反应堆材料实验报告

反应堆材料实验报告
反应堆材料实验报告

中国科学技术大学

核科学技术学院

反应堆材料实验课程

实验报告

实验名称:铁碳合金金相组织观察及硬度测试学生姓名:

学号:

专业班级:

指导老师:李远杰

一.实验目的

1.掌握金相样品的制备流程,可独立完成金相样品的制备;

2.了解淬火和回火热处理过程,并掌握RAFM钢回火态和淬火态的判断方法;

3.理解热处理对金属材料结构和性能的影响;

4.观察经淬火和回火的样品的表面晶格结构,并比较两者的不同。二.实验原理(主要阐述实验中相关过程的基本原理,如预磨和抛光的原理,腐蚀剂的选择,金相的判断,热处理原理,硬度测试原理等)

1.热处理原理

⑴淬火:将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到马氏体以下(或马氏体附近等温)进行马氏体(或贝氏体)转变的热处理工艺。

⑵回火:将淬火钢加热到奥氏体转变温度以下,保温1到2小时后冷却的工艺。回火往往是与淬火相伴,并且是热处理的最后一道工序。经过回火,钢的组织趋于稳定,淬火钢的脆性降低,韧性与塑性提高,消除或者减少淬火应力,稳定钢的形状与尺寸,防止淬火零件变形和开裂,高温回火还可以改善切削加工性能。

⑶过冷奥氏体等温转变曲线(C曲线)

图1 过冷奥氏体等温转变曲线(C曲线)

过冷奥氏体(指加热保温后形成的奥氏体冷却到临界点Ar1以下时,尚未转变的奥氏体)等温转变动力学曲线是表示不同温度下过冷奥氏体转变量与转变时间关系的曲线。由于通常不需要了解某时刻转变量的多少,而比较注重转变的开始和结束时间,因此常常将这种曲线绘制成温度—时间曲线,简称C曲线。C曲线是过冷奥氏体转变的动力学图。从图中可以看出过冷奥氏体转变的组织和性能可以分为3个区:珠光体(由铁素体和渗碳体相间而成的片状或粒状混合物)型转变区(A1-550℃)、贝氏体(由铁素体和渗碳体组成的机械混合物,但不是层片状)型转变区(在240-550℃之间,其中又以350℃左右为界为上、下贝氏体两个转变区) 、马氏体(马氏体是碳在体心立方α-Fe 中的过饱和固溶体)型转变区(Ms-Mf) 。

2.预磨和抛光

预磨是指通关过表面预处理清除部件上的污物,消除严重氧化、

细微划痕及表面缺陷,工艺大多采用水砂纸去除表面瑕疵。而抛光是指利用机械、化学或电化学的作用,使工件表面粗糙度降低,以获得光亮、平整表面的加工方法。抛光不能提高工件的尺寸精度或几何形状精度,而是以得到光滑表面或镜面光泽为目的,有时也用以消除光泽(消光)。

3、腐蚀剂

在金属腐蚀过程中,表面上某些特定部位会选择地溶解。金属固溶体的组分之一,优先的由于腐蚀而转入溶液,而金属表面则逐渐地富集了另一组成,这称为组分的选择性腐蚀。选择性腐蚀源于金属表面上组分的差异,而在腐蚀介质的作用下行为各异。与介质反应时活性大的组分将优先氧化或溶解,而较稳定的组分则残留下来。

4、金相判断

金相是指金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。广义的金相组织是指两种或两种以上的物质在微观状态下的混合状态以及相互作用状况。

金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。

5、硬度测量

硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可以理

解为是材料抵抗弹性变形、塑性变形或破坏的能力,一可以表述为材料抵抗残余变形和反破坏的能力。硬度试验根据其测试方法的不同可以分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)以及显微硬度、高温硬度等多种方法。本实验采用静压法,通过测量压入深度,硬度值可以直接读出,操作简单快捷,工作效率高。

三.实验器材(主要阐述实验中使用到的材料,仪器的型号参数及试剂等)1.RAFM钢样品两个(一个用于观察淬火态金相(21#),一个用于观察回火态金相(26#));

2.样品预磨机,抛光机,砂纸(800#和1200#两种各一张),酒精,苦味酸,镊子,药棉若干,吹风机,金相显微镜,硬度测试仪。四.实验步骤(主要阐述实验的具体过程,大致过程包括预磨-抛光-腐蚀-金相观察拍照-硬度测试等)

1.预磨

⑴在金相试样预磨机的磨盘中装入600#砂纸,打开调节水阀旋钮让水不停地流入磨盘,但是水量不宜过大,保证连续不断地流入即可;

⑵按下预磨机开按钮,磨盘开始旋转工作,此时可以把镶嵌好的样品放入磨盘中开始磨,在磨过程中用手固定好样品,使样品平稳地与磨盘砂纸面接触;

⑶预磨中每隔一段时间要取出样品,看看样品表面的情况,选择一个合适的方向进行预磨,最后磨至样品表面平整、划痕方向一致,即可换800#砂纸继续磨;

⑷关闭调节水阀旋钮,按下预磨机关按钮,磨盘停止旋转,取下600#

砂纸,用抹布擦干磨盘表面,装上800#砂纸,并将样品表面冲洗干净;

⑸重复⑴—⑷步,800#砂纸可以使样品表面划痕变得更细;

⑹换上1200#砂纸,重复⑴—⑷步,1200#砂纸可以使样品表面划痕变得很精细。

2.抛光

(1)在抛光机布上涂抹适量抛光剂,沿一条半径抹开。打开开关(2)不断向抛光布上喷洒水,用手将样品固定在布上开始抛光,注意与预磨划痕垂直方向抛光。直到样品没有划痕为止。

(3)用自来水冲洗样品,再用酒精擦洗,然后再显微镜下观察表面是否平整干净。

3.腐蚀

(1)将样品在吹风机下吹干。

(2)带上手套,将样品水平放入掌心,用镊子夹住药棉吸取适量苦味酸均匀涂于样品表面,经约45秒后冲洗掉。

(3)用酒精将样品表面擦洗干净,用吹风机吹干。

4.金相观察拍照

(1)将处理后的样品放于显微镜下,调节粗准焦螺旋,直到视野明亮,再调节细准焦螺旋,直到看到样品表面晶格结构。

(2)对显微镜下样品晶格结构进行拍照保存。

5.硬度测试

(1)将样品重新抛光,冲洗吹干。

(2)打开硬度测量仪,将样品放入开始测量,记录样品硬度。改变位置重新量试2次并记录,若三次相差过大,再另选几处

测量。

五.实验结果(主要贴出腐蚀前后的照片,硬度测试结果等)

1.金属样品腐蚀前后的表面和显微组织照片

⑴21#样品:

图2 21#样品(淬火态CLAM钢)腐蚀后金相显微组织照片(400倍)

⑵26#样品

图3 26#样品(回火态CLAM钢)腐蚀后金相显微组织照片(400倍)2.硬度测量结果

六.实验结论(主要分析金相及硬度测试结果,判断材料热处理状态)

1.两种样品均能观察到方形的晶格形状;

2.淬火态样品的硬度比回火态样品高。

七.实验注意事项(主要说明实验中需要注意的细节)

1.抛光时要垂直划痕抛光;

2.抛光中需要保持样品表面湿润;

3.腐蚀时间要适当,约为45秒,并且要均匀腐蚀。

八.实验的讨论和分析(主要分析实验中遇到的问题)

1.预磨时要均匀用力,否则可能将样品表面磨成多面体形。还要尽

量在一个方向多磨一会,否则会使表面划痕过于混乱。

2.用酒精清洗和用苦味酸腐蚀时镊子要分开用。不能污染酒精,否

则会使用酒精擦洗后的样品表面带有污浊物,影响接下来的观测。

3.淬火态样品比回火态样品硬度高的原因:样品经过回火后,钢的组

织趋于稳定,淬火钢的脆性降低,韧性与塑形提高,消除或者减少淬火应力,稳定钢的形状和尺寸,因而硬度有所降低。

包装材料实验报告

西南林业大学材料工程学院包装工程专业实验报告 课程:包装材料学 姓名:李天卓 学号:20131052046 班级:包装工程2013级 任课教师: 解林坤 时间:2015.11.06

一厚度的测定 一、实验原理 厚度是指纸和纸板等材料在两侧压板间规定压力下直接测量的结果,单位是mm或μm。厚度是影响纸和纸板技术性能的一项关键指标,要求一批产品各张纸或纸板之间的厚度应趋于一致,同一张纸或纸板不同部位之间厚度也应一致。对于具有特殊用途要求的产品如标准纸板还应进行更为严格的全幅校验。在测量时可根据纸的厚薄采用多层测量或单层测量,最后以单层测量的结果表示纸的厚度。 二、测试仪器: 测定纸和纸板厚度的主要仪器是厚度测定仪,有手动、电动之分,以手动为例,其基本结构如图1所示,测定时将纸或纸板放在两受压面之间进行测量。测量过程中受压面间的压力为100 kPa±10 kPa,测厚时,受压测量面积为200 mm2。 图1 厚度测定仪 1—拨杆;2一指针;3一重锤;4一测量杆; 5一测量头;6一量砧;7一底座 三、试验步骤 (1)把测微计放置在无震动的水平面上,调好零点,按标准规定采取试样,以每张纸样上切取100 mm×100 mm的试样至少5张。 (2)按下拨杆,抬起测量头至足以放人纸样的高度(若为电动仪器,则由仪器自动控制高度),置纸样于测量头与测量砧之间。

(3)缓慢放松拨杆,使测量头以低于3 mm/S的速度将测量面轻轻压到试样上(若为电动测厚仪,则自动下降接触纸样),注意避免产生任何冲击作用,待指示值稳定后2~5 s内读数,避免人为对测微计施加任何压力。 (4)对每个试样进行一次测定,测定点离任何一端不小于20 mm或在试样的中心点。宽度在100 mm以下的盘纸,应按全宽切取5条长300 mm的纸条,在每条不同位置测量其厚度,至少两处。 四、结果表示: 以所有测定值的算术平均值表示结果,并报出最大值和最小值。 厚度小于0.05mm的纸,准确至0.001 mm; 厚度小于0.2 mm的纸,准确至0.005mm; 厚度大于0.2mm的纸,准确至0.01 mm。 实验结果:0.33×0.01mm=0.0033mm 二纸和纸板耐折度的测定 一、实验原理 耐折度是指试样在一定张力下,抗往复折叠的能力,以折叠次数表示。耐折度受纤维的长度、纤维本身的强度和纤维间的结合状况影响。凡纤维长度大纤维的强度高和纤维结合力大者,其耐折度就高。耐折度也受纸张水分含量的影响,水分含量低纸张发脆,耐折度低,适当增加含水量,纸张的柔性提高,耐折度随之增大,但水分含量超过一定限度耐折度开始下降。另外,耐折度受打浆程度的影响,在一定程度内,耐折度随打浆度的增加而增加,继续提高打浆度到一定程度,由于纤维的平均长度下降,纤维交织紧密,纸质变脆,则使耐折度下降。因此,在实际生产上控制好影响因素,对保证纸张有较好的耐折强度甚为重要。 许多纸和纸板如白纸板和箱纸板等在加工和使用过程中要经受多次折叠,而耐折度则能较好地反映出纸张抗反复折叠的能力,因此,耐折度的检测被广泛采用。 常用的耐折度仪有两种,一种为卧式的,称作肖伯尔(Schopper)式和立式,称作MIT式,二者的主要区别在于对试样的折叠角度不同,肖伯尔式的折叠角度为180°,MIT式的折叠角度为135°。

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

食品包装实验报告

食品包装实验报告 一、实验目的 利用所学食品包装的基础知识,通过实验加深对食品包装的原理及应用的认识。 二、实验要求: 通过市场调查分析,及所学内容设计适合液体乳制品包装的形式,满足特定食品的包装要求。 三、实验内容: 1. 液体奶的种类 1.1乳制品 以牛乳、羊乳等为主要原料加工制成的各种制品。 1.2生鲜乳 从符合国家要求的健康奶畜乳房中挤出的无任何成分改变的常乳。产犊后七天的初乳以及应用抗生素期间和休药期间的乳汁及变质乳不得用作生鲜乳。 1.3巴氏杀菌乳 仅以生鲜牛乳或羊乳为原料,经巴氏杀菌等工序制得的液体产品。 1.4超高温灭菌乳 仅以生鲜牛(羊)乳为原料,在连续流动的状态下,加热到至少132oC并保持很短时间的灭菌,再经无菌灌装等工序制成的液体产品。 1.5保持灭菌乳 以生鲜牛(羊)乳为主要原料,添加或不添加辅料,无论是否经过预热处理,在灌装并密封之后经灭菌等工序制成的产品。 1.6调制乳 以不低于80%的生鲜牛(羊)乳或复原乳为主要原料,添加其他原料,添加或不添加食品添加剂、食品营养强化剂,可采用高于巴氏杀菌或超高温灭菌、保持灭菌条件等工艺过程制成的液体产品,包括调味乳和营养强化乳。 1.7发酵乳 以生鲜牛(羊)乳或乳粉为原料,经杀菌、发酵后PH值降低制成的产品。 1.8调制发酵乳 以80%以上的生鲜牛(羊)乳或乳粉为原料,添加其它原料,经杀菌、发酵后PH值降低,发酵前或后添加或不添加食品添加剂、营养强化剂、果蔬、谷物等制成的产品。

总结表格 2.1以灭菌纯牛乳为例,主要的工艺流程和工艺描述见下表。 灭菌纯牛乳(UHT纯牛乳)的工艺流程及工艺描述

吸收实验实验报告材料

一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a . 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降 Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知Z P ?~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时, Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段,Z P ?值较小时为恒持液区, Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 吸收实验

图2-2-7-1 填料塔层的 Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: m Ya A Y H K N ???Ω?= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h]; Ω——塔的截面积[m 2] H ——填料层高度[m] ?Y m ——气相对数平均推动力 K Y a ——气相体积吸收系数[kmolNH 3/m 3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): )()(2121X X L Y Y V N A -=-= (2)

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

材料的拉伸试验实验报告

材料的拉伸试验 实验内容及目的 (1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。 (2)掌握万能材料试验机的工作原理和使用方法。 实验材料及设备 低碳钢、游标卡尺、万能试验机。 试样的制备 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例 试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

(a ) (b ) 图1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段: 弹性阶段:试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。 屈服(流动)阶段:应力应变曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点作为材料屈服极限(又称屈服强度),即A F s s = σ,是材料开始进入塑性的标志。结构、零件的应力一旦超过屈服极限,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限作为确定许可应力的基础。 强化阶段:屈服阶段结束后,应力应变曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。D 点是应力应变曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度,即A F b b = σ。对低碳钢来说抗拉强度是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。 颈缩阶段:应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。 材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率δ和断面收缩率ψ来表示。即 %1001?-= l l l δ

包装用缓冲材料动态压缩实验~实验报告

运输包装实验报告 (二)包装缓冲材料动态压缩试验 天津科技大学110611 一、 实验目的 通过缓冲材料动态冲击实验掌握材料动态冲击的实验过程与方法,学习实验设备的构成、实验的操作方法;掌握s m G σ-曲线的绘制及动态缓冲曲线的使用。 二、 实验设备及材料 1. 包装冲击试验机DY-2 2. 电子分析天平 PB203-N 3. 实验纪录仪器与装置 4. 发泡缓冲材料EPE 三、 试验样品 试验样品的数量:5 厚度(压缩之前)的测量: A1组: mm A2组: A3组: A4组: A5组: A6组:

A7组: 以 A4组详述:测量标准的已知参量: d0= d1= d2= 四角的厚度分别为: d1= d2= d3= d4= d均=(+++)/4= 压缩前试样的厚度为: T=++ 压缩之后测量标准的已知参量: d0= d1= d2= 四、试验方法 1.实验室的温湿度条件 实验室的温度:21摄氏度 实验室的湿度:35% 2.实验样品的预处理 将实验材料放置在试验温湿度条件下24小时以上 3.实验步骤 (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当

的固定试验样品,固定时应不使实验样品 产生变形。 (2)使试验机的重锤从预定的跌落高度(760mm)冲击实验样品,连续冲击五次, 每次冲击脉冲的间隔不小于一分钟。记录 每次冲击加速度-时间历程。实验过程中, 若未达到5次冲击时就已确认实验样品发 生损坏或丧失缓冲能力时则中断实验。4.冲击试验结束3分钟后,按原来方法测量试验样品的厚度作为材料动态压缩实验后的厚度 T d 实验步骤 (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品 产生变形。 (2)使试验机的重锤从预定的跌落高度(760mm)冲击实验样品,连续冲击五次, 每次冲击脉冲的间隔不小于一分钟。记录

《材料力学》实验报告

材料力学 实验报告 对应课程 学号 学生 专业 班级 指导教师 成绩总评 学年第学期

目录 1.低碳钢及铸铁拉伸破坏实验???????????????(3 ) 2.低碳钢及铸铁压缩破坏实验???????????????(8 ) 3.引伸计法测定材料的弹性模量??????????????( 12 ) 4.低碳钢及铸铁扭转破坏实验???????????????(15) 5.载荷识别实验?????????????????????( 19) 成绩总评定 : 拉伸压缩测E扭转载荷识别

低碳钢及铸铁拉伸破坏实验 实验日期: 同组成员: 一、实验目的及原理 二、实验设备和仪器 1、试验机名称及型号: 吨位: 精度: 2、量具名称: 精度: 三、实验步骤 (一)、低碳钢、铸铁拉伸实验步骤:

四、试样简图 低碳钢试样 实验前实验后试 样 简 图 铸铁试样 实验前实验后试 样 简 图

五、实验数据及计算 低碳钢拉伸试验 (一)试件尺寸 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 断后标断口直径 d 1 ( mm )距 L1 12平均( mm )断口(颈缩处)最小横截面面 积 A1 ( mm2 ) 屈服极限:强度极限:断后延伸率: F s s (MPa) A0 F b b (MPa) A0 ( L 1 L O ) 100% L0

A0 A1100% 断面收缩率: A0 铸铁拉伸试验 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 F b 强度极限:b(MPa ) (二)绘出低碳钢的“力—位移、及铸铁的“ 力-位移”曲线低碳钢铸铁

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

包装测试实验报告

包装测试实验报告 纸张撕裂度的测定 姓名:组号3 小组成员: 指导老师:

纸张撕裂度的测定 参考:GB/T455-2002 一、实验内容 1 理解纸张撕裂度纸材料性能的定义及相关国家标准。 2 掌握纸张撕裂度测量方法和步骤,并能进行仪器的调节和校准; 3 了解相关仪器的结构和工作原理,并能正确操作。 二、实验目的 1.掌握爱利门道夫撕裂度仪的原理与使用方法; 2.分析影响纸和纸板撕裂强度的因素; 3.掌握国家标准 GB455-2002 所要求的测试方法,收集试验数据及进行数据处理。 三、实验原理及实验步骤 1、实验原理 具有规定预切口的一叠试样,用一垂直于试样面的移动平面摆施加撕力,使纸撕开一个固定距离。用摆的势能损失来测量在撕裂试样的过程中所做的功。平均撕裂力由摆上的刻度来指示或由数字来显示,纸张撕裂度由平均撕裂力和试样层数来确定。 2、实验步骤 (1)制样:试样尺寸 (2)试样处理 按GB/T10739进行温湿处理。 (3)实验仪器校准 1.水平调整: 在水准器气泡居中时放扇形体,让其自动的停止,这时,扇形体下方的红色刻线必须对准摆限制器的左端面,如果没有对准,可以调节左边的水平调节螺钉(14)。 2.零点调整: 如同正式做测试一样,支起扇形体并将它释放,任其自由摆动了次,观察指针是否指在零点,如果没有指在零点,调节指针限制器(4),并反复试验,直到指针指到零点为止。 3.摆轴的摩擦阻力: 作好测试的一切准备,按住按钮(6)任其自由摆动,如果在摆动35个全振幅以后,其摆幅的减少量不大于25mm时,表示合格,否则轴承必须卸下清洗、加油或换用新的。4.指针的摩擦: 将指针放在零点,重新支起扇形体:并将它释放,如果指针被打出刻度标尺的双线外,表示指针的摩擦力过大,这时须将指针对称的手柄和套环卸下,用清洁纱布擦试R环沟,适当加一滴钟表油,或调整手柄中的弹簧张力,再重新调节零点,反复试验至合格。 5.刀的调整:

材料实验报告

钢的热处理实验报告 一、实验目的 1、了解碳钢的基本热处理(淬火、回火)工艺方法。 2、研究冷却条件对碳钢性能的影响。 3、分析淬火及回火温度对碳钢性能的影响。 二、实验设备及材料 1、箱式电炉及控温仪表; 2、洛氏硬度机; 3、冷却介质:水; 4、试样材料:45钢。 三、实验原理 1、钢的淬火 所谓淬火是用来提高工件的硬度和强度等,方法是把工件加热到临界温度以上(即稍高于AC3),然后以最快的速度冷却(在水中或油中以及在其它溶液中进行冷却),由于冷却速度太快,使得含碳量较多的γ铁(即奥氏体)来不及分解却形成非平衡状态的马氏体和残余奥氏体,形成马氏体的过程可写成为: A→M 正常的淬火(在水中冷却)组织为马氏体,高碳钢的马氏体是针状,这些针状物之间彼此相交成60°、90°、120°的角度,低碳钢的马氏体是板条状的。所谓马氏体就是碳在α铁中的过饱和固溶体,它可分为正方形和立方形,前者由淬火而得,后者由低温回火而得。马氏体针状的粗细决定于加热至高温时奥氏体晶粒的大小,奥氏体晶粒愈大,所产生的马氏体针状物就愈粗。正常淬火时,马氏体组织应该是细针状,若淬火时钢的加热过高,就会得到粗针状马体,这种钢在很大的脆性。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。 (1)淬火温度的选择 选定正确的加热温度是保证淬火质量的重要环节。淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所示)。对亚共析钢,其加热温度为+30~50℃,若加热温度不足(低于),则淬火组织中将出现铁素体而造成强度及硬度的降低。对过共析钢,加热温度为+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。后者的存在可提高钢的硬度和耐磨性。 (2)保温时间的确定

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

包装材料实验报告

包装材料实验报告 实验一塑料薄膜的透明度与雾度 .实验内容一 测定塑料薄膜的雾度与透明度 .实验目的二 熟悉仪器的原理及使用方法;.a掌握国家标准所要求的测试方法学习收集试验数据及进行数据处理;.,b了解和分析试验误差。.c.实验原理三。透过试样的通光量和射到试样上的光通量之比称透光率。透过试样而偏离入射光方向的散射光与透射光通量比称为雾度.仪器校准与实验步骤四;仪器校准a. :实验步骤b. 。()按透光率雾度测定仪的试样要求裁切所测薄膜样品①50mm350mm,,,,不久就在显示屏上显示出透在仪器校准后装上样品指示灯转为红色按测试按钮②。光率数值及雾度数值,,,然后取其算术平均值③需要进行复测时重按测试按钮可得到多次测数可不拿下样品,。以提高测量准确度作为测量结果应先按测试按钮测空白指示灯转红色然后仪器将显示“p100.0”,,,更换样品批号后④及“h0.00”结果指示灯显示绿色一般每测完一组样品应测空白一次注意测空白后应,。,,,、,。仪器发出呼叫后再测下一组样品再按测试按钮等到准备灯发绿光.实验仪器五/雾度测定仪透光率.实验数据处理六空气雾度:%%::透光率0.00100雾度:%%::透光率0.0891.9bopp 雾度:%:%:透光率0.8091.2hdpe .思考题七薄膜透明度的决定参数是什么?.1即通过试样的光通量于射到试样上的光通量之比:是透光率答。。 .八误差分析仪器误差.1空气的温湿度能够影响到测试的结果环境误差。.:2人为的错误操作人为误差。:.3. 试样本身也能导致误差(比如薄膜的厚薄不均匀)。.4实验二塑料薄膜透气率的测定 一实验内容掌握塑料薄膜的透气率的测定方法()。:.2000—gb/t1038二实验目的熟悉仪器的原理及使用方法;:..a掌握国家标准所要求的测试方法学习收集试验数据及进行数据处理;,.b了解和分析试验产生误差的原因。.c.实验原理及实验步骤三 实验原理与仪器结构:.1气体的透过量是在恒定温度和一个大气压差下稳定透过每平方米透过面积,24小时透过 单位是cm3/m22d2pa的气体量标准状态下)(,。 、单位厚度薄膜的透气气体透过系数是在恒定温度和一个大气压差下稳定透过单位面积 单位是cm2cm/cm2s2pa量标准状态下)(,。 ,,最终在薄膜的另一然后在薄膜中向低浓度处扩散其原理是气体分子先溶于固体薄膜中 。,,测量试样低压本仪器是在一定的温度和湿度下面蒸发使试样的两侧保持一定的气体压差,。它采用的是国际最先进的微压侧气体压力的变化从而计算出所测试样的透气量和透气系数测量技术利用电涡流原理使测试变得方便可行。,,32 实验步骤:.2⑴,,,注意观察系统监控灯是否以一定频先打开主机电源运行测试软件然后打开电脑,;率闪烁以检查系统是否工作正常然后顺时针调节输出压力阀至0.7mpa;⑵,逆时针旋转试验气体钢瓶总阀门⑶,,试样边缘应无裂然后在低倍放大镜下检查切口用专用取样器取出所需的试样三个,;试样表面平整无划伤无损坏缝及伤痕时间不少于4小时;,⑸⑷进行塑料薄膜的标准环境温湿度进行状态调节gb2918按,,,,旋紧手然后盖上测试腔上腔完全盖住测试腔表面将取好的试样放入测试腔台依次摆好;柄压紧试样:,绝不能让快速定量滤

材料分析(SEM)实验报告

材料专业实验报告 题目:扫描电镜(SEM)物相分析实验学院:先进材料与纳米科技学院专业:材料物理与化学 姓名: 学号:1514122986 2016年6月30日

扫描电镜(SEM)物相分析实验 一.实验目的 1.了解扫描电镜的基本结构与原理 2.掌握扫描电镜样品的准备与制备方法 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4.了解扫描电镜图片的分析与描述方法 二.实验原理 1.扫描电镜的工作原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 本次实验中主要通过观察背散射电子像及二次电子像对样品进行分析表征。 1)背散射电子 背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。弹性背反射电子是指被样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。背反射电子的产生范围在100nm-1mm深度。背反射电子产额和二次电子产额与原子序数的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加,所以,利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

工程材料实验报告

工 程 材 料 实 验 报 告 院系:机械工程学院 班级:10届机电一班 组员:魏仕宏 1000407008 崔继文 1000407010 丁元辉 1000407021 郑鹏涛 10004070

实验项目名称:金相试样的制备及铁碳合金平衡组织观察与分析 一、实验目的和要求 1.通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织,熟悉金相显微镜的使用; 2.了解铁碳合金中的相及组织组成物的本质、形态及分布特征; 3.分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。 二、实验内容和原理 1 概述 碳钢和铸铁是工业上应用最广的金属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使用钢铁材料具有十分重要的实际指导意义。 ⑴碳钢和白口铸铁的平衡组织 平衡组织一般是指合金在极为缓慢冷却的条件下(如退火状态)所得到的组织。铁碳合金在平衡状态下的显微组织可以根据Fe—Fe3C相图来分析。从相图可知,所有碳钢和白口铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不一样,因而呈现各种不同特征的组织组成物。碳钢和白口铸铁在室温下的平衡组织见表1。 a)工业纯铁——室温时的平衡组织为铁素体(F),F为白色块状(如图1所示); b)亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈白色块状,P呈层片 状,放大倍数不高时呈黑色块状(如图2所示)。碳质量分数大于0.6%的亚共析 钢,室温平衡组织中的F呈白色网状包围在P周围(如图3所示); c)共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所示); d)过共析钢——室温时的平衡组织为Fe3CⅡ+P。在显微镜下,Fe3CⅡ呈网状分布在层片 状P周围(如图6所示); e)亚共晶白口铸铁——室温时的平衡组织为P+Fe3CⅡ+ Ld'。Fe3CⅡ网状分布在粗大块 状的P的周围,Ld'则由条状或粒状P和Fe3C基体组成(如图7所示);

建筑材料实验报告模板

建筑材料实验报告 XXXXX学院 土木工程系 班级 姓名 学号

水泥性能测试试验报告 试验日期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 所选水泥样品产地、厂名 水泥品种:出厂标号:

1.水泥细度测定(干筛法) 结论: 根据国家标准GB 该水泥细度为 2.水泥标准稠度用水量测试 室温:℃;相对湿度: % (1)试件成型日期年月日 成型三条试件所需材料用量 (2)测试日期年月日;龄期:天 (3)抗折强度测定 (4)抗压强度测定

4.确定水泥强度等级(只按试验一个龄期的强度评定) 根据国家标准 该水泥强度等级为 混凝土用骨料性能试验报告 试验日 期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 1.砂的筛分析试验 筛孔尺寸(mm)105 2.5 1.250.630.3150.16筛底筛余质量(g) 分计筛余量a(%) 累计筛余量A(%)

砂样细度模数Mx Mx= Mx= 结论:按M X 该砂样属于砂,级配属于区;级配情况。2.砂的泥含量测试 编号冲洗前的烘干试样 质量G1(g) 冲洗后的烘干试样 质量G2(g) 泥含量(%) 测定值 (%) 平均值 (%) 3.砂的视密度测试 试样名称:水温:℃ 编号试样质量 G12(g) 瓶+砂+满水 质量G13(g) 瓶+满水 质量G14(g) 砂样在水中所占 的总体积V(cm3) 视密度 ρ0(g/cm3) 平均值 (g/cm3) 编号 容量筒容积 V(L) 容量筒质量 G1(kg) 容量筒+砂 质量 G2(kg) 砂质量 G(kg) 堆积密度 (kg/L) 平均值 (kg/L) 级配连续粒级 筛孔尺寸 分计筛余(g)(%) 累计筛余(%) 石子筛分析测试结果评定: (1)最大粒径: mm

数学实验综合实验报告材料

一、实验目的: 1、初步认识迭代,体会迭代思想的重要性。 2、通过在mathematica环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。 3、了解分形的的基本特性及利用mathematica编程生成分形图形的基本方法,在欣赏由mathematica生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。 4、从一个简单的二次函数的迭代出发,利用mathematica认识混沌现象及其 所 蕴涵的规律。 5、.进一步熟悉Mathematic软件的使用,复习总结Mathematic在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。 6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。 二、实验的环境: 学校机房,mathematica4环境 三、实验的基本理论和方法: 1、迭代(一)—方程求解 函数的迭代法思想: 给定实数域上光滑的实值函数)(x f以及初值 x定义数列

1()n n x f x +=, ,3,2,1,0=n , (1) n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。 (1)方程求根 给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有 )(**x f x =. (2) 即*x 是方程)(x f x =的解。由此启发我们用如下的方法求方程0)(=x g 的近似解。 将方程0)(=x g 改写为等价的方程 )(x f x =, (3) 然后选取一初值利用(1)做迭代。迭代数列n x 收敛的极限就是方程0)(=x g 的解。 为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成 x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令 ,01)()(=-+'='λλx f x h 得 ) (11 x f '-= λ. 于是 1 )()()(-'-- =x f x x f x x h .

相关文档
最新文档