一个算子迹不等式

一个算子迹不等式
一个算子迹不等式

八个著名的不等式

第八讲 几个著名的不等式 在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.这些著名不等式是数学家们长期致力于不等式理论研究的重要成果,它们将成为我们学习数学、研究数学、应用数学的得力工具。下面择要介绍一些著名的不等式. 1.柯西(Cauchy )不等式 定理:设()n i R b a i i Λ2,1,=∈则 ()2 221 1n n b a b a b a Λ++≤()( ) 2 22212 222 1 n n b b b a a a ΛΛ++?++ 等号成立当且仅当()n i ka b i i ≤≤=1.。 [一般形式的证明] 作函数 ()()()() ( ) ( ) )(22 2 222122112 2 22212 2 222 11≥+++++-+++=-++-+-=x b b b x b a b a b a x a a a b x a b x a b x a x f n n n n n n ΛΛΛΛ 0≤?∴ 此时04412122 1≤?? ? ????? ??-??? ??=?∑∑∑===n i i n i i n i i i b a b a ?? ? ????? ??≤??? ??∴∑∑∑===n i i n i i n i i i b a b a 12122 1,得证。 [向量形式的证明] 令(),2,1n a a a A Λρ= (),2,1n b b b B Λρ = ()()( ) 2 22212 222 1 2211cos n n n n b b b a a a B A B A b a b a b a B A ΛΛρρρρΛρρ++?+++= ≤=++=?θ ()1cos 1≤≤-θ 两边同时平方得: ()2 221 1n n b a b a b a Λ++≤()( ) 2 22212 222 1 n n b b b a a a ΛΛ++?++,得证。

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.360docs.net/doc/3911017826.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.360docs.net/doc/3911017826.html,/view/979424.htm. 3. Jensen不等式. https://www.360docs.net/doc/3911017826.html,/view/1427148.htm.

不等式理论简史及离散型Hilbert不等式

不等式理论简史及离散型Hilbert不等式 [论文摘要]本文首先介绍了不等式理论发展的历史,然后引入了离散型Hilbert不等式,介绍了Hilbert不等式的一个初等证明,最后对Hilbert不等式的推广形式作了简要的总结。 [关键词]不等式理论 Hilbert不等式初等证明权函数 [Abstract]In this passage,we introduce the history of inequality theory first.Then we introduce the Hilber t’s inequality with a primary prof.At the end,we make a summary of a series forms of Hilbert’s inequality. [Keywords]Theory of inequality Primary proof of Hilbert’s inequality Weight function

1引言 1.1 选题背景 众所周知,不等式理论在数学理论中占有重要地位,它渗透到数学的各个领域,因而有必要对不等式理论的发展历史有一个清晰的认识。 Hilbert不等式提出以来,众多数学家给出了各种证明,本文介绍了一个初等证明。同时,总结了Hilbert不等式的各种推广形式。 1.2本文的主要内容 本文的工作主要有三个方面: (1)、介绍不等式理论的发展历史 (2)、介绍Hilbert不等式并给出了一个初等证明 (3)、总结Hilbert的各种推广形式 2 不等式理论简史和Hilbert不等式 2.1 不等式理论简史 数学不等式的研究首先从欧洲国家兴起, 东欧国家有一个较大的研究群体, 特别是原南斯拉夫国家。目前,对不等式理论感兴趣的数学工作者遍布世界各个国家。 在数学不等式理论发展史上有两个具有分水岭意义的事件,分别是: Chebycheff 在 1882 年发表的论文和 1928 年Hardy任伦敦数学会主席届满时的演讲;Hardy,Littlewood和 Plya的著作 Inequalities的前言中对不等式的哲学 (philosophy) 给出了有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,而且应该给出等号成立的证明。A. M.Fink 认为, 人们应该尽量陈述和证明不能推广的不等式. Hardy认为, 基本的不等式是初等的.自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。

矩阵范数详解

向量和矩阵的范数的若干难点导引 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑()12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==?? = ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2), 把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b == 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+ 2222222211||||||||||||n n b a b a b a ++++++= ()()22 121222||||||||||||||||n n a b a b ≤++++ ()()()2222122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++ 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。 2 2 2111 111||||||||m l n m l n F ik kj ik ki i j k i j k AB a b a b ======?? =≤ ??? ∑∑∑∑∑∑

不等式的综合运用

不等式的综合应用 1. 不等式理论的应用主要体现在以下几个方面: (1)运用不等式研究函数问题(单调性、最值等). (2)运用不等式研究方程解的问题. (3)利用函数性质及方程理论研究不等式问题. 例如解集之间的包含关系,函数的定义域、值域及最值问题,解析几何中有关范围问题等,都与解不等式的知识相关联. 2、不等式的解法及证明的基本应用: ①求函数的定义域、值域和最大值、最小值问题 ②判断函数的单调性及求相应的单调区间; ③利用不等式讨论方程实根的个数、分布范围和解含参数的方程; ④将不等式同数学其他知识结合起来,解决一些有实际应用价值的综合题。 3.不等式在实际中的应用是指用不等式解决生产、科研和日常生活中的问题.在解题时要过“阅读理解”关,阅读关是指读懂题目,能够概括出问题涉及哪些内容;理解关是指准确理解和把握这些量之间的关系,然后建立数学模型,再讨论不等关系,最后得出问题的结论. 4、解不等式应用问题的几个主要步骤: ① 审题,必要时画出示意图; ② 建模,简历不等式模型,即根据题意找出常量与变量间的不等关系,注意文字语言、符号语言、图形语言的转换; ③ 求解,利用不等式的有关知识解题。 5.运用基本不等式求最值,常见的有两类(已知x 、y 都为正数) (1)若x+y=S(和为定值),则当 时,积xy 取得最大值 ; (2)若xy=P (积为定值),则当 时,和x+y 取得最小值 . 基础自测 1.已知a 1>a 2>a 3>0,则使得(1-a i x )2<1(i=1,2,3)都成立的x 的取值范围是 . 2.若 则a 的取值范围是 3.若关于x 的不等式4x -2x+1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为 . 4.已知点P (x,y )在曲线 上运动,作PM 垂直于x 轴于M ,则△OPM (O 为坐标原点)的周长的最小值为 . 题型分析: 题型一 利用不等式求函数的值域 有些函数的值域可以通过基本函数的值域及不等式的性质直接观察出货求出。 例1、 求下列函数的值域 (1) (2) ,011log 22<++a a a x y 1=

内积与范数

范数:用于度量“量”大小的概念 1. 引言 实数的绝对值:a 是数轴上的点a 到原点0的距离; 复数的模:a bi +=是平面上的点()b a ,到原点()0,0的距 离; 还有其他刻画复数大小的方法(准则):如 1)b a +; 2){}max , a b 2. 向量的范数:p-范数 1 1n p p k p k x x =??= ??? ∑ (1) 示例: 1211234515,2345,5x x x x ∞ ???=+-+++= ?-? ?? ?=?==? ?? = ??? ??? 3. 矩阵(算子)的范数 01max max x x Ax A Ax x ≠=== (2) 矩阵的谱半径:设M 是n 阶矩阵,称

()()()(){}12max , ,, n M M M M ρλλλ=L (3) 为该矩阵的谱半径。 记 ()1212,,,T T n T n A ββαααβ?? ? ?== ? ? ??? L M , 那么, {}{}()1211111211112 max ,,,max max ,,,n k n p p x k T A A Ax A A A A αααβββρ∞=?=?? =?=??=??L L (3) 4. 矩阵的条件数:用于刻画矩阵“病态”程度的概念 ()1 cond A A A -=? 5.利用范数定义点之间的距离 (),,,n n x R y R d x y y x ∈∈?=- 向量的内积、范数及n 维空间距离的度量 令 P 是一数域, P n 是 P 上的向量空间,如果函数 ()?x y P P P n n ,:?→有如下性质: 1、共轭对称性:?∈x y P n ,,()()??y x x y ,,=; 2、非负性:?∈x P n ,()?x x ,≥0,()?x x x ,=?=00;

关于用微积分理论证明不等式的方法

关于用微积分理论证明不等式的方法 学校代码专业代码本科毕业论文(设计) 题目:关于用微积分理论证明不等式的方法 学院: 专业: 学号: 姓名: 指导教师: 年 5月 13日 填写说明 一、毕业论文(设计)须用70克A4纸计算机双面打印,具体打印格式参见教务处主页《山西财经大学普通全日制本科毕业论文(设计)写作指南》。 二、毕业论文(设计)必须按规定的要求进行装订。 1、装订顺序

封面 学术承诺 目录 中文摘要、关键词 英文摘要、英文关键词 正文 参考文献 附录(可选) 致谢 山西财经大学本科毕业论文(设计)指导教师评定表 山西财经大学本科毕业论文(设计)答辩成绩与总成绩评定表 2、装订。由学生自主装订。装订线在左侧。 3、理工科毕业设计的软件要以光盘的形式附在论文的后面(装入小袋,封口),不要单独保存,不能丢失。 4、如果毕业论文(设计)因专业特殊,无法打印的部分可以手写或手绘,但需保持页面整洁,布局合理。 毕业论文(设计)学术承诺 本人郑重承诺:所呈交的毕业论文是我个人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不存在抄袭情况,论文中不包含其他人已经发表的研究成果,也不包含他人或其他教学机构取得研究成果。 作者签名:日期:

毕业论文(设计)使用授权的说明 本人了解并遵守山西财经大学有关保留、使用毕业论文的规定。 即:学校有权保留、向国家有关部门送交毕业论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 (保密的论文在解密后应遵守此规定) 作者签名:指导教师签名: 日期:日期: 目录 中文摘要Ⅰ 英文摘要Ⅱ 第一章用微积分理论证明不等式常见的几种方法 1 第一节用可导函数的单调性证明不等式法 1 第二节利用函数的最大值或最小值证明不等式法 2 第三节用拉格朗日中值定理证明不等式法 3 第四节用柯西中值定理证明不等式法 4 第五节上述几种方法小结 6 第二章用微积分理论证明不等式其他几种方法7 第一节用导数定义证明不等式法7 第二节用函数的凹凸性证明不等式8 第三节用泰勒公式证明不等式法9 第四节用幂级数展开式证明不等式法10

矩阵范数规范标准详解

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一. 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑( ) 12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==??= ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵 范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2),把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b ==L L 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+Λ 2 222222211||||||||||||n n b a b a b a ++++++=Λ ()()22 121222||||||||||||||||n n a b a b ≤++++L ()()()22 22122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++L L L 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

范数概念

一、范数的定义 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到 ║x║≥0,即║x║≥0在定义中不是必要的。) 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<·,·>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式 ║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间称为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet 空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。 二、算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║:║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T 是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。 三、有限维空间的范数 基本性质 有限维空间上的范数具有良好的性质,主要体现在以下几个定理: 性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标

泛函数与范数的定义

泛函数-正文 又称泛函,通常实(复)值函数概念的发展。通常的函数在R n或C n(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。设Ω为R n中的区域,Г1表示边界嬠Ω的片断, 表示一函数集合。考虑对应 ,式中F为具有2n+1个自变数的函数:为寻求J(u)的局部极值,在一定条件下取J(u)的加托变分 如果在u=u0达到局部极值,则u0适合欧拉方程δJ(u)=0。在应用中,常以数学或物理的某个微分方程为背景产生一定泛函数,使原问题化成泛函数极值问题。当代分析学中,变分方法有广泛应用。一般把问题化成Tx=0的形式,即对应于某泛函数φ的欧拉方程,其中φ定义在一巴拿赫空间X中的开集S上且加托可微:算子T称为梯度算子,φ称为T的场位。人们常遇到二阶微分系统,由此产生二次泛函数极值问题,是当代变分法常见的研究对象。 泛函数φ:S嶅X→R(X为拓扑空间)称为在x∈S处下半连续,如果对每个实数r<φx,有x的邻域U(x),使得r<φz,凬z∈U(x)∩S。称φ在x∈S处下半序列连续,如果对每个序列 。其连续性及有界性如同对算子相应的性质所做的规定。 设φ是定义在线性集合S上的实(复)值泛函数。如果φ(x+y)=φ(x)+φ(y),φ称为加性的;如果φ(λx)=λφ(x),λ∈R(C)称为齐性的;如果同时有加性及齐性称为线性的。当φ

取实值时,加性得放松为次加性,其定义为:φ(x+y)≤φ(x)+φ(y);齐性得放松为正齐性,其定义为:?(λx)=λ?(x)(λ≥0);如果同时有次加性及齐性,则称φ具有次线性;如果对于λ∈(0,1),有φ(λx+(1-λ)y)≤λφ(x)+(1-λ)φ(y),则称φ为凸的;如果当x≠y时上式中的≤必为<,则称φ为严格凸的。在一些问题中,容许凸泛函数φ取值+∞,但φ扝+∞,这时称φ为真凸的。此外,还有所谓凸集S上的拟凸泛函数φ:S嶅K→R(K为线性空间),使φ(tx+(1-t)y)≤max{φx,φy},x,y∈S, t∈(0,1)。在赋范空间K中无界集S上定义的泛函数φ称为强制的,如果有函数с:(0,+∞)→R,с(t)→+∞(t→+∞)使得φ(z)≥с(‖z‖),凬z∈S。 线性泛函数是线性算子理论研究的对象之一,也是研究空间性质及结构的工具。例如,局部凸拓扑线性空间K有对偶空间K,K的元素就是定义在K上的连续线性泛函数。对K可赋予简单收敛拓扑或有界收敛拓扑。偶K、K间的关系对认识空间的性质和研究算子的性质都有基本意义。 相应于多重线性算子有多重线性泛函数。例如,设K1、K2是同一数域上的线性空间,定义在积空间K1×K2上的映射φ:K1×K2→R(或C)称为双线性泛函数,如果K2(K1)中元素固定时φ成为K1(K2)上的线性泛函数。当K1=K2=K,K1及K2中取等同的x∈K,则得φ(x,x),称为二次泛函数。对希尔伯特空间中线性算子谱理论的研究,双线性泛函数形式作为表示工具是方便的。二次泛函数在变分法中的应用更是为人熟知的。 拟赋范空间、局部凸拓扑线性空间、赋范空间等的表征主要在于分别在各空间上定义的次加性泛函数,即拟范数、半范数族、范数等。测度空间中的测度,即对应于某种集合的值也可理解为泛函数。对于给定函数的不定积分也可类似地看待。 范数 向量范数

世界数学史上的十个著名不等式

数学史上的十个著名不等式 在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式. 一、平均不等式(均值不等式) 设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数. 当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当 时等号成立. 平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一. 设,,…,是个正的变数,则 (1)当积是定值时,和有最小值,且 ; (2)当和是定值时,积有最大值,且

两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值. 在中,当时,分别有, 平均不等式经常用到的几个特例是(下面出现的时等号成立; (3),当且仅当时等号成立; (4),当且仅当时等号成立. 二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数,,…,;,,…,,有 ,其中等号当且仅当 时成立. 柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是: (1),,则 (2)

(3) 柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 三、闵可夫斯基不等式 设,,…,;,,…,是两组正数,,则 () () 当且仅当时等号成立. 闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式: 右图给出了对上式的一个直观理解. 若记,,则上式为 四、贝努利不等式

几个范数不等式的证明

百度文库 - 让每个人平等地提升自我 2 设X 为一n 维赋范空间,其范数定义为||x||p =(∑|x i |p n i=1)1p , 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤√|x ||2; 2. ||x||p ≤||x||1; 3. ||x||q ≤||x||p ≤n 1p?1q ??||x ||q ,p|≤||x||2||y||2,令x=( |x 1|, |x 2|,..., |x n |),y=(1,1, (1) 可得(|x 1|+|x 2|+…+|x n |)≤(|x 1|+| x 2|+…+|x n |)1/2n 1/2 ||x||1≤√n||x ||2成立。 根据Jensen 不等式( ∑|x i |αn )1α?≥(∑|x i |βn )1β?(α>β),令α=2,β=1可以证明。 2. 令f(x)=(1+x)p 1+x p ,p ≥1 p=1,f(x)=1,所以只考虑p>1的情况 f ′( x )=p(1+x)p?1(1?x p?1)(1+x p )2→{>0,0≤x <1=0,x =1<0,x <1} 从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。 所以有(1+x)p 1+x ≥1,即1+x p ≤(1+x)p ,令x=b/a ,有a p +b p ≤(a+b)p ,同理,使用归纳法可

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

各类范数定义

范数的定义 设X是数域K上线性空间,称║˙║为X上的范数(norm),若它满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<˙,˙>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式║x+y║^2+║x-y║^2= 2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间成为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的完备空间称为Fréchet空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫1(实数集的基数)种不等价的范数。 算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║: ║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。

范数的定义

3.3 范数 3.3.1 向量范数 在一维空间中,实轴上任意两点距离用两点差的绝对值表示。绝对值是一种度量形式的定义。 范数是对函数、向量和矩阵定义的一种度量形式。任何对象的范数值都是一个非负实数。使用范数可以测量两个函数、向量或矩阵之间的距离。向量范数是度量向量长度的一种定义形式。范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。同一向量,采用不同的范数定义,可得到不同的范数值。 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 常用范数 这里以C^n空间为例,R^n空间类似。 最常用的范数就是p-范数。若x=[x1,x2,...,xn]^T,那么 ║x║p=(|x1|^p+|x2|^p+...+|xn|^p)^{1/p} 可以验证p-范数确实满足范数的定义。其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。 当p取1,2,∞的时候分别是以下几种最简单的情形: 1-范数:║x║1=│x1│+│x2│+…+│xn│ 2-范数:║x║2=(│x1│^2+│x2│^2+…+│xn│^2)^1/2 ∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│) 其中2-范数就是通常意义下的距离。 矩阵范数 一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。 如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

不等式的均值定理

高二数学 必修五 NO 使用时间: 班级: 组别: 课题:均值不等式一学案 1.掌握均值定理的内容,特别是等号成立的条件; 2.理解均值定理的内容及几何意义,会用均值定理去解实际简单的最值问题。 1.不等式的对称性用字母可以表示为 . 2.不等式的传递性用字母可以表示为____________________. 3.不等式的加减法则是指不等式两边都加上(或减去)同一个数(或整式)不等号方向不变,用字母可以表示为 ;由此性质和传递性可以得到两个同向不等式可以相加,用字母可以表示为 . 4.不等式的乘法法则是指不等式两边都乘以同一个不为零的正数,不等号方向不变用字母可以表示为 ;同时乘以同一个不为零的负数,不等号方向改变,用字母可以表示为 ;由此性质和传递性可以得到两个同向同正的不等式具有可乘性,用字母可以表示为 。 5.乘方、开方法则要注意性质仅针对于正数而言,若底数(或被开方数)为负数时,需先 变形。如:a

下面我们给出均值不等式的一个几何直观解释,以加深同学们对均值不等式的理解。 我们可以令正实数b a ,为两条线段的长,用几何作图的方法,作出长度为 2 b a +和ab 的两条线段,然后比较这两条线段的长。 具体作图如下: ⑴作线段b a AB +=,使;,b DB a AD == ⑵以AB 为直径作半圆O; ⑶过D 点作CD ⊥AB 于D ,交半圆于点C ; ⑷连接AC,BC,OC,则2 b a CO += 。 例1已知,0>ab 求证:2≥+b a a b ,并推导出式中等号成立的条件。 例2(1)一个矩形的面积为1002 m 。问这个矩形的长和宽各为多少时,矩形的周长最短?最短周长是多少? (2)已知矩形的周长为36m 。问这个矩形的长和宽各为多少时,它的面积最大?最大面积是多少? 由例2的求解过程,可以总结出以下规律: 例3求函数())0(322>-+-=x x x x x f 的最大值,以及此时x 的值。 巩固检测 1、若a 、b 为正数且a+b=4,则ab 的最大值是________. 2、已知x>1.5,则函数y =2x+3 24-x 的最小值是_________.

变分不等式及其应用

变分不等式及其应用 摘要 变分不等式是一类重要的非线性问题,它在工程、经济、控制理论等领域广泛应用。变分不等式问题的数学理论最开始应用于解决均衡问题,在此模型中,函数来自对应势能的一阶变分,因此而得名.作为经典变分问题的推广和发展,变分不等式的形式也更多样化。本文主要研究变分不等式的由来,变分不等式的导出以及一些变分不等式的应用. 第一章为预备知识,主要介绍了凸泛函、上下半连续泛函、次连续、Ferchet微分和单调映像等的一些定义,为下文更好的引出变分不等式的概念、导出和应用提供了理论依据。 第二章具体的提出变分不等式的概念并给出一些变分不等式的常见例子。 第三章主要通过可微函数的极值问题、不可微函数的极值问题、Hilbert 空间的投影问题、分布参数系统控制问题等一些问题的探讨说明导出变分不等式一些方法。 第四章研究一类非线性拟变分不等式并应用于二阶半线性椭圆型边值问题。 关键词:变分不等式,极值问题,椭圆方程,边值问题

VARIATIONAL INEQUALITY AND ITS APPLICATION ABSTRACT Variational inequalities are important nonlinear problems, it has been widely applied in the fields of engineering, economics, control theory. The mathematical theory of variational inequality problem is originally applied to solve equilibrium problem. In this model, the function comes from the first-order variation of the corresponding potential energy, so it is called variational inequality problem. As the generalization and development of classical variational problems, the form of variational inequalities should be diversification. In this paper, i study the origin, derivation, and applications of variational inequalities. The first chapter is is Preliminaries. In this chaper, i list the definitions of convex functional, upper and lower semi-continuous functional, consecutive, Ferchet differential, montonous map, and so on. They are used forunderstanding the concept, derivation, and applications of variational inequality. In the second chapter, i introduce the concept of variational inequalities and give some common examples of variational inequalities. In the third chapter, by consdering differentiable functions’ extremum problems, non-differentiable functions’ extremum problems, the projection in Hilbert space, control systems of distributed parameter and some other issues, i study the methods of variational inequalities’ derivation. In the fourth chapter, a class of nonlinear quasi-variational inequalitie is introduce, and it is applied to solve second order semi-linear elliptic boundary value problems. Key words:Variational inequalities, extremum problem, elliptic equation,boundary value problem

相关文档
最新文档