橡胶硫化的三大工艺参数

橡胶硫化的三大工艺参数
橡胶硫化的三大工艺参数

橡胶件硫化的三大工艺参数是:

温度、时间和压力。其中硫化温度是对制品性能影响最大的参数,硫化温度对橡胶制品的影响的研究也比比皆是。但对硫化压力比较少进行试验。

硫化压力是指,橡胶混炼胶在硫化过程中,其单位面积上所承受的压力。一般情况下,除了一些夹布件和海绵橡胶外,其他橡胶制品在硫化时均需施加一定的压力。

橡胶硫化压力,是保证橡胶零件几何尺寸、结构密度、物理机械的重要因素,同时也能保证零件表面光滑无缺陷,达到橡胶制品的密封要求。作用主要有以下几点:

防止混炼胶在硫化成型过程中产生气泡,提高制品的致密性;

提供胶料的充模流动的动力,使胶料在规定时间内能够充满整个模腔;

提高橡胶与夹件(帘布等)附着力及橡胶制品的耐曲绕性能;

4)提高橡胶制品的物理力学性能。

硫化压力的选取需要考虑如下几个方面的因素:

1)胶料的配方;

2)胶料可塑性的大小;

3)成型模具的结构形式(模压,注压,射出等);

4)硫化设备的类型(平板硫化机,注压硫化机,射出硫化机,真空硫化机等);5)制品的结构特点。

硫化压力选取的一般原则:

1)胶料硬度低的(50-Shore A以下或更低),压力宜选择小,硬度高的选择大;2)薄制品选择小,厚制品选择大;

3)制品结构简单选择小,结构复杂选择大;

4)力学性能要求高选择大,要求低选择小;

5)硫化温度较高时,压力可以小一些,温度较低时,压力宜高点。

对硫化压力,国内外一些橡胶厂家有如下一些经验值供参考:

1)模压及移模注压的硫化方式,其模腔内的硫化压力为:10~20Mpa;

2)注压硫化方式其模腔内的硫化压力为:0~150Mpa;

3)硫化压力增大,产品的静态刚度也随之增大,而收缩率随之逐渐减小;(在国内的减振橡胶行业内,对于调整产品的刚度,普遍采用的依然是增加或者降低产品所使用的胶料硬度,而在国外,已经普遍采用了提高或者降低产品硫化时的胶料硫化压力来调整产品的静态刚度。)

4)随着硫化压力的不断提高,产品胶料的收缩率会出现一个反常的现象,即当产品胶料的硫化压力达到83Mpa 时,产品胶料的收缩率为0,若产品胶料的硫化压力继续不断上升,产品胶料的收缩率会出现负值,也就是说,在这种超高的产品胶料硫化压力下,产品硫化出来经停放后,其橡胶部分的尺寸比模具设计的尺寸还要大;

5)在模压和注压方式下,模腔内胶料的硫化压力随着时间的延长,总是先增高后减少,并最终处于平坦状态;

6)随着胶料硫化压力的提高,其胶料的300%定伸和拉伸强度均随之提高,其胶料的扯断伸长率、撕裂强度和压缩永久变形却随之下降;

7)在减震橡胶制品硫化过程中,注压硫化方式中模腔内胶料的压强比模压硫化方式的压强高一倍以上。产品达到相同的静刚度所需的胶料硬度有较大差别。随产品硫化时的硫化压力提高,产品在压缩永久变形性能方面有明显的提高。

1. 什么是硫化温度橡胶硫化温度是硫化三大要素之一,是橡胶进行硫化反应(交联反应)的基本条件,直接影响橡胶硫化速度和制品的质量。与所有化学反应一样,硫化反应随着温度升高而加快,易于生成较多的低硫交联键;硫化温度低,则速度

慢,生成效率低,生成较多的多硫交联键。硫化温度并且大体适用范特霍夫定

律,即温度每上升8~10C (约相当于一个表压的蒸汽压力),其反应速度约增加一倍;或者说,反应时间约减少一半。

2. 怎样选择硫化温度

2.1 橡胶的种类随着室温硫化胶料的增加和高温硫化的出现,硫化温度趋向两个极

端。从提高硫化效率来说,应当认为硫化温度越高越好,但实际上不能无限提高硫化温度。橡胶为高分子聚合物,高温会使橡胶分子链产生裂解反应,导致交联键断裂,即出现“硫化返原”现象,从而使硫化胶的物理机械性能下降。如高温硫化天然橡胶时,溶于橡胶中的氧随着温度提高而活性加大,引起强烈的氧化作用,破坏了橡胶的组织,降低了硫化胶的物理机械性能。

综合考虑各橡胶的耐热性和“硫化返原”现象,各种橡胶建议的硫化温度如

下:

NR最好在140-150C,最高不超过160C;

顺丁橡胶、异戊橡胶和氯丁橡胶最好在150-160C,最高不超过170C

丁苯橡胶、丁腈橡胶可采用150C以上,但最高不超过190C;

丁基橡胶、三元乙丙橡胶一般选用160-180C,最高不超过200C ;

硅橡胶、氟橡胶一般采用二段加硫,一段温度可选170-180C,二段硫化则

选用200-230C,按工艺要求可在4-24h范围内选择。

2.2 橡胶配方中硫化体系的类型

按照最终制品不同性能的要求,橡胶配方选用不同的硫化体系。硫化体系不同,则硫化特性不同,有的需要高活化温度,有的需要低活化温度。因此要根据实际的硫化体系来选择相应的硫化温度。通常,普通硫磺硫化体系,其硫化温度选取范围为130-160C,具体需要根据所使用的促进剂的活性温度和制品的物理机械性能来确定。

促进剂的活性温度较低或制品要求高强度、较低的定伸应力和硬度时,硫化温度可选择较低一些,这样生成较多的多硫交联键;

促进剂的活性温度较高或制品要求高定伸应力和硬度、较低伸长率时,硫化温度宜采用高一些,这样生成较多的低硫交联键。

有效、半有效硫化体系,硫化温度一般掌握在160-165C之间,过氧化物及树脂等非硫磺硫化体系,硫化温度适合选择170-180C ?尤其要指出,对于EPDM, NBR硫磺硫化的配方,如设计需要二次加硫,一次加硫与二次加硫的温度和时间影响最终制品的压缩永久变形和硬度等机械性能均比较大;而过氧化物硫化的配方,一次加硫的温度

尤为重要,最佳在180C以上,若一次加硫温度不足,二次加硫补足的效果甚低。即

过氧化物硫化的配方,二次加硫对最终物性的影响很小。

橡胶属于热的不良导体,受热升温较慢。对于厚制品来说,采用高温硫化很难使内外层胶料同时达到平坦范围;造成制品外表部分恰好正硫化时,而内部出现欠硫化。或者内部恰好出现正硫化时,而外部已过硫化。为了保证厚制品硫化均匀,除了配方设计时需要充分考虑胶料的硫化平坦性外,在选择硫化温度时,也要考虑硫化温度低一些或采用逐步升温的操作方法。

l 对于薄制品,硫化温度可以适当高点。

对于夹织物的橡胶制品,通常硫化温度不高于140 C ?而发泡橡胶,需要按照发

泡剂和发泡助剂的分解温度选择适宜的硫化温度。

什么叫橡胶制品硫化时间?如何设定硫化时间?

1. 定义

1.1 橡胶制品硫化时间

站在一定的温度、模压下,为了使胶料从塑性变成弹性,且达到交联密度最大化,物理机械性能最佳化所用的时间叫橡胶制品硫化时间。通常不含操作过程的辅助时间。

硫化时间是和硫化温度密切相关的,在硫化过程中,硫化胶的各项物理、力学性

能达到或接近最佳点时,此种硫化程度称为正硫化或最宜硫化。在一定温度下达到正硫化所需的硫化时间称为正硫化时间,一定的硫化温度对应有一定的正硫化时间。当胶料配方和硫化温度一定时,硫化时间决定硫化程度,不

同大小和壁厚的橡胶制品通过控制硫化时间来控制硫化程度,通常制品的尺寸越大或越厚,所需硫化的时间越长。

2.硫化时间的设定方法

2.1 正硫化时间的测试

胶料正硫化时间的测试方法有:

2.1.1 物理-化学法(包括游离硫测定法和溶胀法);

2.1.2 物理-力学性能测定法(包括定伸应力法、拉伸强度法、定伸强度法、抗张积法、压缩永久变形法、综合取值法等);

2.1.3 专用仪器法(包括门尼粘度法、硫化仪法)等。

目前最常用的是硫化仪法。通过硫化仪测试,可以得到胶料的正硫化时间。

2.2 制品硫化时间的确定

221若制品厚度为6mm或小于6mm,并且,胶料的成形工艺条件可以认为是均匀受热状态,那么,制品的硫化时间与硫化曲线中所测得的正硫化时间相同(温度一致的情况下,即加硫温度使用硫化仪测试的温度);

2.2.2若制品壁厚大于6mm,每增加1mm的厚度,则测试的正硫化时间增加1mi n,这是一个经验数据。例如,一橡胶制品,其厚度为22mm,试片测试

的正硫化时间为6min (温度设定为150C),那么,在150C硫化时,该制品的硫化时间为6+ (22-6)X仁22min

这时间不包括操作过程的辅助时间。

3. 二段加硫时间设定

3.1 定义为了达到合理的制造工艺和合理成本,把橡胶硫化分为一段、二段两个过程来完成的工艺方法,其第二段的工艺就是所谓的二段加硫。一段硫化主要是使制品得到定形,然后将未100%正硫化状态而得到定形的制品集中起来进行二段硫化。这样,提升了一段硫化的效率,二段硫化的集中处理,也提升了效率,节省了能源。

3.2 二段硫化时间的设定

除合理成本考量,对于特种橡胶如Silicone胶、FKM橡胶,其正硫化过程的时间较长,正常工艺均采用二段硫化。

NR, —般不采用二段加硫。因其非常容易产生硫化返原现象。如需要建议

在100C以内,2小时左右;

SBR BR一般采用100-120C, 1-2 小时;

NBR, EPDM(硫磺硫化)一般采用140-150C 2-4小时;EPDM过氧)一般采用150-160C 2-4小时;

FKM 一般采用200-230 8-12小时。

硅橡胶

硅橡胶(SiliconeRubber)是一种兼具无机和有机性质的高分子弹性 材料,其分子主链由硅原子和氧原子交替组成(—Si—O—Si—),侧链是与硅原子相连接的碳氢或取代碳氢有机基团,这种基团可以是甲基、不饱和乙烯基(摩尔分数一般不超过01005)或其它有机基团,这种低不饱和度的分子结构使硅橡胶具有优良的耐热老化性和耐候老化性,耐紫外线和臭氧侵蚀。分子链的柔韧性大,分子链之间的相互作用力弱,这些结构特征使硫化胶柔软而富有弹性,但物理性能较差。 硅橡胶发展于20世纪40年代,国外最早研究的品种是二甲基硅橡胶。1944年前后由美国DowCorning公司和GeneralElectric公司各自投入生产。我国在60年代初期研究成功并投入工业化生产。现在生产硅橡胶的国家除我国外,还有美国、英国、日本、前苏联和德国等,品种牌号有1000多种。 1 硅橡胶的分类和特性 1.1 分类 硅橡胶按其硫化机理不同可分为热硫化型、室温硫化型和加成反应型三大类。 1.2 特性 (1)耐高、低温性 在所有橡胶中,硅橡胶的工作温度范围最广阔(-100~350℃)。例如,经过适当配合的乙烯基硅橡胶或低苯基硅橡胶,经250℃数千小时或

300℃数百小时热空气老化后仍能保持弹性;低苯基硅橡胶硫化胶经350℃数十小时热空气老化后仍能保持弹性,它的玻璃化温度为-140℃,其硫化胶在-70~100℃的温度下仍具有弹性。硅橡胶用于火箭喷管内壁防热涂层时,能耐瞬时数千度的高温。硅橡胶在高温下连续使用寿命见表1。 (2)耐臭氧老化、耐氧老化、耐光老化和耐候老化性能 硅橡胶硫化胶在自由状态下置于室外曝晒数年后,性能无显著变化。硅橡胶与其它橡胶的耐臭氧老化性能比较见表2。 (3)电绝缘性能 硅橡胶硫化胶的电绝缘性能在受潮、频率变化或温度升高时变化较

硅橡胶的硫化体系

硅橡胶 一般认为,硅橡胶硫化体系的选择是非常有限的。但有关硅橡胶硫化的专利却不少。大多数专利涉及室温固化。此种硫化要求使用带胶层的储槽、电镀槽,在电器表面需涂上绝缘层。当橡胶用作密封或其它目的时常要求室温硫化。 硅橡胶低温硫化最简便的方法是使用表面有OH基的白炭黑。此类填料在有疏质子溶剂条件下用含氯七甲基环四硅氧烷处理。在催化剂月桂酸二丁基锡存在下填充气相白炭黑的聚二甲基硅氧烷-α,ω-二醇也能室温硫化。某些种类的聚硅氧烷可在经含硅端羟基齐聚物处理后的白炭黑存在下硫化。 含硅端烷氧基饱和弹性体在使用含硫的抗氧剂时能自硫化,生成硅氧键。硫化胶的耐热性良好。 与填料改性无关的硅橡胶冷硫化的一般原则在研究论文中有所阐述: [1]在由带OH端基的生胶和RSiX3型交联剂组成的“单组分”体系中生成交联键。(式中X为羟基、亚胺基、硅氮基或乙二酰胺基)。这些基团在空气中的水份作用下水解,生成OH基,此后无需催化剂通过缩聚便生成Si-O-Si键。 [2]于催化剂(Pt,Sn,Ti的衍生物)参与下在含有能相互作用的含活性基团的两种硅橡胶组成的“双组份”体系中生成交联键网络。 [3]在有填料、无催化剂时,两种或多种硅橡胶的端基可能会相互作用。 事实上,第2、第3种情况是性质相同,但含有不同活性基团的自硫化胶料。 目前,大量专利描述了这些过程的不同方面。但其中大多数只在细节上有所不同。例如一种可打印12×104次、用于激光打印机的橡胶,(强度为5MPa),是不用催化剂的甲基硅橡胶或二苯基硅橡胶,甚至其它硅橡胶。由含端羟基和三甲基硅的两种二甲基硅橡胶与七甲基乙烯基硅橡胶及炭黑组成的体系也可进行硫化。此外,硫化反应也可在含端羟基的有机硅橡胶与带ON=CR2交联剂的聚硅氧烷的混合胶料中进行。端羟基二甲基硅橡胶在无水份时可用硅烷的二、三及四官能衍生物硫化。 含硅烷醇端基的有机硅橡胶可在无机填料存在条件下用乙烯基(三羟基)硅烷硫化。含三甲基硅烷醇端基的硅橡胶在催化剂存在下,可用乙烯基三甲氧基硅氧烷硫化。硫化条件为20℃×7d。所得硫化胶强度达5.6MPa。此种胶料用于制作涂层及粘合剂,也可用于电子、医疗及食品工业。 由含烯烃端基的聚硅氧烷,含SiH基的聚硅氧烷、催化剂及硅氧烷胶粘剂组成的胶料也可硫化。其硫化胶与热塑性塑料和树脂的粘接性极好。在Pt催化剂及NH3存在下,有一种含烯烃基的聚硅氧烷的混合胶料也可硫化。硫化胶的压缩永久变形很低。 N-杂环硅烷,如双(三烷基羟基硅烷基烯基氧化)吡啶,是金属、塑料粘接的增粘剂。在Pt

橡胶硫化工艺

概述: 橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。在橡胶的网状结构中,硫磺交联键(其中硫的原子数n≥1;而未交联的硫原子数为S x或S y)的密度,决定着橡胶的硫化程度。后者在工艺实践中,是以胶料宏观的物理机械性能或橡胶粘度的变化来判断的。 硫化条件: 影响硫化过程的主要因素是硫磺用量、硫化温度及硫化时间。① 硫磺用量。其用量越大,硫 化速度越快,可以达到的硫 化程度也越高。硫磺在橡胶 中的溶解度是有限的,过量 的硫磺会由胶料表面析出, 俗称“喷硫”。为了减少喷 硫现象,要求在尽可能低的 温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。②硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用

逐步升温、低温长时间硫化。③硫化时间。这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。 硫化方法: 按硫化条件可分为冷硫化、室温硫化和热硫化三类。冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净、干燥即可。室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。 ①直接硫化,将制品直接置入热水或蒸汽介质中硫化。②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 上述硫化方法均属于间歇生产,有些长度不限的橡胶制品可以连续硫化,如压出制品的盐浴硫化、沸腾床硫化、微波或高频硫化、胶带及胶板的鼓式硫化机硫化等。除硫磺硫化外,橡胶制品还可采用无硫硫化、高能射线硫化等,但其应用面均有限。 热硫化的工艺方式:

橡胶硫化工艺方法简介

橡胶硫化工艺方法简介 一、传统橡胶硫化工艺 1、影响硫化工艺过程的主要因素: 硫磺用量。其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。 硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。 2、硫化时间: 这是硫化工艺的重要环节,时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能 二、橡胶硫化工艺方法 按硫化条件可分为冷硫化、室温硫化和热硫化三类。 1、冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净干燥即可。 2、室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。 3、热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。 ①直接硫化,将制品直接置入热水或蒸汽介质中硫化。 ②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。 ③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 三、橡胶硫化工艺: 橡胶在未硫化之前,分子之间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。当橡胶加入硫化剂以后,经热处理或其他方式能使橡胶分子之间产生交联,形成三维网状结构,从而使其性能大大改善,尤其是橡胶的定伸应力、弹性、硬度、拉伸强度等一系列物理机械性能都会大大提高。橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。 四、注压成型硫化工艺: 普通模压与注压最明显的区别在于前者胶料是以冷的状态充入模腔的,而后者则是将胶料加热混合,并在接近硫化温度下注入模腔。因而,在注压过程中,加热模板所提供的热量仅仅只用于维持硫化,它能很快将胶料加热到190℃-220℃。在模压过程中,由加热模板所提供的热量首先要用于预热胶料,由于橡胶的导热性能差,如果制品很厚,热量要传导到制品中心需要较长的时间。采用高温硫化也可在一定程度上缩短操作时间,但往往导致靠近热板的制品边缘出现焦烧。采用注压法硫化,可以缩短成型周期,实现自动化操作,这对大批量生产最为有利。注压还具有以下优点:可以省去半成品准备、起模和制品修边等工序;可以生产出尺寸稳定、物理机械性能优异的高质量产品;减少硫化时间,提高生产效率,减少胶料用量,降低成本,减少废品,提高企业经济效益。 五、注压成型硫化工艺注意事项: 采用合理的螺杆转速、背压,控制适当的注射机温度。一般地,应保持出料口胶温和控制循环温度之差不大于30度为宜。注射机螺杆的用途是在选定的和均匀的温度下为每一循环制备足够量的胶料;它明显地影响着注射机的产量。背压是通过放慢注射缸中出油口的流量而产生的,并对注射机所射出胶料,对注射油缸的推挤作用进行限制。实践中,背压只会稍微增加对胶料的剪切,而不会引起硫化制品物理性能的降低。 喷嘴的设计:

橡胶的硫化工艺

橡胶的硫化工艺 一、实验目的 1、掌握硫化的本质和影响硫化的因素。 2、掌握硫化条件的确定和实施方法。 3、掌握平板硫化机的操作方法。 4、了解硫化设备之一平板硫化机的结构。 二、实验原理 硫化是在一定温度、时间和压力下,混炼胶的线型大分子进行交联,形成三维网状结构的过程。硫化使橡胶的塑性降低,弹性增加,抵抗外力变形的能力大大增加,并提高了其他物理和化学性能,使橡胶成为具有使用价值的工程材料。 硫化是橡胶制品加工的最后一个工序。硫化的好坏对硫化胶的性能影响很大,因此,应严格掌握硫化条件。 1.硫化机两热板加压面应相互平行。 2.热板采用蒸汽加热或电加热。 3.平板在整个硫化过程中,在模具型腔面积上施加的压强不低于3.5MPa。 4.无论使用何种型号的热板,整个模具面积上的温度分布应该均匀。同一热板内各点间及各点与中心点间的温差最大不超过1℃;相邻二板间其对应位置点的温差不超过1℃。在热板中心处的最大温差不超过±0.5℃。 技术规格 最大关闭压力 200吨 柱塞最大行程 250毫米 平板面积 503毫米×508毫米 工作层数两层 总加热功率 27千瓦 1-机座2-油箱和油泵 3-控制阀4-液压控制面板 5压力表 6立柱 7上横梁 8上加热平板9下加热平板 10-电热线管 11-配电柜 12-移动平台和下加热平板 13-柱塞

橡胶包辊后,按下列一般的顺序加料:橡胶、再生胶、各种母炼胶→固体软化剂(如较难分散的松香、硬脂酸、固体古马隆树脂等)→小料(促进剂、活性剂、防老剂)→补强填充剂→液体软化剂→硫黄→超促进剂→薄通→倒胶下片。 三、实验设备及材料 平板硫化仪XK–160型双辊开炼机天然橡胶高耐磨炭黑氧化锌升华硫 四、实验内容及步骤 1、实验步骤 1 检查机器的油箱油位高低和导向部分润滑状况,立柱上下两端的螺母是否松动,根据制品硫化工艺条件,调节液压系统的工作压力和热板的加热温度。 2 根据制品硫化压力、模具的承压面积和柱塞的面积确定压力的大小,然后调整压力指针到所需刻度。 3 设置加热温度。 4 启动机器检查运行状况是否正常,包括柱塞升降速度、电接点压力表指示的刻度和压力控制情况、机器的噪音和震动情况。 5 将生产或试验用模具清理后置于热板上进行预热。 6 检查、称量所需半成品或胶料,有压延方向要求需标注压延方向。 7 从热板上取下模具,打开上模,将半成品或胶料加入模具型腔,将上模板放到模具上并置于热板上。注意模具应放置在热板中央位置,防止出现偏载情况。 8 启动油泵电机,升起热板进行合模,在上升之间严禁用手或其他东西触及模型或位于

硫化橡胶制品常见缺陷

橡胶制品常见缺陷及解决方法一、表皮气泡现象 NO 原因分析解决方法 1 硫化不充分,导致制品 表面有气泡,割开其内 部呈蜂窝海绵状 ①延长硫化时间,提高硫化温度 ②保证硫化有足够的压力 ③调整配方,提高硫化速度 2 橡胶-金属粘接不良引 起粘结部位残留气体, 橡胶层较薄且面积较大 的橡胶和金属之间会出 现气泡 ①按表格橡胶-金属粘接不良所述方法解决 3 有气体裹入胶料,气体 不易排除,随胶料一起 硫化,从而在制品表面 出现气泡 ①增加模具合模后放气次数;对模具进行抽真空 ②提高混炼胶温度;采用门尼粘度较高的橡胶 ③入料前挑破胶料上的气泡;改进模具的排气槽,溢 料槽等 ④改进开炼机混炼工艺,尽量避免气体混入胶料 ⑤改进注压条件,使胶料能较慢的进入模具型腔 4 胶料配方中有易挥发物①调节适当的硫化条件,温度不宜太高 ②使用的原料应注意使用前的防潮工作,必要时可以 进行干燥 ③减少使用低沸点的增塑剂、填充油、软化剂 二、橡胶表面发粘 No 原因分析解决方法 1 模具型腔局部滞留气体, 从而影响传热和胶料受 ①对模具进行抽真空,保证胶料进入型腔内处于真空 状态,确保抽真空完好,以抽出模具内的气体

热硫化②增加模具合模后放气次数;在模具上设置排气槽或 溢胶槽 2 模具型腔不对称,有死 角,传热不均匀导致硫化 不均匀 ①调整胶料配方,使硫化曲线平坦期长的胶料 ②调节硫化条件,延长硫化时间或提高硫化温度 3 胶料压出或压延夹入气 体 ①改进压出,延压条件和工艺 橡胶制品常见缺陷及解决方法 三、分层 No 原因分析解决方法 1 胶料表面污染,特别是油 污 ①清洁胶料表面或换用干净的胶料 2 喷霜①按表格喷霜所述方法解决 3 相容性差的橡胶混合不 均匀 ①在配方设计时选用相容性好的胶种 四、橡胶-金属粘接不良 N o 原因分析解决方法 1 胶浆选用不对①参考具体使用手册,选择合适的胶粘剂 2 金属件表面处理不良①金属件表面不能有锈蚀,不能沾到油污、灰尘、杂 质等 3 胶浆涂刷工艺稳定性差, 胶浆太少、漏涂、少涂、 残留溶剂 ①注意操作,防止胶浆漏涂、少涂 ②涂好胶浆的金属件应注意充分干燥,让溶剂充分发 挥,防止残留溶剂随硫化时挥发,导致粘胶失败 4 配合不合理,胶料硫化速①改进配方以保证有充足的焦烧时间

硅橡胶概述

硅橡胶 硅橡胶件 硅橡胶(英文名称:Silicone rubber),分热硫化型(高温硫化硅胶HTV)、室温硫化型(RTV),其中室温硫化型又分缩聚反应型和加成反应型。高温硅橡胶主要用于制造各种硅橡胶制品,而室温硅橡胶则主要是作为粘接剂、灌封材料或模具使用。热硫化型用量最大,热硫化型又分甲基硅橡胶(MQ)、甲基乙烯基硅橡胶(VMQ,用量及产品牌号最多)、甲基乙烯基苯基硅橡胶PVMQ(耐低温、耐辐射),其他还有睛硅橡胶、氟硅橡胶等。 医疗领域 概述 在众多的合成橡胶中,硅橡胶是在其中的佼佼者。它具有无味无毒,不怕高温和抵御严寒的特点,在三百摄氏度和零下九十摄氏度时“泰然自若”、“面不改色”,仍不失原有的强度和弹性。硅橡胶还有良好的电绝缘性、耐氧抗老化性、耐光抗老化性以及防霉性、化学稳定性等。由于具有了这些优异的性能,使得硅橡胶在现代医学中广泛发挥了重要作用。近年来,由医院、科研单位和工厂共同协作,试制成功了多种硅橡胶医疗用品。 医疗用品 硅橡胶防噪音耳塞:佩戴舒适,能很好的阻隔噪音,保护耳膜。 硅橡胶胎头吸引器:操作简便,使用安全,可根据胎儿头部大小变形,吸引时胎儿头皮不会被吸起,可避免头皮血肿和颅内损伤等弊病,能大大减轻难产孕妇分娩时的痛苦。 硅橡胶人造血管:具有特殊的生理机能,能做到与人体“亲密无间”,人的机体也不排斥它,经过一定时间,就会与人体组织完全结合起来稳定性极为良好。

硅橡胶鼓膜修补片:其片薄而柔软,光洁度和韧性都良好。是修补耳膜的理想材料,且操作简便,效果颇佳。 此外还有硅橡胶人造气管、人造肺、人造骨、硅橡胶十二指肠管等,功效都十分理想。 硅橡胶介绍 硅橡胶具有优异的耐热性、耐寒性、介电性、耐臭氧和耐大气老化等性能,硅橡胶突出的性能是使用温度宽广,能在-60℃(或更低的温度)至+250℃(或更高的温度)下长期使用。但硅橡胶的抗张强度和抗撕裂强度等机械性能较差,在常温下其物理机械性能不及大多数合成橡胶,且除腈硅、氟硅橡胶外,一般的硅橡胶耐油、耐溶剂性能欠佳,故硅橡胶不宜用于普通条件的场合,但非常适用于许多特定的场合。 值得一提的是,在生物医学工程中,高分子材料具有十分重要的作用,而硅橡胶则是医用高分子材料中特别重要的一类,它具有优异的生理惰性,无毒、无味、无腐蚀、抗凝血、与机体的相容性好,能经受苛刻的消毒条件。根据需要可加工成管材、片材、薄膜及异形构件,可用做医疗器械、人工脏器等。现今国内外都有专门的医用级硅橡胶。 硅橡胶主要品种 概述 硅橡胶主要分为室温硫化硅橡胶,高温硫化硅橡胶。因此,室温硫化硅橡胶按成分、硫化机理和使用工艺不同可分为三大类型,即单组分室温硫化硅橡胶、双组分缩合型室温硫化硅橡胶和双组分加成型室温硫化硅橡胶。这三种系列的室温硫化硅橡胶各有其特点:单组分室温硫化硅橡胶的优点是使用方便,但深部固化速度较困难;双组分室温硫化硅橡胶的优点是固化时不放热,收缩率很小,不膨胀,无内应力,固化可在内部和表面同时进行,可以深部硫化;加成型室温硫化硅橡胶的硫化时间主要决定于温度。 硅橡胶按其硫化特性可分为热硫化型硅橡胶和室温硫化型硅橡胶两类。按性能和用途的不同可分为通用型、超耐低温型、超耐高温型、高强力型、耐油型、医用型等等。按所用单体的不同,可分为甲基乙烯基硅橡胶,甲基苯基乙烯基硅橡胶、氟硅,腈硅橡胶等。 1、二甲基硅橡胶 (简称甲基硅橡胶):

室温硫化液体硅橡胶及其应用

室温硫化液体硅橡胶及应用 一、有机硅产品的性能及用途 通常所说的有机硅产品,是指聚硅氧烷而言。Silicone以前的中文译法为“硅酮”,实际上这些材料中没有可分离和可鉴定的、稳定的硅酮基,也不是由含硅酮基的单体聚合而成。因此,Silicone准确的中文名称应该是“聚硅氧烷类产品”。如聚硅氧烷油,简称硅油;聚硅氧烷橡胶,简称硅橡胶;聚硅氧烷树脂,简称硅树脂。 1.有机硅产品的基本结构单元是硅-氧链节–Si(R)2-O-,与硅原子的余键相连的是各种有机基团。从结构上看,这一类化合物属于半无机、半有机结构的高分子化合物,兼具有机和无机聚合物的特性,因此在性能上有许多独特之处。与其它高分子合成材料相比,有机硅产品最突出的性能是:优良的耐温特性、电绝缘性、耐候性、生理惰性和低表面张力。 A.耐温性:一般高分子合成材料大多是以碳-碳(C-C)键为主链结构,而有机 硅产品是以硅-氧键(Si-O)键为主链结构。硅-氧键的键能504KJ/mol比碳- 碳键的键能345KJ/mol要高出很多,所以有机硅材料的热稳定性较其它高分 子材料高,使用温度>180℃,有些硅树脂使用温度高达500℃以上。燃烧时 生成不燃的二氧化硅而自熄,释放出二氧化碳和水,毒性很低。有机硅材料 既可以耐高温,也可以耐低温(通常情况下为-60℃)。更可贵的是其化学性 能和物理机械性能随温度变化很小,这与有机硅材料分子易挠曲的螺旋状结 构有关。螺旋结构的伸展消除了分子间距离的变化,使分子间平均距离只受 温度变化的轻微影响,因此各项性能基本无太大变化。 B.耐候性:有机硅材料的主链为-Si(R)2-O-Si(R)2-,无双键存在,因 此不易被紫外光和臭氧所分解。硅-氧键的键长大约是碳-碳键键长的1.5倍, 因此相比其它高分子合成材料有机硅材料具有更好的耐候性和耐辐照能力。 C.电绝缘性:有机硅材料的电绝缘性能在绝缘材料中名列前茅,其电气性能受 温度和频率的影响很小,因此是一种稳定的电绝缘材料,被广泛应用于电子 电气工业。在恶劣温度环境和满负荷工作的条件下具有极高的可靠性。绝缘 材料根据热稳定性可分为7级,Y、A、E、B、F、H、C,有机硅材料可用 作H级电气绝缘材料,工作温度180℃。 D.生理惰性:从生理学角度看,有机硅材料是已知的最无活性的化合物之一, 它们十分耐生物老化,目前的所有微生物或生物学过程都不能新陈代谢有机 硅材料。有机硅材料对人体基本无害,对环境也基本没有不良影响。 E.低表面张力(以二甲基硅油为例):高分子聚合物主链的柔顺性通常由围绕 主键旋转的能量来衡量。在PVC中,围绕C-C键旋转所需能量为13.76KJ/mol; 在PTFE中,这个能量为19.6KJ/mol;而在二甲基硅油中几乎是零。这表明 硅油的旋转实际上是自由的。优异的柔顺性使得硅油分子间作用力比碳氢化 合物要低得多,因此硅油比同摩尔质量的碳氢化合物(如矿物油)粘度低,

硅橡胶工艺资料

1、混炼硅橡胶成型 混炼胶成型需要在硫化剂的作用下,施加一定的温度和压力(固态才需要,目的是为了防止产生气泡)。如HTV需要在165℃左右,LSR需要在140℃左右。 混炼胶是由硅橡胶生胶加到双辊炼胶机上或密闭捏合机中逐渐加入白碳黑,硅油等及其它助剂反复炼制而成。根据所加填料及助剂的不同,硅胶的性能也有所差异。主要表现在:物理性能(硬度,抗拉强度,伸长率,撕裂强度,收缩率,可塑性,比重)、电气性能、化学稳定性能(耐温,耐候,耐酸碱腐蚀)等方面。 硅混炼胶是一种综合性能优异的合成橡胶,具有优异的热稳定性、耐高低温性,能在-60℃~+250℃状态下长期工作、抗臭氧、耐候以及良好的电性能、抗电晕、电弧、电火花极强,具有化学稳定性、耐气候老化、耐辐射,具有生理惰性、透气性好,可广泛用于航空、电缆、电子、电器、化工、仪表、水泥、汽车、建筑、食品加工、医疗器械等行业,用于模压、挤压等机械深加工使用。 2、硅橡胶混炼工艺介绍 1.瓶塞开炼机混炼 双辊开炼机辊筒速比为1.2~1.4:为宜,快辊在后,较高的速比导致较快的混炼,低速比则可使胶片光滑。辊筒必须通有冷却水,混炼温度宜在40℃以下,以防止焦烧或硫化剂的挥发损失。混炼时开始辊距较小(1~5mm),然后逐步放大。 加料和操作顺序:生胶(包辊)—→补强填充剂—→结构控制剂—→耐热助剂—→着色剂等—→薄通5次—→下料,烘箱热处理—→返炼—→硫化剂—→薄通—→停放过夜—→返炼—→出片。胶料也可不经烘箱热处理,在加入耐热助剂后,加入硫化剂再薄通,停放过夜返炼,然后再停放数天返炼出片使用。混炼时间为20~40分钟(开炼机规格为φ250mm×620mm)。 如在混炼时直接使用粉状过氧化物,必须采取防爆措施,最好使用膏状过氧化物。如在胶料中混有杂质、硬块等,可将混炼胶再通胶机,时,一般采用80~140目筛网采用开炼机混炼,它包括: 1)包辊:生胶包于前辊;

硅胶硫化剂知识

学习之路 一、中级双二四XC-224 XC-224双二四:硫化速度快,喷霜小,气味小,形状硬朗,便于添加混炼,利于生产,硅胶制品一次硫化成型黄变小,适用做透明或彩色,黑白硅制品,无气泡.绿色环保性可达ROHS 标准,广泛用于医疗,餐具及电线,电缆,硅胶管,片,条型硅制品生产(硅制品厚薄成型无限制)。 用途:硅橡胶挤出或压廷成型热空气硫化. 主要成份:A、过氧化物B、有机硅聚合物 C、有机硅分散剂D、气相法白炭黑 添加比例:1.0 - 1.5% 外观:白色或浅黄色膏体 包装:20 kg/桶 保存:不拆密封桶的情况下可存放两年. 贮存方法:贮存场所严禁明火,远离热源,防止静电、阳光直射(爆晒)及猛烈撞击;应有良好的通风,常温存放,30oC以下存贮;大量存放该产品时,严禁产品接触还原剂、铁锈、重金属离子及酸、碱性物质和易燃性材料。 粘接剂CX-801适用于未硫化硅橡胶与金属、树脂、玻璃纤维、陶瓷热硫化粘接。 一、物理性能 外观:无色透明或略带浅黄色液体 密度:0.84-0.88 色度:30MAX 沸点:大于200 闪点:13

二、特点 1、单组分,使用方便。 2、适用不同的硫化工艺(平板硫化、真空硫化、注射硫化) 3、活性强,粘接强度高,耐高温及稳定性好(通过拉力剥离测试) 4、不含有毒成分(通过SGS检测) 三、使用方式 1、骨架处理:骨架处理的好坏直接影响产品的粘接效果,能喷砂的金属尽量喷砂。经机械处理的金属骨架一定要先除油渍(乙醇),铜件、铝材不可用稀酸处理,喷砂后的骨架用乙醇清洗。不能喷砂的小零件用手工砂磨。碳钢、不锈钢可用稀硫酸或稀盐酸浸泡处理,一定要冲洗晾干。陶瓷、环氧树脂包覆材料表面应打毛,再用乙醇清洗。喷砂后的金属骨架不能长期存放,避免二次生锈氧化。 2、涂胶:较小的骨架可采用浸泡涂胶法,不能浸泡的大型基材可采用喷涂和刷涂(一是要细致,二是要均匀,涂胶不宜太厚,否则容易产生气泡)。涂胶后的骨架和基材要合理摆放,要有专用工具,避免汗手,油手触摸涂胶后的骨架。在梅雨季节,最好将骨架烘干,当天没用完的涂胶骨架最好放入恒温箱(25度),粘接剂未完全干燥容易产生粘接不良。 3、干燥:室温干燥30-60分钟,或在100度烘箱内干燥20-30分钟即可使用。 4、停放:涂胶后的金属骨架干燥后即可进行硫化,最好在48小时内完成硫化,避免灰尘油渍等污染。 5、硫化:一段硫化:硫化温度和时间视胶料而定(150度*10-15分钟) 二段硫化:随胶料工艺而定(200度-250度*4-24小时) 液体硅橡胶硫化后具有优异的耐高低温、耐候、憎水、电气绝缘性、生理惰性等特点,在国防军工、医疗卫生及人们的日常生活中获得了广泛应用。硅橡胶按其硫化温度可分为高温(加热)硫化型和室温硫化型两大类,高温硫化型硅橡胶主要用于制造各种硅橡胶制品,而室温硫化型硅橡胶则主要是用作粘合剂、灌封材料或模具。 航天及航空工业 硅橡胶可以耐受极限温度,在极端的应力条件及苛刻的环境下保持稳定,不影响使用,因而可以用于制造飞机或航天器内外部的门窗及面板密封件、机体空穴密封件、垫圈垫片、密封开关、发动机和液压装置的密封圈、电缆绝缘层等多种部件。耐烧蚀硅橡胶可以用于火箭燃油阀、发射井盖涂层及动力源电缆等。室温硫化硅橡胶也可作为机体气密性密封、窗框密封和防潮防震用灌封料。氟硅橡胶有极佳的耐油性,是燃油控制隔膜、液压管线以及电缆夹板的理想材料。地面及空间站电脑均使用有机硅橡胶制造的键盘。硅橡胶已经成为航天及航空工业重要的高性能材料之一。 汽车工业 硅橡胶有优异的绝缘、耐热、耐油、耐老化等特性,可以提高汽车各部件的使用性能,几乎可用于汽车行业的各个方面。硅橡胶用于汽车密封垫圈及其他密封件,可以为汽车从头灯到滤油器等所有装置提供强劲、持久的密封防护,防漏耐用,在极限温度及压力下不会出现裂缝或破裂;用于连接器,可

硅橡胶主要成分是什么

硅橡胶主要成分是什么,都有哪些品种? 硅橡胶主要品种 硅橡胶主要分为室温硫化硅橡胶,高温硫化硅橡胶。因此,室温硫化硅橡胶按成分、硫化机理和使用工艺不同可分为三大类型,即单组分室温硫化硅橡胶、双组分缩合型室温硫化硅橡胶和双组分加成型室温硫化硅橡胶。这三种系列的室温硫化硅橡胶各有其特点:单组分室温硫化硅橡胶的优点是使用方便,但深部固化速度较困难;双组分室温硫化硅橡胶的优点是固化时不放热,收缩率很小,不膨胀,无内应力,固化可在内部和表面同时进行,可以深部硫化;加成型室温硫化硅橡胶的硫化时间主要决定于温度。 硅橡胶按其硫化特性可分为热硫化型硅橡胶和室温硫化型硅橡胶两类。按性能和用途的不同可分为通用型、超耐低温型、超耐高温型、高强力型、耐油型、医用型等等。按所用单体的不同,可分为甲基乙烯基硅橡胶,甲基苯基乙烯基硅橡胶、氟硅,腈硅橡胶等。 1、二甲基硅橡胶 (简称甲基硅橡胶): 制备高分子量的线型二甲基聚硅氧烷橡胶,必须要有高纯度的原料,为保证原料的纯度,工业上通常是先将经过精镏提纯,含量为99.5%以上的二甲基二氯硅烷在乙醇—水介质中,在酸催化下进行水解缩合,并分离出双官能度的硅氧烷四聚体即八甲基环四硅氧烷,然后再使四环体在催化剂作用下,形成高分子线型二甲基聚硅氧烷。 二甲基硅橡胶生胶为无色透明的弹性体,通常用活性较高的有机过氧化物进行硫化。 在-60~+250℃范围内使用,二甲基硅橡胶的硫化活性低,高温压缩永久变形大,不宜于制厚制品,厚制品硫化比较困难,内层亦易起泡。由于含少量乙烯基的甲基乙烯基硅橡胶性能较之为优,故二甲基硅橡胶已逐渐被甲基乙烯基硅橡胶所取代。现今生产和应用的其它类型的硅橡胶,它们除含有二甲基硅氧烷结构单元外,还含有或多或少的其它双官能硅氧烷的结构单元,但其制备方法与二甲基硅橡胶的制法没有本质的区别,其制备方法一般为在有利于环体形成的条件下,使所需的某种双官能度的硅单体进行水解缩合,然后按其所需比例加入八甲基环四硅氧烷,再在催化剂作用下共同反应而制得。 2、甲基乙烯基硅橡胶 (简称乙烯基硅橡胶): 此种橡胶由于含有少量的乙烯基侧链,故比甲基硅橡胶容易硫化,使之有更多种类的过氧化物可供硫化使用,并可大大减少过氧化物的用量。采用含少量乙烯基的硅橡胶与二甲基硅橡胶相较,可使抗压缩永久变形性能获得显著的改进,低的压缩变形反映了它作为密封件在高温下具有较佳的支撑性,这乃是O型圈和垫圈等所必须具备的要求之一。甲基乙烯基硅橡胶工艺性能较好,操作方便,可制成厚制品且压出、压延半成品表面光滑,是目前较常用的一种硅橡胶。 3、甲基苯基乙烯基硅橡胶 (简称苯基硅橡胶):

橡胶硫化的三大工艺参数

橡胶件硫化的三大工艺参数是:温度、时间和压力。其中硫化温度是对制品性能影响最大的参数,硫化温度对橡胶制品的影响的研究也比比皆是。但对硫化压力比较少进行试验。 硫化压力是指,橡胶混炼胶在硫化过程中,其单位面积上所承受的压力。一般情况下,除了一些夹布件和海绵橡胶外,其他橡胶制品在硫化时均需施加一定的压力。 橡胶硫化压力,是保证橡胶零件几何尺寸、结构密度、物理机械的重要因素,同时也能保证零件表面光滑无缺陷,达到橡胶制品的密封要求。作用主要有以下几点: 防止混炼胶在硫化成型过程中产生气泡,提高制品的致密性; 提供胶料的充模流动的动力,使胶料在规定时间内能够充满整个模腔; 提高橡胶与夹件(帘布等)附着力及橡胶制品的耐曲绕性能; 4)提高橡胶制品的物理力学性能。 硫化压力的选取需要考虑如下几个方面的因素: 1)胶料的配方; 2)胶料可塑性的大小; 3)成型模具的结构形式(模压,注压,射出等); 4)硫化设备的类型(平板硫化机,注压硫化机,射出硫化机,真空硫化机等); 5)制品的结构特点。 硫化压力选取的一般原则: 1)胶料硬度低的(50-Shore A以下或更低),压力宜选择小,硬度高的选择大; 2)薄制品选择小,厚制品选择大; 3)制品结构简单选择小,结构复杂选择大; 4)力学性能要求高选择大,要求低选择小; 5)硫化温度较高时,压力可以小一些,温度较低时,压力宜高点。 对硫化压力,国内外一些橡胶厂家有如下一些经验值供参考: 1)模压及移模注压的硫化方式,其模腔内的硫化压力为:10~20Mpa; 2)注压硫化方式其模腔内的硫化压力为:0~150Mpa; 3)硫化压力增大,产品的静态刚度也随之增大,而收缩率随之逐渐减小;(在国内的减振橡胶行业内,对于调整产品的刚度,普遍采用的依然是增加或者降低产品所使用的胶料硬度,而在国外,已经普遍采用了提高或者降低产品硫化时的胶料硫化压力来调整产品的静态刚度。) 4)随着硫化压力的不断提高,产品胶料的收缩率会出现一个反常的现象,即当产品胶料的硫化压力达到83Mpa时,产品胶料的收缩率为0,若产品胶料的硫化压力继续不断上升,产品胶料的收缩率会出现负值,也就是说,在这种超高的产品胶料硫化压力下,产品硫化出来经停放后,其橡胶部分的尺寸比模具设计的尺寸还要大; 5)在模压和注压方式下,模腔内胶料的硫化压力随着时间的延长,总是先增高后减少,并最终处于平坦状态; 6)随着胶料硫化压力的提高,其胶料的300%定伸和拉伸强度均随之提高,其胶料的扯断

橡胶生产基本工艺流程介绍

橡胶生产基本工艺流程介绍 一、基本工艺流程 橡胶制品种类繁多,但生产工艺过程却基本相同。以一般固体橡胶——生胶为原料的橡胶制品的基本工艺过程包括:塑炼、混炼、压延、压出、成型、硫化6个基本工序。当然,原材料准备、成品整理、检验包装等基本工序也少不了。橡胶的加工工艺过程主要是解决塑性和弹性性能这个矛盾的过程。通过各种工艺手段,使得弹性的橡胶变成具有塑性的塑炼胶,再加入各种配合剂制成半成品,然后通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 二、原材料准备 1.橡胶制品的主要原料是以生胶为基本材料,而生胶就是生长在热带,亚热带的橡胶树上通过人工割开树皮收集而来。 2.各种配合剂,是为了改善橡胶制品的某些性能而加入的辅助材料。 3.纤维材料有(棉、麻、毛及各种人造纤维、合成纤维和金属材料、钢丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。在原材料准备过程中配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对材料进行加工。生胶要在6070℃烘房内烘软后再切胶、破胶成小块,配合剂有块状的。如石蜡、硬脂酸、松香等要粉碎。粉状的若含有机械杂质或粗粒时需要筛选除去液态的如松焦油、古马隆需要加热、熔化、蒸发水分、过滤杂质, 配合剂要进行干燥不然容易结块、混炼时若不能分散均匀硫化时产生气泡会影响产品质量。 三、塑炼 生胶富有弹性,缺乏加工时必需的可塑性性能,因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼,这样在混炼时配合剂就容易均匀分散在生胶中,同时在压延、成型过程中也有助于提高胶料的渗透性渗入纤维织品内和成型流动性。将生胶的长链分子降解形成可塑性的过程叫做塑炼。生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下通过塑炼机的机械挤压和摩擦力的作用使长链橡胶分子降解变短由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气在热和氧的作用下使长链分子降解变短从而获得可塑性。

硅橡胶种类、配方、生产工艺及用途

硅橡胶种类、配方、生产工艺及用途 摘要:硅橡胶是一种兼具无机和有机性质的高分子弹性材料,其分子主链由硅原子和氧原子 交替组成(—Si—O—Si—),侧链是与硅原子相连接的碳氢或取代碳氢有机基团,这种基团可以 是甲基、不饱和乙烯基(摩尔分数一般不超过01005) 或其它有机基团,这种低不饱和度的分子 结构使硅橡胶具有优良的耐热老化性和耐候老化性,耐紫外线和臭氧侵蚀。分子链的柔韧性 大,分子链之间的相互作用力弱,这些结构特征使硫化胶柔软而富有弹性,但物理性能较差。关键词:硅橡胶、热硫化型橡胶、工艺流程、特性与功能、应用与发展 1 引言 分类 硅橡胶按其硫化机理不同可分为热硫化型、室温硫化型和加成反应型三大类。这里主要介绍热硫化型橡胶。 特性 (1)耐高、低温性 在所有橡胶中,硅橡胶的工作温度范围最广阔(-100~350℃)。例如,经过适当配合的乙烯基硅橡胶或低苯基硅橡胶,经250℃数千小时或300℃数百小时热空气老化后仍能保持弹性;低苯基硅橡胶硫化胶经350℃数十小时热空气老化后仍 能保持弹性,它的玻璃化温度为-140℃ ,其硫化胶在-70~100℃的温度下仍具有弹性。硅橡胶用于火箭喷管内壁防热涂层时,能耐瞬时数千度的高温。 (2)耐臭氧老化、耐氧老化、耐光老化和耐候老化性能硅橡胶硫化胶在自由状 态下置于室外曝晒数年后,性能无显着变化。 (3) 电绝缘 性能硅橡胶硫化胶的电绝缘性能在受潮、频率变化或温度升高时变化较小,燃烧 后生成的二氧化硅仍为绝缘体。此外,硅橡胶分子结构中碳原子少,而且不用炭黑作填料,因此在电弧放电时不易发生焦烧,在高压场合使用十分可靠。它的耐电晕性和耐电弧性极好,耐电晕寿命是聚四氟乙烯的1000 倍,耐电弧寿命是氟橡胶的20 倍。 (4)特殊的表面性能和生理惰性 硅橡胶的表面能比大多数有机材料小,具有低吸湿性,长期浸于水中吸水率仅为1%左右,物理性能不下降,防霉性能良好,与许多材料不发生粘合,可起隔离作用。硅橡胶无味、无毒,对人体无不良影响,与机体组织反应轻微,具有优良生理惰性和生理老化性。

橡胶的硫化体系

第二章橡胶的硫化体系 硫化是橡胶制品加工的主要工艺过程之一,也是橡胶制品生产中的最后一个加工工序。在这个工序中,橡胶要经历一系列复杂的化学变化,由塑性的混炼胶变为高弹性的交联橡胶,从而获得更完善的物理机械性能和化学性能,提高和拓宽了橡胶材料的使用价值和应用范围。因此,硫化对橡胶及其制品的制造和应用具有十分重要的意义。 本章要求: 1.掌握硫化概念、硫化参数(焦烧、诱导期、正硫化、硫化返原)、喷霜等专业术语。 2.掌握硫化历程、各种硫化剂、促进剂的特性; 3.掌握硫化体系与硫化胶结构与性能的关系、硫化条件的选取与确定。 4.了解各种硫化体系的硫化机理、硫化工艺及方法。 本章主要参考书: 橡胶化学(王梦蛟译)、橡胶化学与物理、橡胶工业手册(2、3分册) §1 绪论 一.硫化发展概况 1839年,美国人Charles Goodyear发现橡胶和硫黄一起加热可得到硫化胶; 1844年,Goodyear又发现无机金属氧化物(如CaO、MgO、PbO)与硫黄并用能够加速橡胶的硫化,缩短硫化时间; 1906年,使用了有机促进剂苯胺。Oenslager发现在硫化性能最差的野生橡胶中添加苯胺后,可使其性能接近最好的巴拉塔胶。 NR+S+PbO+苯胺——→硫化速度大大加快,且改善硫化胶性能; 1906-1914年,确定了橡胶硫化理论,认为硫化主要是在分子间生成了硫化物; 1920年,Bayer发现碱性物有促进硫化作用; NR+S+ZnO+苯胺——→ 1921年,NR+S+ZnO+硬脂酸+苯胺——→ 同年又发现了噻唑类、秋兰姆类促进剂,并逐渐认识到促进剂的作用,用于橡胶的硫化中。在此之后又陆续发现了各种硫化促进剂。 硫黄并非是唯一的硫化剂。 1846年,Parkes发现SCl的溶液或蒸汽在室温下也能硫化橡胶,称为“冷硫化法”; 1915年,发现了过氧化物硫化; 1918年,发现了硒、碲等元素的硫化; 1930年,发现了低硫硫化方法; 1940年,相继发现了树脂硫化和醌肟硫化; 1943年,发现了硫黄给予体硫化; 二战以后又出现了新型硫化体系,如50年代发现辐射硫化;70年代脲烷硫化体系;80年代提

橡胶硫化与硫化工艺

橡膠硫化與硫化工藝 橡膠硫化 “硫化過程(Curing)”一詞在整個橡膠工業中普遍使用,在橡膠化學中占有重要地位。橡膠的硫化就是通過橡膠分子間的化學交聯作用將基本上呈塑性的生膠轉化成彈性的和尺寸穩定的產品,硫化后的橡膠的物性穩定,使用溫度范圍擴大。橡膠分子鏈間的硫化(交聯)反應能力取決于其結構。不飽和的二烯類橡膠(如天然橡膠、丁苯橡膠和丁腈橡膠等)分子鏈中含有不飽和雙鍵,可與硫黃、酚醛樹脂、有機過氧化物等通過取代或加成反應形成分子間的交聯。飽和橡膠一般用具有一定能量的自由基(如有機過氧化物)和高能輻射等進行交聯。含有特別官能團的橡膠(如氯磺化聚乙烯等),則通過各種官能團與既定物質的特定反應形成交聯,如橡膠中的亞磺酰胺基通過與金屬氧化物、胺類反應而進行交聯。 橡膠硫化體系: 多數的通用橡膠采用硫黃或硫給予體硫化,即在生膠中加入硫黃或硫給予體以及縮短硫化時間的促進劑和保證硫黃交聯效率的氧化鋅和硬脂酸組成的活性劑。在實際中通常按硫黃用量及其與促進劑的配比情況劃分成以下幾種典型的硫化體系: 普通硫磺硫化體系由常用硫黃量(>1.5份)和常用促進劑量配合組成。使用這種硫化體系能使硫化膠形成較多的多硫鍵,和少量的低硫鍵(單硫鍵和雙硫鍵)。硫化膠的拉伸強度較高,耐疲勞性好。缺點是耐熱和耐老化性能較差。 半有效硫化體系由硫黃量0.8~1.5份(或部分硫給予體)與常用促進劑量配合所組成。使用這種硫化體系能使硫化膠形成適當比例的低硫鍵和多硫鍵,硫化膠的扯斷強度和耐疲勞性適中,耐熱、耐老化性能較好。

有效硫化體系由低硫黃量(0.3~0.5份)或部分硫給予體與高促進劑量(一般為2~4份)配合組成。使用這種硫化體系能使硫化膠形成占絕對優勢的的低硫鍵(單硫鍵和雙硫鍵),硫化膠的耐熱、耐老化性能好,缺點是拉伸強度和耐疲勞性能較低。 無硫硫化體系不用硫黃而全部用硫給予體和促進劑配合組成。這種硫化體系與有效硫化體系的性能相似。 橡膠交聯鍵結構與硫化膠性能: 使用硫黃或硫給予體作交聯劑的情況,生成的可以是單硫鍵(x=1)、雙硫鍵(x=2)和多硫鍵(x=3~8); 使用樹脂交聯和肟交聯的情況; 使用過氧化物交聯的過氧化物硫化和利用輻射交聯的輻射硫化的情況,生成碳-碳鍵。 橡膠硫化工藝 一、傳統橡膠硫化工藝 1、影響硫化工藝過程的主要因素: 硫磺用量。其用量越大,硫化速度越快,可以達到的硫化程度也越高。硫磺在橡膠中的溶解度是有限的,過量的硫磺會由膠料表面析出,俗稱“噴硫”。為了減少噴硫現象,要求在盡可能低的溫度下,或者至少在硫磺的熔點以下加硫。根據橡膠制品的使用要求,硫磺在軟質橡膠中的用量一般不超過3%,在半硬質膠中用量一般為20%左右,在硬質膠中的用量可高達40%以上。 硫化溫度。若溫度高10℃,硫化時間約縮短一半。由于橡膠是不良導熱體,制品的硫化進程由于其各部位溫度的差異而不同。為了保證

硅胶基础知识

有机硅基础知识 什么是有机硅: 有机硅产品的基本结构单元是由硅-氧链节构成的,侧链则通过硅原子与其他各种有机基团相连。因此,在有机硅产品的结构中既含有" 有机基团",又含有"无机结构",这种特殊的组成和分子结构使它集有机物的特性与无机物的功能于一身。与其他高分子材料相比,有机硅产品的最突出性能是: 耐温特性 有机硅产品是以硅-氧(Si-O)键为主链结构的,C-C键的键能为82.6千卡/克分子,Si-O键的键能在有机硅中为 121千卡/克分子,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。 耐候性 有机硅产品的主链为-Si-O-,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。 电气绝缘性能 有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且它们的电气性能受温度和频率的影响很小。因此,它们是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上。有机硅除了具有优良的耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。 生物特性 生物活性有机硅是人体必需的一种的营养素。有机硅是构成人体组织和参与新陈代谢的重要元素。存于人体的每一个细胞当中,作为细胞构建的支撑,同时帮助其他重要物质如镁,磷,钙等吸收。人体只能通过食物不断获得有机硅。 科学家们认为,有机硅主要以三种形式存在于人体中: (一)可溶性有机硅,占重量的10% (二)百分之三十存在于各种细胞基质 (三)60%用来合成蛋白质这说明我们每天所需的有机硅是相当高。 如果要保持5年,10年甚至于是30年的年轻程度,每天摄入有机硅20-30毫克的有机硅尤为重要。 低表面张力和低表面能 有机硅的主链十分柔顺,其分子间的作用力比碳氢化合物要弱得多,因此,比同分子量的碳氢化合物粘度低,表面张力弱,表面能小,成膜能力强。这种低表面张力和低表面能是它获得多方面应用的主要原因:疏水、消泡、泡沫稳定、防粘、润滑、上光等各项优异性能。 有机硅的用途 由于有机硅具有上述这些优异的性能,因此它的应用范围非常广泛。它不仅作为航空、尖端技术、军事技术部门的特种材料使用,而且也用于国民经济各部门,其应用范围已扩到:建筑、电子电气、纺织、汽车、机械、皮革造纸、化工轻工、金属和油漆、医药医疗等。 电子器件和电源模块 希顺公司致力于发展应用于电子工业的先进有机硅技术。希顺公司提供的专业化有机硅解决方案可以满足日益增长的元器件集成度和高性能要求。

相关文档
最新文档