 ,,2mol A 2mol B 100kPa 300K 1 +==?? ? ????p T 定容() ?→??2 混合态 ,,2mol A 2mol B 600K 2 +=??? ??T ?S = ?S 1 + ?S 2,n = 2 mol ?S 1 = 2nR ln ( 2V / V ) = 2nR ln2 ?S 2 = ( 1.5nR + 2.5nR ) ln (T 2 / T 1)= 4nR ln2 所以?S = 6nR ln2= ( 6 ? 2 mol ? 8.314 J ·K -1·mol -1 ) ln2 = 69.15 J ·K -1 [导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。 习题2 2 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405.2 kPa 的始态,依次经历下列过程: (1)恒外压202.6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101.3 kPa ; (3)最后定容加热至500 K 的终态。 试求整个过程的Q ,W ,?U ,?H 及?S 。 [题解] (1)Q 1 = 0,?U 1 = W 1, nC V ,m (T 2-T 1))( 1 1 22su p nRT p nRT p --=, K 4005 4 6.2022.405)(5.1122121 1 212====-= -T T kPa p kPa p T p T p T T ,得,代入,

热力学第二定律的建立及意义

1引言 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。19蒸汽机的发明,使提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺从理论上研究了热机的效率问题. 卡诺的理论已经深含了热力学第二定律的基本思想,但由于受到热质说的束缚,使他当时未能完全探究到问题的底蕴。这时,有人设计这样一种机械——它可以从一个热源无限地取热从而做功,这被称为第二类永动机。1850 年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,1851年开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的“开尔文表述”。在提出第二定律的同时,克劳修斯还提出了熵的概念,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。热力学第二定律的各种表述以不同的角度共同阐述了热力学第二定律的概念,完整的表达出热力学第二定律的建立条件并且引出了热力学第二定律在其他方面的于应用及意义。 2热力学第二定律的建立及意义 2.1热力学第二定律的建立 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。但是它的科学价值并不仅仅限于解决热机效率问题。热力学第二定律对涉及热现象的过程, 特别是过程进行的方向问题具有深刻的指导意义它在本质上是一条统计规律。与热力学第一定律一起, 构成了热力学的主要理论基础。 18世纪法国人巴本发明了第一部蒸汽机,后来瓦特改进的蒸汽机在19 世纪得到广泛地应用, 因此提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺(S.Carnot, 1796~ 1832) 从理论上研究了热机的效率问题。

热力学第二定律的发展与应用

浅论热力学第二定律的发展与应用

————————————————————————————————作者:————————————————————————————————日期:

热工学课程论文 题目浅论热力学第二定律的发展与应用 学院工程技术学院 专业机械设计制造及其自动化 年级2012级 学号 姓名 指导教师 成绩 2014年12 月

目录 摘要 (5) 1 前言 (5) 2 热力学第二定律的建立及其发展 (5) 2.1 热力学第二定律建立的历史过程 (5) 2.2 热力学第二定律的实质 (6) 2.2.1可逆过程与不可逆过程 (6) 2.2.2开氏与克氏的两种表述 (6) 2.3 热力学第二定律的含义 (7) 3 热力学第二定律的应用 (7) 3.1 通过熵增原理,理解能源危机 (7) 3.2 理解时间的流逝 (8) 3.3 黑洞温度的发现 (8) 3.4 形成宇宙的耗散结构理论 (9) 4 总结 (9) 参考文献: (9)

浅论热力学第二定律的发展与应用 xxx xxx 西南大学工程技术学院 2012级机械设计制造及其自动化1班 摘要:热力学第二定律是热力学的基本定律之一,是指热不可能自发地、不付代价地从低温物体传到高温物体或者说不可能制造出只从一个热源取得热量,使之完全变成机械能而不引起其他变化的循环发动机。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。本文综述了该定律的提出、演变历程、并介绍了它在工农业生产和生活中的应用。 关键词:热力学第二定律演变历程应用 1 前言 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 2 热力学第二定律的建立及其发展 2.1 热力学第二定律建立的历史过程 19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步

高中物理第4章能量守恒与热力学定律3宏观过程的方向性4热力学第二定律5初识熵学业分层测评教科版3

宏观过程的方向性 热力学第二定律 初识熵 (建议用时:45分钟) [学业达标] 1.下列关于熵的有关说法正确的是( ) A.熵是系统内分子运动无序性的量度 B.在自然过程中熵总是增加的 C.热力学第二定律也叫做熵减小原理 D.熵值越大表示系统越无序 E.熵值越小表示系统越无序 【解析】根据熵的定义知A正确;从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,B正确;热力学第二定律也叫熵增加原理,C错;熵越大,系统越混乱,无序程度越大,D正确,E错误. 【答案】ABD 2.下列说法正确的是( ) A.热量能自发地从高温物体传给低温物体 B.热量不能从低温物体传到高温物体 C.热传导是有方向性的 D.气体向真空中膨胀的过程是有方向性的 E.气体向真空中膨胀的过程是可逆的 【解析】如果是自发的过程,热量只能从高温物体传到低温物体,但这并不是说热量不能从低温物体传到高温物体,只是不能自发地进行,在外界条件的帮助下,热量也能从低温物体传到高温物体,选项A、C对,B错;气体向真空中膨胀的过程是不可逆的,具有方向性,选项D对,E错. 【答案】ACD 3.以下说法正确的是( ) 【导学号:74320064】A.热传导过程是有方向性的,因此两个温度不同的物体接触时,热量一定是从高温物体传给低温物体的 B.热传导过程是不可逆的 C.两个不同的物体接触时热量会自发地从内能多的物体传向内能少的物体 D.电冰箱制冷是因为电冰箱自发地将内部热量传给外界

E.热量从低温物体传给高温物体必须借助外界的帮助 【解析】热量可以自发地由高温物体传递给低温物体,热量从低温物体传递给高温物体要引起其他变化,A、B、E选项正确. 【答案】ABE 4.(2016·西安高二检测)下列说法中不正确的是( ) A.电动机是把电能全部转化为机械能的装置 B.热机是将内能全部转化为机械能的装置 C.随着技术不断发展,可以把内燃机得到的全部内能转化为机械能 D.虽然不同形式的能量可以相互转化,但不可能将已转化成内能的能量全部收集起来加以完全利用 E.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 【解析】由于电阻的存在,电流通过电动机时一定发热,电能不能全部转化为机械能,A错误;根据热力学第二定律知,热机不可能将内能全部转化为机械能,B错误;C项说法违背热力学第二定律,因此错误;由于能量耗散,能源的可利用率降低,D正确;在电流做功的情况下,热量可以从低温物体向高温物体传递,故E正确. 【答案】ABC 5.下列说法中正确的是( ) A.一切涉及热现象的宏观过程都具有方向性 B.一切不违背能量守恒定律的物理过程都是可能实现的 C.由热力学第二定律可以判断物理过程能否自发进行 D.一切物理过程都不可能自发地进行 E.功转变为热的实际宏观过程是不可逆的 【解析】热力学第二定律是反映宏观自然过程的方向性的定律,热量不能自发地从低温物体传到高温物体,但可以自发地从高温物体传到低温物体;并不是所有符合能量守恒定律的宏观过程都能实现,故A、C正确,B、D错误,一切与热现象有关的宏观过程都是不可逆的,则E正确. 【答案】ACE 6.下列宏观过程能用热力学第二定律解释的是( ) 【导学号:74320065】A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动

热力学第二定律复习题

热力学第二定律 (r δ/0Q T =∑)→熵函数引出 0< (不可能发生的过程) 0= (可逆过程) 0>(自发、不可逆过程) S ?环) I R ηη≤ 不等式:) 0A B i A B S →→?≥ 函数G 和Helmholtz 函数A 的目的 A U TS ≡-,G H TS ≡- d d d d d d d d T S p V T S V p S T p V S T V p -+---+ W ' =0,组成恒定封闭系统的 可逆和不可逆过程。但积分时 要用可逆途径的V ~p 或T ~S 间 的函数关系。 应用条件: V )S =-(?p /?S )V , (?T /?p )S =(?V /?S )p V )T =(?p /?T )V , (?S /?p )T =-(?V /?T )p 应用:用易于测量的量表示不 能直接测量的量,常用于热力 学关系式的推导和证明 <0 (自发过程) =0 (平衡(可逆)过程) 判据△A T ,V ,W ’=0 判据△G T ,p ,W ’=0 <0 (自发过程) =0 (平衡(可逆)过程)

基本计算公式 /()/ r S Q T dU W T δδ ?==- ??, △S环=-Q体/T环△A=△U-△(TS) ,d A=-S d T-p d V △G=△H-△(TS) ,d G=-S d T-V d p 不同变化过程△S、△A、△G 的计算简单pVT 变化(常压 下) 凝聚相及 实际气体 恒温:△S =-Q r/T;△A T≈0 ,△G T≈V△p≈0(仅对凝聚相) △A=△U-△(TS),△G=△H-△(TS); △A≈△G 恒压变温 2 1 , (/) T p m T S nC T dT ?=?nC p,m ln(T2/T1) C p,m=常数 恒容变温 2 1 , (/) T V m T S nC T dT ?=?nC V,m ln(T2/T1) C V,m=常数 △A=△U-△(TS),△G=△H-△(TS); △A≈△G 理想气体 △A、△G 的计算 恒温:△A T=△G T=nRT ln(p2/p1)=- nRT ln(V2/V1) 变温:△A=△U-△(TS),△G=△H-△(TS) 计算△S△S=nC V,m ln(T2/T1)+nR ln(V2/V1) = nC p,m ln(T2/T1)-nR ln(p2/p1) = nC V,m ln(p2/p1)+ nC p,m ln(V2/V1) 纯物质两 相平衡时 T~p关系g?l或s两相 平衡时T~p关系 任意两相平衡T~p关系: m m d/d/ p T T V H ββ αα =??(Clapeyron方程) 微分式:vap m 2 d ln d H p T RT ? =(C-C方程) 定积分式:ln(p2/p1)=-△vap H m/R(1/T2-1/T1) 不定积分式:ln p=-△vap H m/RT+C 恒压相变化 不可逆:设计始、末态相同的可逆过程计 S=△H/T;△G=0;△A ≈0(凝聚态间相变) =-△n(g)RT (g?l或s) 化学 变化 标准摩尔生成Gibbs函数 r m,B G ?定义 r m B m,B B S S ν ?=∑,r m B f m,B B H H ν ?=? ∑, r m r m r m G H T S ?=?-?或 r m B f m,B G G ν ?=? ∑ G-H方程 (?△G/?T)p=(△G-△H)/T或[?(△G/T)/?T]p=-△H/T2 (?△A/?T)V=(△A-△U)/T或[?(△A/T)/?T]V=-△U/T2 积分式:2 r m0 ()//ln1/21/6 G T T H T IR a T bT cT ?=?+-?-?-? 应用:利用G-H方程的积分式,可通过已知T1时的△G(T1)或 △A(T1)求T2时的△G(T2)或△A(T2) 微分式 热力学第三定律及其物理意义 规定熵、标准摩尔熵定义 任一物质标准摩尔熵的计算

南京大学《物理化学》练习 第二章 热力学第二定律

第二章热力学第二定律 返回上一页 1. 5 mol He(g)从273.15 K和标准压力变到298.15K和压力p=10×, 求过程的ΔS(已知 。C(V,m)=3/2 R) 。 2. 0.10 kg 28 3.2 K的水与0.20 kg 313.2 K 的水混合,求ΔS设水的平均比热为 4.184kJ/(K·kg)。 。3. 实验室中有一大恒温槽(例如是油浴)的温度为400 K,室温为300 K因恒温槽绝热不良而有4000 J的热传给空气,用计算说明这一过程是否为可逆? 。0.2 4. 在298.15K的等温情况下,两个瓶子中间有旋塞连通开始时,一放 mol O2,压力为0.2×101.325kPa,另一放0.8 mol N2,压力为0.8×101.325 kPa,打开旋塞后,两气体互相混合计算: 。 (1)终了时瓶中的压力。 (2)混合过程中的Q,W,ΔU,ΔS,ΔG; (3)如果等温下可逆地使气体回到原状,计算过程中的Q和W。

5. (1)在298.2 K时,将1mol O2从101.325 kPa 等温可逆压缩到 6×101.325 kPa,求Q,W,ΔU m,ΔH m,ΔF m,ΔG m,ΔS m,ΔS iso (2)若自始至终用6×101.325 kPa的外压等温压缩到终态,求上述各热力学量的变化值。 。β6. 在中等的压力下,气体的物态方程可以写作p V(1-βp)=nRT式中系数 与气体的本性和温度有关今若在 。273K时,将0.5 mol O2由1013.25kPa的压力减到101.325 kPa,试求ΔG已知氧的 。β=-0.00094。 7. 在298K及下,一摩尔过冷水蒸汽变为同温同压下的水,求此过程的 。298.15K时水的蒸汽压为3167Pa。 ΔG m已知 8. 将298.15K 1 mol O2从绝热可逆压缩到6×,试求Q,W,ΔU m, ΔH m, 。(298K,O2)=205.03 ΔF m, ΔG m, ΔS m和ΔS iso(C(p,m)=7/2 R)已知 J/(K·mol) 。 9. 在298.15K和时,反应H2(g)+HgO(s)=Hg(l)+H2O(l) 的为195.8 。 J/mol若设计为电池,在电池

11 热力学第二定律习题详解电子教案

11热力学第二定律 习题详解

仅供学习与交流,如有侵权请联系网站删除 谢谢2 习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T - 。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211 Q T Q T =,所以理想气体可逆卡诺热机的效率等于211T T - 。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ]

仅供学习与交流,如有侵权请联系网站删除 谢谢3 (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功; (B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。 答案:D 解:(A )违反了开尔文表述;(B )卡诺定理指的是“工作在相同高温热源和相同低温热源之间的一切不可逆热机,其效率都小于可逆卡诺热机的效率”,不是说可逆卡诺热机的效率高于其它一切工作情况下的热机的效率; (C )热量不可能自动地从低温物体传到高温物体,而不是说热量不可能从低温物体传到高温物体。故答案D 正确。 5.下面的那些叙述是正确的?[ ] (A )发生热传导的两个物体温度差值越大,就对传热越有利; (B )任何系统的熵一定增加; (C )有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量; (D )以上三种说法均不正确。 答案:D 解:(A )两物体A 、B 的温度分别为A T 、B T ,且A B T T >,两物体接触后, 热量dQ 从A 传向B ,经历这个传热过程的熵变为11( )B A dS dQ T T =-,因此两

《热力学第二定律》作业任务

《热力学第二定律》作业 1.有5mol He(g),可看作理想气体,已知其R C m V 2 3 ,=,从始态273K ,100kPa ,变到终态298K ,1000kPa ,计算该过程的熵变。 解: 1 111 112,2121 67.86273298ln )314.825)(5(10ln )314.8)(5(ln )(ln ln 21---ΘΘ--?-=???+???=++=+=??K J K K mol K J mol p p mol K J mol T T R C n p p nR dT T C p p nR S m V T T p 2.有2mol 理想气体,从始态300K ,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的U ?,H ? ,S ?,W 和Q 的值。 (1) 可逆膨胀; (2) 真空膨胀; (3) 对抗恒外压100kPa 。 解:(1)可逆膨胀0=?U ,0=?H kJ dm dm K mol K J mol V V nRT W Q 57.42050ln )300)(314.8)(2(ln 3 31 112=??===-- 124.1530057.4-?=== ?K J K kJ T Q S (2) 真空膨胀 0=W ,0=?U ,0=?H ,0=Q S ?同(1),124.15-?=?K J S

(3) 对抗恒外压100kPa 。由于始态终态同(1)一致,所以U ?,H ? ,S ?同(1)。 0=?U ,0=?H 124.15-?=?K J S kJ dm dm kPa mol V p W Q 6)2050)(100)(2(33=-=?== 3.1mol N 2(g)可看作理想气体,从始态298K ,100kPa ,经如下两个等温过程,分别到达终态压力为600kPa ,分别求过程的U ?,H ? ,A ?,G ?,S ?,iso S ?, W 和Q 的值。 (1) 等温可逆压缩; (2) 等外压为600kPa 时的压缩。 解:(1) 等温可逆压缩0=?U ,0=?H J kPa kPa K mol K J mol p p nRT W Q 4443600100ln )298)(314.8)(1(ln 1121-=??===-- J W A 4443=-=? J A G 4443=?=? 190.142984443-?-=-== ?K J K J T Q S 190.142984443-?=== ?K J K J T Q S 环环 0=?+?=?环S S S iso (2) 等外压为600kPa 时的压缩,由于始态终态同(1)一致,所以U ?, H ? ,A ?,G ?,S ?同(1)。

热力学第二定律习题解析

第二章热力学第二定律 习题 一 . 选择题: 1. 理想气体绝热向真空膨胀,则 ( ) (A) △S = 0,W = 0 (B) △H = 0,△U = 0 (C) △G = 0,△H = 0 (D) △U = 0,△G = 0 2. 熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是() (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:() (A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 0 4. 理想气体经可逆与不可逆两种绝热过程() (A) 可以从同一始态出发达到同一终态 (B) 不可以达到同一终态 (C) 不能断定 (A)、(B) 中哪一种正确 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定 5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零? (A) △U (B) △H (C) △S (D) △G 6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变 化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m 7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定 8. H2和 O2在绝热钢瓶中生成水的过程:() (A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 0

热力学第二定律概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学第二定律的发展与应用

热力学第二定律的发展和应用 引言:热力学第二定律是热力学的基本定律之一,它广泛地应用于各个学科、生活领域。本文回顾了其建立的历史背景及经过,它的准确的表述和含义,及它的一些应用。 一、热力学第二定律的建立和表述 在生产实践中, 法国人巴本发明了第一部蒸汽机, 其后经瓦特改进的蒸汽 机在 19 世纪得到了广泛应用,随着蒸汽机在工业生产中起着愈来愈重要的作用,但是关于蒸汽机的理论却并未形成。人们在摸索和试验中不断改进着蒸汽机,经过大量的失败和挫折虽然一定程度地提高了机械效率,但人们始终不明白提高热机效率的关键是什么,以及效率的提高有没有界限.如果有,这个界限的值有多大……这些问题成为当时生产领域中的重要课题。 19 世纪 20 年代, 法国陆军工程师卡诺( S. Car not , 1796~1832) 从理论上研究了热机的效率问题。他在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。但卡诺在当时是采用“热质说”的错误观点来研究问题的。19 世纪50 年代,威廉?汤姆逊( William Thomson , 1824~1907) ( 即开尔文勋爵) 第一次读到了克拉珀龙的文章, 对卡诺的理论留 下了深刻的印象。汤姆逊注意到焦耳热功当量实验的结果和卡诺建立的热机理论之间有矛盾,焦耳的工作表明机械能转化为热,而卡诺的热机理论则认为热在蒸汽机里并不转化为机械能。本来汤姆逊有可能立即从卡诺定理建立热力学第二定律,但由于他也没有摆脱热质说的羁绊。错过了首先发现热力学第二定律的机会。 就在汤姆逊遇到研究瓶颈之际,克劳修斯于1850年率先发表“论热的动力及能由此推出的关于热本性的定律”,“热动说”重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”——热量可以自发地从较热物体传递至较冷物体,但不能自发地较冷物体传递至较热物体,即在自然条件下这个转变过程是不可逆的,要使热传递方向倒转,只有靠消耗功来实现。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”——不可能从单一热源吸取热量使之完全转变为功而

热力学第二定律练习题

第二章热力学第二定律练习题 一、判断题(说法正确否): 1.自然界发生的过程一定是不可逆过程。 2.不可逆过程一定是自发过程。 3.熵增加的过程一定是自发过程。 4.绝热可逆过程的?S = 0,绝热不可逆膨胀过程的?S > 0, 绝热不可逆压缩过程的?S < 0。 5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。 6.由于系统经循环过程后回到始态,?S= 0,所以一定是一个可逆循环过程。7.平衡态熵最大。 8.在任意一可逆过程中?S = 0,不可逆过程中?S > 0。 9.理想气体经等温膨胀后,由于?U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗? 10.自发过程的熵变?S > 0。 11.相变过程的熵变可由?S = ?H/T 计算。 12.当系统向环境传热时(Q < 0),系统的熵一定减少。 13.一切物质蒸发时,摩尔熵都增大。 14.冰在0℃,p?S = ?H/T >0,所以该过程为自发过程。 15.自发过程的方向就是系统混乱度增加的方向。 16.吉布斯函数减小的过程一定是自发过程。 17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。18.系统由V1膨胀到V2,其中经过可逆途径时做的功最多。 19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得G = 0。

20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,?U= 0,代入热力学基本方程d U= T d S - p d V,因而可得d S= 0,为恒熵过程。 二、单选题: 1.?S = ?H/T适合于下列过程中的哪一个? (A) 恒压过程; (B) 绝热过程; (C) 恒温过程; (D) 可逆相变过程。 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快; (B) 跑的最慢; (C) 夏天跑的快; (D) 冬天跑的快。 ,判断不正确的是: 3.对于克劳修斯不等式 dS ≥δQ/T 环 (A) dS =δQ/T 必为可逆过程或处于平衡状态; 环 必为不可逆过程; (B) dS >δQ/T 环 必为自发过程; (C) dS >δQ/T 环 (D) dS <δQ/T 违反卡诺定理和第二定律,过程不可能自发发生。 环 4.下列计算熵变公式中,哪个是错误的: (A) 水在25℃、p?S = (?H - ?G)/T; (B) 任意可逆过程: dS = (δQ/dT)r ; /T; (C) 环境的熵变:?S = - Q 体 (D) 在等温等压下,可逆电池反应:?S = ?H/T。 5.当理想气体在等温(500K)下进行膨胀时,求得体系的熵变?S = l0 J·K-1,若该变化中所做的功仅为相同终态最大功的1/10,该变化中从热源吸热 多少? (A) 5000 J ;(B) 500 J ; (C) 50 J ; (D) 100 J 。 6.1mol双原子理想气体的(?H/?T)v是: (A) 1.5R;(B) 2.5R;(C) 3.5R; (D) 2R。 7.理想气体在绝热条件下,在恒外压下被压缩到终态,则体系与环境的熵变:

热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。 这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等 克劳修斯表述 克劳修斯 克劳修斯表述是以热量传递的不可逆性(即热量总是自 发地从高温热源流向低温热源)作为出发点。 虽然可以借助制冷机使热量从低温热源流向高温热源, 但这过程是借助外界对制冷机做功实现的,即这过程除 了有热量的传递,还有功转化为热的其他影响。 1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响。 开尔文表述 参见:永动机#第二类永动机

开尔文勋爵 开尔文表述是以第二类永动机不可能实现这一规律作为 出发点。 第二类永动机是指可以将从单一热源吸热全部转化为 功,但大量事实证明这个过程是不可能实现的。功能够 自发地、无条件地全部转化为热;但热转化为功是有条 件的,而且转化效率有所限制。也就是说功自发转化为热这一过程只能单向进行而不可逆。 1851年开尔文勋爵把这一普遍规律总结为: 不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。 两种表述的等价性 上述两种表述可以论证是等价的: 1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述 的热机A,可以从低温热源吸收热量并将其全部转化为有用功。假设存在热机B,可以把功完全转化为热量并传递给高温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到从低温热源流向高温热源,而并未产生任何其他影响,即克劳修斯表述不真。 2.如果克劳修斯表述不真,那么开尔文表述不真:假设存在违反克劳修斯表 述的制冷机A,可以在不利用外界对其做的功的情况下,使热量由低温热源流向高温热源。假设存在热机B,可以从高温热源吸收热量 并将其中的热量转化为有用功,同时将热量传递给低温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到A与B联合组成的热机从高温热源吸收热量并将其完全转化为有 用功,而并未产生任何其他影响,即开尔文表述不真。 从上述二点,可以看出上述两种表述是等价的。

大学热力学第二定律(李琳丽)

第二章 热力学第二定律与化学平衡 1. 1mol 理想气体由298 K 、0.5 dm 3膨胀到5 dm 3。假定过程为 (1) 恒温可逆膨胀; (2) 向真空膨胀。 计算各过程系统的熵变?S 及总熵变孤立S ?。由此得到怎样结论? 解:(1) 恒温可逆过程 12ln V V nR S =?=3.385 .05ln 314.82=?? J .K -1 3.38ln ln 1 2 1 2 -=-=- =- == ?V V nR T V V nRT T Q T Q S 环 系统环 环境环境 J .K -1 0=???环境孤立+=S S S 说明过程是可逆的。 (2) S ?只决定于始、终态,与过程的具体途径无关,过程(2)的熵变与过程(1)的相同,因此有S ?=38.3 J .K -1。 理想气体在向真空膨胀过程中,0=外p ,W =0,Q =0,说明系统与环境无热量交换,所以 0=?环境S 3.38=???环境孤立+=S S S J .K -1 >0 由于0>?孤立S ,说明向真空膨胀过程是自发过程。 2. 1 mol 某理想气体(11m ,mol K J 10.29--??=p C ),从始态(400 K 、200kPa )分别经下列不同过程达到指定的终态。试计算各过程的Q 、W 、?U 、?H 、及?S 。 (1) 恒压冷却至300 K ; (2) 恒容加热至600 K ; (3) 绝热可逆膨胀至100 kPa ;

解:(1) == 111p nRT V L 63.16m 1063.1610 200400314.813 33=?=???- 1 122V T V T = 47.1263.16400 3001122=?=?= V T T V L 832)63.1647.12102003-=-??=?=(外V P W kJ )400300()314.810.29(1m ,-?-?=?=?T nC U V kJ 08.2-= )400300(314.810.291m ,-???=?=?T nC H p kJ 2.24-= kJ 830=-?=W U Q ? =?2 1 d T T P T T C S =37.810.29300 400-=??T dT J ?K -1 (2) 0=W )400600()314.810.29(1m ,-?-?=?=?T nC U V kJ 16.4= )400600(314.810.291m ,-???=?=?T nC H p kJ 4.48= kJ 16.4=-?=W U Q ? =?2 1 d T T V T T C S =43.8)314.810.29(600 400=?-?T dT J ?K -1 (3) 40.1314 .810.2910.29,,=-= = m V m P C C γ,γ γγγ--=122111P T P T 40.1140 .12 40.1140.1100200400--=T 3282=T K 0=Q )400328()314.810.29(1m ,-?-?-=?-=?-=T nC U W V

关于热力学第二定律在生活中的应用

热力学第二定律在生活中的应用 摘要:热力学第二定律作为判定与热现象有关的物理过程进行方向的定律,是物理热学中的一个重要部分。本文分析了热力学第二定律的涵义以及意义,并阐述了它在当今社会的一些应用。 关键词:热力学第二定律;物理过程;应用 引言: 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 1 热力学第二定律内涵 德国物理学家克劳修斯,在研究和明卡诺定理时, 根据热传导这个不可逆程, 对规律性的内涵提出了一种说法, 这后来被称为热力学第二定律的克劳修斯法: 热可以自发地由高温物体传到低温体, 但不可能由低温物体传到高温物体而引起其它变化。不能简单把克劳修斯说法理解成热不能由低温物传到高温物体,而是在不允许引起其变化和条件下,热不能由低温物体传到高物体,如若允许引起其它变化和话,热是可以由低温物体传到高温物体的。 开尔文是从机械能和内能之间相互转化时具有向性的角度来表述的。通过一定装置,机能可以全部转化成内能。但是,内能却不自发地完全转化成机械能。要实现内能全转化成机械能,必须借助其他物理变化机械能和内能之间的转化是具有方向性的此种表述也包含两层含义,即若从单一源吸收热量,并把它完全用来做功,同时不允许产生其他变化,则这种热力学过程不可能发生的;若允许产生其他变化,则单一热源吸收热量,并把它全部用来做功这种热力学过程是有可能发生的。 热力学第二定律指出了其不可逆过的单向性, 从热力学第二定律的这些表述发, 能够找到一个表征不可逆过程单向性物理量,利用它能够把热力学第二定律用为普遍的形式表示出来。克劳修斯定义一个态函数,认为自发过程的不可逆性决定于过程进行的过程或路径, 而是决定系统的初始状态和最终状态,称之为“熵用 S 表示从一个状态 A 到一个状态 B 。 S 的变化定义为: A B S S -=?A B T dQ / (1) 对无限小过程ds = dq/T 。这样热力学第二律表示为: ds ≥ dq/T 在孤立系统中,任何变化不可能导致熵的问题减小,即ds ≥0。 如果变化过程是可逆的则 ds=0 ,总之熵是有增无减。 2、热力学第二定律的应用 2.1通过熵增原理,理解能源危机

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

第六章热力学第二定律 6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为 25m+80m+0.5×18m=114m 有热平衡方程得 4.18×114m=3600×2922 ∴ m=2.2×104克=22千克 由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。 (提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。试分析每一微小卡诺循环效率与的关系) 证:(1)d当任意循环可逆时。用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。 考虑人一微小可逆卡诺循(187完) 环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率 任意可逆循环R的效率为 A为循环R中对外作的总功 (1) 又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度 ∴对任一微小可逆卡诺循,必有: T i≤T m,T i≥T n 或

或 令表示热源T m和T n之间的可逆卡诺循环的效率,上式 为 将(2)式代入(1)式: 或 或(188完) 即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。 (2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡 诺循环的效率必小于可逆时的效率,即(3) 对任一微小的不可逆卡诺循环,也有 (4) 将(3)式代入(4)式可得: 即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。 综之,必 即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。 *6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程p(v-b)=RT。式证明这可逆卡诺循环的 效率公式任为

相关文档
最新文档