图像重建与可视化

图像重建与可视化
图像重建与可视化

第七章医学图像重建与可视化

数字图像处理在绝大多数情况下,是对已获得的图像进行处理和转化,即把处理技术作为系统,其输入和输出均为数字图像。因此在医学领域的应用中,数字图像处理也习惯性的称作后处理。但在某些情况下,图像处理过程也涉及将数据进行计算并最终转化为图像的过程,如图像重建,这种情况更多的出现在医学领域中,如CT、MR、超声成像和核医学成像。这些医学成像系统往往通过获得尽可能多的目标的检测数据,并将数据进行计算处理,最终生成图像,这就是图像重建(image reconstruction),基本过程如图7-1所示。这种情况发生在图像后处理之前。

图7-1图像重建过程

此外,上述的医学成像系统,往往获得连续的人体断层数据和断层图像。如果将这些数据或图像进行整合处理,仅通过图像处理技术获得新的切层位置和方向的断层图像;或将断层图像合成为体数据并显示成三维图像,以加强人们对器官解剖结构和病灶三维形态的观察和理解,这种处理我们称为图像的三维可视化(three-dimensional visualization)或三维重建(three-dimensional reconstruction),其处理过程如图7-2所示。

图7-2图像三维可视化过程

图像重建与图像可视化都是较为复杂的计算与处理过程,本章仅对医学图像的重建与可视化的基本理论与方法进行讨论。

第一节医学图像重建概述

一、医学断层成像

在医学断层成像出现前,传统的医学成像技术或手段是将成像区域内的三维

人体组织,投射于二维的成像范围内,记录在胶片或显示屏上,最终形成二维医学影像。这种方式势必造成人体组织信息在影像上的重叠和遮挡,使病灶缺失某一维度(如深度)的信息,虽然可以通过多体位摄影进行适当补偿,但并不能根本解决问题。如:在胸部影像的实际诊断过程中,某些肺部病灶由于肋骨影像的重叠而无法确定位置,或者被肋骨或纵隔影像模糊。

这种影像重叠是三维影像在一维路径上产生了叠加,用积分形式可以表示为:

()()[]

?-=dz z y x I y x I d ,,exp ,0μ (7.1) ()y x I d ,为影像记录装置上记录的X 线强度分布,()z y x ,,μ为组织吸收X 线系数的分布函数,0I 为入射X 线强度。

为解决这一问题,曾出现了体层摄影术(X -ray tomography ),光源和影像记录装置(胶片或成像板)沿相反方向运动,但保持与成像区域的垂直距离不变,如图7-3所示。这样成像区域中的某层组织处于聚焦面上,被记录于影像记录装置从而成像,其余层面组织影像由于受到光源和影像记录装置的运动而模糊,无法清晰显示。

图7-3 直线运动体层摄影

体层摄影根据光源的运动形式分为直线运动成像、圆运动成像和摆线运动成像。这些运动方式要求光源和记录装置精确计算运动速度,以保证计算准确。同时严格限制运动时间,保证在被检者可接受的屏气时间内完成,以限制呼吸伪影。

体层摄影成像的计算如下:探测器接受强度为

()()??

? ??+++**??? ??=m k y m k x m k L I M y M x t y x I d d d d d d d ,,,0μ (7.2) 直线运动形式的体层摄影射线源移动路径为:

()()()()???

? ??==y X x rect vt d z y x g y x f δ,,, (7.3) 代入(7.1)式得最终的像强度为:

()()()()d d d d d d d y m k X x rect m k X I M y M x t y x I δ??

????++**??? ??=0,, (7.4) 其中,V 是射线源在X 方向上走过的速度,X 是射线源走过的距离,m 为放大率,k 为底片运动的换算因子,k +m 代表总放大率。

体层摄影曾一度作为一项重要的成像功能出现在X 线成像设备中。但体层成像存在一些无法解决的问题,如辐射面积广、剂量大,要成一层组织的影像,则比成像区域大的多的组织体积均要接受X 线照射,大大增加了被检者受照射量,增加了辐射损伤。另外,体层摄影的图像质量,尤其是对比度分辨率,相对X 线平片并无明显提高。影像信息中还掺杂了模糊区域的半影,相当于影像中增加了更多的散射线,削弱了组织对比。体层摄影还需要被检者的屏气与制动配合,不适于床旁摄影和屏气困难的被检者。

真正的断层成像出现在1971年,始于世界上第一台可应用于临床的CT ,安装于Atkinson -Morley 医院。这种技术也叫CAT (computed aided tomography 或computed axial tomography ),其图像重建的数学理论最早适于奥地利数学家Radon 于1917年提出的,即三维的物体可以以它的投影的无线集合唯一的重建出来。此后经过了很多数学及物理学家的实践和发展,最终由英国EMI 公司的Hounsfield 实现和完成。

计算机(辅助或轴向)断层成像截然不同于体层摄影,其射线束中心面与断层成像的平面成平行重叠关系,而非体层摄影的垂直关系,因此射线范围仅覆盖成像层面,影像信息不包含非成像层面。另外成像区域在轴向上压缩的尽量薄,使成像区为一薄层区域,可近似认为二维吸收系数分布。这样组织重叠问题简化为部分容积效应,因此对组织的观察效果大大提高,给人一种人体“切开”观察的效果。

二、断层成像的数理原理

CT 的发展过程中,采用过很多种图像重建算法,其数学原理各不相同。经过近40年的发展,先后出现了方程联立、迭代、二维傅立叶变换、反投影(Back

projection)等重建算法。鉴于Radon的数学理论被广泛借鉴于二维傅立叶变换算法和滤波反投影算法,并应用于教学。因此本教材中,我们将Radon的中心切片理论作为计算机断层成像的基本数学原理。

CT图像重建是通过其扫描过程获得数据,并将数据进行分析处理,推导出其拟成像层面内的吸收系数分布。前面提到,CT成像将成像的薄层区域近似为二维吸收系数分布,即认为成像的容积内对应的体素矩阵为M×N个,每个体素厚度均为L,如图7-4。假定每个体素吸收系数是均匀的,则对应图像的吸收μ,求出层面内吸收系数分布,并将吸收系数对应成灰度值,即系数分布为()y

x,

可重建出图像。

图7-4 CT成像的体素矩阵

CT系统通过对组织扫描获得数据,扫描的方式根据系统分为平行线束扫描、扇形束扫描、宽扇形束扫描等。我们以最基本的平行线束为例:扫描装置包括一个X线管和一个检测器组成。X线束被准直成单线束形式,X线管和检测器围绕受检体作同步平移-旋转扫描运动,如图7-5。

图7-5单束扫描方式

这种情况下,在一个固定角度上,探测器所得到的值是成像区域在该角度上的衰减后X射线强度值I,通过取对数,我们得到:

dy dx y x I I P ??=-=),()ln(0

μ (7.5) 我们称P 为该角度下的投影(Projection )。如果探测器进行360度的扫描,每次间隔1度。则可获得360个投影。利用这些投影求解出()y x ,μ,即可得到图像。为方便不同扫描角度的表达,我们将投影由直角坐标系()y x , 变换到极坐标系()θ,R 表示,则扫描路径可以用直线方程表示

R y x =+θθsin cos (7.6)

R 表示射线路径距离体层中心的距离,θ表示扫描角度。在θ角的投影表示为

dy dx y x R P ??=),(),(μθ (7.7)

使用单位脉冲函数的筛选性质表示某一θ角的投影值为

dy dx R y x y x R P ??-+=)sin cos (),(),(θθδμθθ (7.8)

在断层图像重建中,一个具有指导意义的数学理论,即中心切片理论指出,吸收系数函数()y x ,μ在某一方向上的投影P θ(R )的一维傅立叶变换函数G θ(ρ),是原吸收系数函数μ(x ,y )的二维傅立叶变换函数F (ρ,θ)在(ρ,θ)平面上的沿同一方向上过频域空间原点的直线上的值,如图7-6所示。

图7-6 中心切片理论

即对吸收系数μ(x ,y )分布进行二维傅立叶变换并进行(ρ, θ)域表示,并对其在频域空间的形式过原点“切一刀”,则切出的切面函数,等于所切相同角度下的投影函数进行(ρ, θ)表示并进行一维傅立叶变换的值。或者说,在角度θ得到的投影值的一维傅立叶变换,等于物体的二维傅立叶变换过频域中心同样

角度的值,但要投影值和物体吸收系数均在(ρ,θ)坐标系中表示。

中心切片理论的公式描述如下:

()[]),(,θρμF y x F = (7.9)

)]([)(ρρθθG F F = (7.10)

如使用直角坐标系,则中心切片理论可描述为:

()[]()??=+-==o u vy ux j u y x dxdy e y x g y x g F 20,),(, (7.11)

此公式即为零频率准则在二维情况下的等价。

基于这个理论,我们只要采集尽可能多的投影数据,将投影进行一维傅立叶变换,在频率域中,将这些变换值按投影角度排布,并进行适当的高频区域插值。当360个或180个投影值的傅立叶变换填充完频率域后,将频率域数据进行二维反傅立叶变换,即得到原始的吸收系数分布,求解得图像。

对于中心切片理论,我们可以通过一个特殊角度的投影重建,简单验证一下。设对某一组织进行平行于y 轴的扫描,如图7-7,

图7-7 特殊角度投影

则投影值为

()()?∞∞-=

dy y x f x P ,0, (7.12)

取其傅立叶变换为 ()()()??∞

∞-∞∞---==dy dx e y x f dx e x p u P ux j ux j ππ22,0, (7.13)

原组织的吸收系数的二维傅立叶变换在同角度下的取值为

()()()()????∞∞--∞∞-∞

∞-=+-∞∞-===dxdy e y x f dxdy e y x f v u F ux v vy ux v ππ2020,,, (7.14)

则证明射线束平行y 轴时,中心切片理论成立。

对于中心切片理论的数学来源和详细推导,这里并不做更多的叙述。对于实际的计算机断层成像来说,中心切片理论指出了重建图像的数学方法。

第二节 医学图像重建算法

一、方程联立法

X 线束具有一定的能量和穿透能力,当X 线束遇到物体时,物体对射入的X 线有着衰减作用,即物体对X 线的吸收。普通X 线成像正是利用不同组织对X 线衰减不同,将穿过人体后X 线自然形成的对比度转化为图像对比度的,其成像过程不需要进行数学计算。而CT 成像时,需要获得入射和出射X 线的强度值来进行重建运算。

若X 线穿过非均匀物体,将沿着X 线束通过的物体分割成许多小体素,令每个体素的厚度相等,记为d 。设d 足够小,使得每个体素可认为是均匀的,其吸收系数为常值,如图7-8所示。

图7-8 X 线透射多个小单元组织

当入射X 线强度为I 0时,透过第一个体素的X 线强度I 1为:

d e I I 101μ-= (7.15)

1μ是第一个体素的吸收系数。对于第二个体素来说,I 1就是入射的X 线强

度。设第二个体素的吸收系数为2μ,X 线经第二个体素透射出的强度I 2为:

d e I I 212μ-=

将I 1的表达式代入上式,有:

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

遥感数字图像处理重点

遥感数字图像处理重点 第一章概论 图像:对客观对象的一种相似性的描述或写真。 数字图像:是以数字形式存储和表达的遥感图像。 根据人眼的可视性,图像可分为可见图像和不可见图像。 图像具有空间坐标和数值,根据其连续性,图像可分为数字图像和模拟图像。 数字图像最基本的单位是像素,像素的基本属性特征为像素值,其高低反映了图像的明暗程度和能量高低。像素的属性是位置和灰度值; 遥感数字图像处理的内容: (1)图像增强:目的是压抑和去除噪声,增强显示图像整体,使图像更容易理解、解译和判读。方法:彩色合成、图像拉伸、图像平滑、锐化、图像融合。 (2)图像校正:主要是对传感器和环境造成的图像退化进行模糊消除、噪声滤除、几何失真或非线性校正。方法:辐射校正和几何校正。 (3)信息提取:根据地物光谱特征和几何特征,确定提取规则,并以此为基础从校正后的遥感图像的中提取各种有用信息的过程。方法:图像分割、图像分类。 遥感数字图像处理系统的典型功能包括: ○1不同传感器图像数据的测存取和转换○2几何校正○3辐射校正○4图像增强处理○5统计分析○6图像变换○7图像分类○8专题制图○9专业工具,如雷达图像处理工具。 第二章遥感数字图像的获取和储存 遥感图像是通过遥感平台上的传感器获取的,不同的传感器具有不同的辐射、电磁波谱、时间、空间分辨率。 遥感是通过非接触传感器获取测量对象信息的过程,是信息的获取、传输、处理以及判读和应用的过程。遥感的实施依赖于遥感系统。 传感器又称遥感器,是收集和记录电磁辐射能量信息的装置,是信息获取的核心部件。 传感器的分辨率:传感器区分自然特征相似或光谱特征相似的相邻地物的能力。分为:(1)辐射分辨率:传感器区分所接受到的电磁波辐射强度差异的能力。 (2)光谱分辨率:传感器记录的电磁波谱的波长范围和数量。 (3)空间分辨率:遥感图像上能够详细区分的最小单元的尺寸或大小。 (4)时间分辨率:传感器对同一空间区域进行重复探测时,相邻两次探测的时间间隔。图像数字化:数字化的两个过程是采样和量化。 (1)采样:分波谱采样和空间采样,通过空间采样,空间上连续的图像变换成离散点。 (2)量化:将像素灰度级转换成整数灰度级的过程。量化后,图像像素的原有灰度值转换为灰度级。 元数据:关于图像数据特征的表述,是数据的数据,主要参数包括:图像获取的日期和时间、投影参数、几何纠正精度、图像分辨率、辐射校正参数等。

国产高分辨率卫星影像自动化高精度处理

国产高分辨率卫星影像自动化高精度处理----------卫星影像基于已有DOM/DEM自动化处理测试报告1、测试情况 1.1.数据情况 影像类型景数单景全色大小单景多光谱大小 高分一号31624M156M 天绘一号15976M137M资源1号02C7300M*2103M资源三号6 1.12G606M 1.2参考数据 参考DOM:影像分辨率为2米; 参考DEM:1:1万分幅DEM,格网间距为5米。 1.3机器性能 电脑工作站一台,其主要性能配置如下: CPU:Intel Xeon E5-269016核 RAM:128G 磁盘驱动器:Samsung SSD850

2 、作业流程 3、效率统计 3.1预处理 已有DEM和DOM预处理可在任务开展前,电脑全自动化进行预 处理,本次任务预处理1:10000分幅参考DEM2871,参考DOM40.5G,利用晚上时间(18小时)完成。 3.2自动定向纠正与融合处理 备注:以下时间全为计算机自动计算的时间,不需额外人工处理 影像类型全色影像自动定向与纠正全色与多光谱影像配准纠正与融合 高分一号4.5分钟/景(总共20景,7核 并行,90分钟完成) 1.2分钟/景(总共31景,12核并行, 37分钟完成) 天绘一号9分钟/景(总共9景,5核并 行,85分钟完成) 6分钟/景(总共15景,15核并行, 106分钟完成) 资源三号25分钟/景(总共5景,单核 处理,128分钟完成) 45分钟/景(总共5景,单核处理, 220分钟完成)

4、成果展示 4.1控制点分布情况 备注:因计算机保密要求,以下所有图片均为彩色打印再扫描得到的,色彩有些偏色。 图1高分一号全色影像基于底图匹配控制点分布情况 图2天绘全色影像基于底图匹配控制点分布情况

GIS遥感图像的基本处理教程

实验一遥感图像的基本处理 一、实验要求 1.学会使用Erdas软件打开不同格式的图像

2.认识遥感图 以沈阳农业大学2011年高分辨率Quickbird遥感影像为底图, 识别操场位置形状大小颜色阴影 所住宿舍、位置形状大小颜色阴影 教学楼位置形状大小颜色阴影

雷达站位置大小颜色 水塔、位置形状大小颜色阴影 煤堆位置形状大小颜色 植物园广场间接

农田形状大小颜色 东陵陵园,位置形状大小颜色阴影在Erdas中调整遥感图像波段。 在工具栏上点击raster选择band combinations,在弹出来的对话框中对波段进行编辑,然后点击OK 3.学会使用Erdas软件的import/export文件导入功能 导出 在总的工具栏上点击第二个按钮import,在对话框中选择Export,选择

好输出文件类型,找到要输入的文件,并且新建要输出的文件名和确定存储位置,即可点击OK键输出文件 导入 勾选INport,选择输入文件类型,找到输入文件,新建输出文件名称及储存位置,即可点击OK 实验材料:2002年Landsat ETM+ 30m辽宁省沈阳市图像。 4.为图像添加aoi图层,并对遥感影像进行裁切 分别对Quickbird和Landsat ETM+影像进行处理,高分辨率影像要求裁切出沈阳农业大学校区,低分辨率影像要求裁切出沈阳市及周边郊区,aoi比要求实验区稍大,以方便进行后期处理。高分辨率影像适于纵向输出,低分辨率影像适于横向输出。 添加AOI图层

在工具栏点击AOI选项下的tools,选择一个工具对图片中想要创建图层的位置进行框选。 对框选的区域进行保存,存为AOI文件 裁剪

香港理工大学高分辨率的指纹(HRF) 数据库_图像处理_科研数据集

香港理工大学高分辨率的指纹(HRF) 数据库(The Hong Kong Polytechnic University (PolyU)High-Resolution-Fingerprint (HRF) Database) 数据介绍: Fingerprint is the most widely used biometric characteristic for personal identification because of its uniqueness and stability over time. Most of the existing automatic fingerprint recognition systems (AFRS) use the minutia features on fingerprints, i.e. the terminations and bifurcations of fingerprint ridges, for recognition. Although they can achieve good recognition accuracy and have been used in many civil applications, their performance still needs much improvement when a large population is involved or a high security level is required. One solution to enhancing the accuracy of AFRS is to employ more features on fingerprints other than only minutiae. Fingerprint additional features, such as pores, dots and incipient ridges (see Fig. 1 for examples), are routinely used by experts in manual latent fingerprint matching. Some of these additional features, e.g. pores, require high resolution fingerprint images to reliably capture them. Thanks to the distinctiveness of these fingerpr

基于FPGA和双DSP的高速视频图像处理系统设计(精)

第39卷,增刊 V01.39Supplement 红外与激光工程 Infrared and Laser Engineering 2010年05月 Mav.2010 基于FPGA和双DSP的高速视频图像处理系统设计 苑爱博,鲁新平,李吉成,张志龙,杨卫平 (国防科学技术大学电子科学与工程学院ATR重点实验室,湖南长沙410073 摘要:介绍了基于XC5VSX95T和两片TMS320C6455的高速实时视频图像处理系统的设计原理.其中Ff,GA模块主要完成图像实时采集和传输的逻辑控制及图像预处理任务,双DSP模块承担特征提取、目标识别、跟踪等任务。工程应用表明,该系统实时性和稳定性均达到了设计要求,能够实现快速傅里叶变换、边缘检测、识别,跟踪等图像处理算法。 关键词:图像处JE;DSP; FPGA 中圈分类号l TP391. 文献标识码:A 文章编号:1007.2276(2010增(信息处理一0647.04 Design of high speed video image processor based on FPGA and dual DSPs YUAN Ai—bo,LU Xin—ping,LI Ji—cheng,ZHANG Zhi-long,YANG Wei-ping (KeyLaboratoryforATR.CollegeofElectronic Science andEngineering.NationalUmve 体ityofDefenseTechnology,ChangSha410073,China

Abstract:This paper designed a high speed real?time system of video image processing based on two chips of TMS320C6455and Xilinx FPGA of XC5VSX95T.The system uses DSPs to process the image data and accomplishes logic control of data catching and transmission with FPGA.which combines merit such US rapidity,agility and currency.Application of engineering shows that hardware architecture is effective and feasible;the performance meets the requirement of real?time processing.The system can realize the algorithm of image processing such as Fast Fourier Transform(FFT,edge detection, recognizing,tracking and SO on. Key words:Image processing;DSP;FPGA 0引言 图像处理技术已经被广泛应用于视频图像处理的各个领域,可独立运行的高速实时数字图像处理平台己成为图像处理领域的一个发展趋势。然而由于图像处理和自动目标识别的算法复杂,运算量巨大,图像处理系统通常包括分割、检测、标记、识别、跟踪等复杂的过程12l,处理实时性要求高,同时系统的体积也有严格的限制,因此在设计系统时必须综合考虑这些特点,合理选用芯片并保留一定的余度。本文从硬件设计的角度出发研究高速实时图像处理系统。以双DSP+FPGA的结构组成满足实时性要求的图像处理系统,充分发挥FPGA加通用DSP结构的灵活性及实时处理能力∞1。 1核心芯片的功能和特点 主CPU采用TI公司的TMS320C6455定点DSP 芯片。该芯片采用90am工艺,先进的VelociTlTM VLIW架构,拥有8个独立的功能单元,其中有2个 收■日期?2010-04-08 作■■介?苑爱博(1985..男.黑龙江卉齐哈尔人,硕士.主要从事图像佰息处理方面的研究。

数字图像处理知识点总结(20200608132636)

数字图像处理知识点总结 第一章导论 1. 图像:对客观对象的一种相似性的生动性的描述或写真。 2. 图像分类:按可见性 (可见图像、不可见图像) ,按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字) 。 3. 图像处理:对图像进行一系列操作,以到达预期目的的技术。 4. 图像处理三个层次:狭义图像处理、图像分析和图像理解。 5. 图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6. 模拟图像的表示:f(x , y) = i(x , y) x r(x , y),照度分量0

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

基于FPGA的高速图像处理系统的设计

基于FPGA的高速图像处理系统的设计 摘要: 在本文中,设计了一个高速图像处理系统,是为了解决这样的问题,如出现在车载计算机图像处理中的低系统集成,低速的处理过程。通过配置Nios II软核CPU和一些基于主要硬件FPGA的图像预处理,处理和显示的功能模块和设计的系统软件,使得该系统实现了图像的采集,记忆和重叠功能。由于采用可编程芯片和并行处理技术,该系统集成度高,好维修,图像处理速度快、实时性强。 关键词:图像处理,FPGA,Nios II CPU。 I.介绍 近年来,车载计算机中存在的主要问题集中在两个方面。首先,在使用低功率损耗的PowerPC CPU的状态下,对于图像的采集和显示,一个集成板是必需的。其次,随着视频图像和红外热像仪的广泛使用,还有电子一体化的发展,应该设计出一个高速的图像处理系统。 为了解决这两个主要的问题,作者设计了一个基于FPGA的高速图像处理系统用来识别重叠的多通道图像信息。功能模块,比如图像采集,处理和显示,都可以在一个单一的FPGA芯片上实现,它减少了外围电路,提高整个系统的性能。因为并行处理技术,处理速度和实时性都大大的提高。

II.图像处理算法分析 A.基于双线性插值的图像放大 基于像素的放大倍率的方法原理简单、快速,但它只是复制原始像素的邻域。随着放大系数增大,图像会出现明显的块锯齿,不能保留原始图像的边缘信息。这个问题是可以通过双线性插值来解决。双线性插值可以消除锯齿,保留原始图像的边缘信息和获得更好的视觉效果。 图1.原始图像(略) 图2.放大图像(略) 图1是原始图像,其中f ij,f i,j+1,f i+1,j,f i+1,j+1是相邻的像素块。图2是在水平方向上放大K倍,在垂直方向放大L倍的图像。f ij,f i,j+1,f i+1,j,f i+1,j+1在放大图像中只改变位置但像素值保持不变。因此,我们可以得到以下方程:

图像超分辨率重建算法研究-文献综述

毕业设计(论文)题目:图像超分辨率重建算法研究 专业(方向):电子信息工程 文献综述 1.引言 超分辨率概念最早出现在光学领域。在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。Toraldo di Francia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。复原的概念最早是由J.L.Harris和J.w.Goodman分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。这些算法在某些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。Tsai &Huang首先提出了基于序列或多帧图像的超分辨率重建问题。1982年D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原(Pocs)方法。1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础上,提出了泊松最大后验概率复原(泊松-MAP)方法,并于1993年对超分辨率的定义和特性进行了分析,提出了图像超分辨率的能力取决于物体的空间限制、噪声和采样间隔。 伴随着计算机技术、信息处理技术和视觉通信技术的高速发展,人类进入了一个全新的信息化时代。人们所能够获取的知识量呈爆炸式的增长,因此迫切的要求信息处理技术不断的完善和发展,以便能够为人们提供更加方便、快捷和多样化的服务。数字图像及其相关处理技术是信息处理技术的重要内容之一,在很多领域得到了越来越广泛的应用。对于数字图像在一些情况下一般要求是高分辨图像,如:医学图像要求能够显示出那些人眼不能辨别出的细微病灶;卫星地面要求卫星图像至少能够辨别出人的脸相;有些检测识别控制装置需要足够高分辨率的图像才能保证测量和控制的精度。因此提高图像分辨率是图像获取领域里追求的一个目标。但是通过改善成像装置硬件的分辨力来提高图像的分辨能力是有限的也是不切实际的。因此,需要一种有效的方法来克服图像传感器的这些限制。 解决这一问题的一个实用而有效的方法就是图像的超分辨率重构技术,其不需要昂贵的图像获取设备,只需要通过计算机软件的处理就能获得更高分辨率的图像。因此,用该方法来提高图像分辨率所需要的代价很低。 2.超分辨率图像重构算法研究现状以及优缺点 目前,国内外对超分辨率的研究较突出的有:美国加州大学多维信号处理研究小组的PeymanMilanfar 等提出了大量的实用算法和集成各种算法的超分辨率图像恢复软件包;美国Dayton大学和Wright实验室对红外CCD相机进行了机载试验,利用20幅低分辨率的红外图像,取得了分辨率提高近5倍的实验结果。香港R. F. Chars等研究了超分辨率图像恢复的有效预处理共扼梯度迭代算法。以色列耶鲁撒冷大学M.Elad 等对存在任意运动的图像序列,以及动态的和彩色的多媒体等的超分辨率恢复进行了研究。以色列的

2021年四种主流视频图像处理技术

四种主流视频图像处理技术 欧阳光明(2021.03.07) 如今,随着经济的发展和人们生活水平的提高,视频监控在生活中应用的范围越来越广,人们对新形势下视频处理技术的应用和发展问题尤为关注。 数字视频和数字图像比传统的图像和视频分辨率要高,处理方便,易于操作和整理。但由于部分设备性能不足、客观条件限制等因素,在实际的视频监控应用中,仍会出现视频图像模糊不清、关键信息捕捉不到等问题。而在视频图像处理的过程中,由于操作技术问题或者客观因素等,给视频图像处理技术的应用带来一些负面影响,降低了处理技术的水平和质量。 视频图像处理技术的四大技术 视频图像处理过程中会涉及到对视频图像数据的采集、传输、处理、显示和回放等过程,这些过程共同形成了一个系统的整体周期,可以连续性的运作。在视频图像处理技术范围内最主要的就是包括了图像的压缩技术和视频图像的处理技术等。目前,市场上主流的视频图像处理技术包括:智能分析处理,视频透雾增透技术,宽动态处理,超分辨率处理,下面分别介绍以上四种处理技术。 智能分析处理技术 智能视频分析技术是解决视频监控领域大数据筛选、检索技术问题的重要手段。目前国内智能分析技术可以分为两大类:一类是通过前景提取等方法对画面中的物体的移动进行检测,通过设定规

则来区分不同的行为,如拌线、物品遗留、周界等;另一类是利用模式识别技术对画面中所需要监控的物体进行针对性的建模,从而达到对视频中的特定物体进行检测及相关应用,如车辆检测、人流统计、人脸检测等应用。 视频透雾增透技术 视频透雾增透技术,一般指将因雾和水气灰尘等导致朦胧不清的图像变得清晰,强调图像当中某些感兴趣的特征,抑制不感兴趣的特征,使得图像的质量改善,信息量更加丰富。由于雾霾天气以及雨雪、强光、暗光等恶劣条件导致视频监控图像的图像对比度差、分辨率低、图像模糊、特征无法辨识等问题,增透处理后的图像可为图像的下一步应用提供良好的条件。 数字图像宽度动态的算法 数字图像处理中宽动态范围是一个基本特征,在图像和视觉恢复中占据了重要的位置,关系着最终图像的成像质量。其动态的范围主要受保护信号量和平均噪声比值来决定的,其中动态范围可以从光能的角度来定义。 数字的信号处理会受到曝光量中曝光效果、光照度和强度的影响和作用。动态范围跟图案的深度息息相关,如果图像动态范围宽,则在图像处理时亮度变化较为明显,但如果动态范围较窄,在亮度转化时,亮暗程度的变化并不明显。目前图像的宽动态范围在视频监控、医疗影像等领域应用较为广泛。 超分辨率重建技术

图像超分辨率重建--图像处理课程设计

目录 1 课程设计目的 (1) 2图像处理系统设计内容及要求 (2) 2.1设计内容 (2) 2.2设计要求 (2) 3 设计方案 (3) 4 功能模块的具体实现 (5) 4.1 空域插值放大的方法 (5) 4.1.1 最邻近插值算法 (5) 4.1.2 双线性插值算法 (6) 4.1.3 双三次插值算法 (7) 4.2 频域重建的方法 (8) 4.2.1 DCT变换的介绍 (8) 4.2.2 DCT放大图像放大算法原理 (8) 4.3 频域分块重建的方法 (10) 4.4 同态滤波器滤波处理 (11) 4.4.1 同态滤波器原理 (11) 4.4.2 同态滤波函数的确定 (12) 5 总结与体会 (14) 参考文献 (15) 附录 (16)

1课程设计目的 MATLAB7.0软件。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。通过用MATLAB 对图像进行处理,以实现以下目的。 1.培养严谨的科学态度,正确的设计思想,科学的设计方法和良好的工作作风。 2.培养独立思考的能力,独立检索资料、阅读文献、综合分析、计算机应用、数据及文字处理等能力。 3.培养综合运用基础理论、基本知识的能力。通过课程设计得到工程设计的初步锻炼。

高分辨率视频图像处理中SDRAM控制器的设计

高分辨率视频图像处理中SDRAM控制器的设计 作者:陈文明刘波章小兵朱标赵小珍 来源:《现代电子技术》2013年第12期 摘要:本文介绍了一种基于FPGA的用于高分辨率视频图像处理的SDRAM控制器的设计方法。通过设置SDRAM的工作状态,使其工作在猝发模式。在视频时序信号控制下,用多行连续的SDRAM存储空间,存取视频数据。并在数据接口部分增加FIFO,缓存一行视频,在像素时钟控制下,实现视频数据实时的存储和读取。通过改变相关参数,能对所有VESA分辨率视频流进行操作。具有通用性强、系统复杂度低、可靠性高、可扩展等特点。在某型号的机载大屏显示器系统中,用该SDRAM控制器实现了图像的翻转等功能,也验证了该控制器的实用性。 关键字:高分辨率视频图像处理;高速缓存; SDRAM控制器; FPGA 中图分类号: TN911?34 文献标识码: A 文章编号: 1004?373X(2013)12?0097?03 0 引言 随着人们对视频图像的清晰度和细节显示要求的不断提高,高分辨率、高bit位的视频标准相继被推出。造成了数据处理速度和数据处理量极大的增加,也给数据缓存的容量和控制提出较高的要求。在常用的存储器中,SDRAM具有大容量和高速度的特点,并且价格也比较便宜,在视频图像处理中被广泛的用于图像缓存[1]。在基于FPGA的高分辨率视频图像处理系统中,不可避免地会涉及到用FPGA实现SDRAM控制器的方法[2]。但由于SDRAM的操作方式较复杂,常见的控制器支持的视频分辨率普遍都不高。在高分辨率的视频图像已经普及的今天,支持高分辨率的SDRAM控制器的设计也已经被越来越多的视频图像处理人士关注。本文介绍的这种控制器,采用的是Micron 公司的MT48LC4 1 SDRAM基本操作[4] SDRAM主要包括初始化、读/写操作、刷新、激活、预充电等操作。以MICRON公司的MT48LC4M32B2TG型号SDRAM为例分别介绍。 1.1 初始化 1.2 读/写操作 首先激活具体的BANK和行;然后发出读或写命令,和所要访问的起始列。在读命令发出后,要等待CAS延迟时间,有效数据才会出现在数据总线上。在写命令发出后,有效数据

五,图像恢复和重建

五,图像恢复和重建 2007-3-5

5.1 概述和分类 5.2 退化模型和对角化5.3 无约束恢复 5.4 有约束恢复 5.5 交互式恢复 5.6 几何失真校正 5.7 投影重建

概述和分类 图象恢复也称图象复,原图象恢复与图象增强相同之处是,它们都要得到在某种意义上改进的图象,或者说都希望要改进输入图象的视觉质量。图象恢复与图象增强不同之处是,图象增强技术一般要借助人的视觉系统的特性以取得看起来较好的视觉结果,而图象恢复则认为图象是在某种情况下退化或恶化了(图象品质下降了),现在需要根据相应的退化模型和知识重建或恢复原始的图象。换句话说,图象恢复技术是要将图象退化的过程模型化,并据此采取相反的过程以得到原始的图象。由此可见,图象恢复要根据一定的图象退化模型来进行。 在给定模型的条件下,图象恢复技术可分为无约束和有约束的两大类。根据是否需要外来于预,图象恢复技术又可分为自动和交互的两大类。另外根据处理所在域,图象恢复技术还可分为频域和空域两大类。许多图象恢复技术借助频域处理的概念,但越来越多的空域处理技术得到应用。 从广义的角度上来看图象恢复,它还可包括对在图象采集过程中产生的几何失真(畸变)进行校正以及根据对物体的多个投影重建图象的技术。前一种情况里将图象的几何失真看成一种退化,对其校正则看作是一种恢复过程。后一种情况里将图象的投影看作一种退化过程,而将重建图象作为一种恢复手段。

退化模型和对角化 5.2.1 退化模型 H 可有如下4个性质: (1)线性:如果令k1和k2为常数,f1(x,y)和f2(x,y)为2幅输入图象,则: (2)相加性:式(5.2.2)中如果kl=k2=1,则变成: (3)一致性:式(5.2.2)中如果f2(x,y)=0,则变成: 上式指出线性系统对常数与任意输入乘积的响应等于常数与该输入的响应的乘积, (4)位置(空间)不变性:如果对任意f(x,y)以及a和b,有: 线性系统的响应只与在该位置的输入值有关而与位置本身无关。

图像超分辨率重建技术的研究背景意义及应用

图像超分辨率重建技术的研究背景意义及应用图像超分辨率重建技术的研究背景意义及应用 1 研究背景及研究意义 2 图像超分辨率重建的应用 1 研究背景及研究意义 伴随着计算机技术、信息处理技术和视觉通信技术的高速发展,人类进入了一个全新的信息化时代。人们所能能够获取的知识量呈爆炸式的增长,因此迫切的要求信息处理技术不断的完善和发展,以便能够为人们提供更加方便、快捷和多样化的服务。数字图像及其相关处理技术是信息处理技术的重要内容之一,在很多领域得到了越来越广泛的应用。对于数字图像在一些情况下一般要求是高分辨图像,如:医学图像要求能够显示出那些人眼不能辨别出的细微病灶;卫星地面要求卫星图像至少能够辨别出人的脸相甚至是证件;有些检测识别控制装置需要足够高分辨率的图像才能保证测量和控制的精度。因此提高图像分辨率是图像获取领域里追求的一个目标。 1970年以来,CCD和CMOS图像传感器广泛的被用来获取数字图像,在很多的 应用场合,需要获取高分辨图像,提高图像分辨率最直接的方法是提高成像装置的分辨力,但是受传感器阵列排列密度的限制,提高传感器的空间分辨率越来越难,通常采用的方法是减少单位像素的尺寸(即增加单位面积内的像素数量),对于数字摄机,比如CCD,就是减少其传感单元的尺寸从而提高传感器的阵列密度,使其能够分辨出更多场景细节。但是这样将导致数字摄像机的价格大幅度提高。技术工艺的制约也限制了图像分辨率的进一步提高。事实上随着像素尺寸的减少,每个像素接收到的光照强度也随之降低,传感器自身的噪声将严重影响图像的质量,造成拍摄的影像信噪比不高,因此,像素尺寸不可能无限制的降低,而是有下限的,当CCD传感器阵列密度增加到一定程度时,图像的分辨率不但不会提高反而会下降,

基于高分辨率CCD相机的图像处理系统及其在射线检测

学科门类:单位代码: 毕业设计说明书(论文) 基于高分辨率CCD相机的图像处理系统 学生姓名 所学专业 班级 学号 指导教师 XXXXXXXXX系 二○**年X X月

1 引言 本课题主要研究基于高分辨率CCD相机的图像处理系统及其在射线检测方面的应用。具体研究在射线检测技术中所用到的图象处理与分析技术,利用相关的图像处理软件,对图像进行分析与处理,以便于系统对图像的识别和分析 随着射线数字成像检测技术在现代无损探伤检测领域的应用,对于图像的要求也进一步提高,因此对于采集回来的图像进行一定的处理是不可或缺的一步。在本论文中所研究的都是一些预处理,认真研究了他们的算法,具有理论意义和实际的应用价值,为今后开展进一步的科学研究提供良好的基础和支持[1-2]。 我们的高分辨率相机在很多方面具有高性能的优越性,它在图像采集、格式转换、局部放大等多方面都有独到之处,可以根据实际需要在它基础上进行二次开发,如果把它应用于X射线成像方面,将具有非常重要的实际应用价值。本课题的目的主要是在该系统的基础上进行软件开发,并对其应用技术进行研究,研究在射线检测技术中所用到的图象处理与分析技术,要求检测系统具有检测速度快、便于图象处理和识别、图象质量高等特点,以达到对工件内部结构的实时显示,便于工作人员对工件的探伤和缺陷评定[3-4]。 在用CCD采集图像时,很容易出现噪声干扰,为了得到良好的处理结果,图像处理的第一步就是要对原始图像进行稳定可靠的消噪声处理。噪声是无法避免的,噪声的存在极大地影响了图像处理工作的开展。图像消噪效果的好坏,直接影响到提取数据的精度和可信度。噪声严重时,会使图像信噪比非常低,使进一步的图像处理工作无法进行[5]。因此,寻求一种好的图像消噪声方法,已经成为照相图像处理中一项十分迫切的工作。

高分辨率卫星影像卫星参数表

北京揽宇方圆信息技术有限公司 表1:商业光学高分辨率卫星参数一览表

北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

四种主流视频图像处理技术

四种主流视频图像处理技术 如今,随着经济的发展和人们生活水平的提高,视频监控在生活中应用的范围越来越广,人们对新形势下视频处理技术的应用和发展问题尤为关注。 数字视频和数字图像比传统的图像和视频分辨率要高,处理方便,易于操作和整理。但由于部分设备性能不足、客观条件限制等因素,在实际的视频监控应用中,仍会出现视频图像模糊不清、关键信息捕捉不到等问题。而在视频图像处理的过程中,由于操作技术问题或者客观因素等,给视频图像处理技术的应用带来一些负面影响,降低了处理技术的水平和质量。 视频图像处理技术的四大技术 视频图像处理过程中会涉及到对视频图像数据的采集、传输、处理、显示和回放等过程,这些过程共同形成了一个系统的整体周期,可以连续性的运作。在视频图像处理技术范围内最主要的就是包括了图像的压缩技术和视频图像的处理技术等。目前,市场上主流的视频图像处理技术包括:智能分析处理,视频透雾增透技术,宽动态处理,超分辨率处理,下面分别介绍以上四种处理技术。 智能分析处理技术 智能视频分析技术是解决视频监控领域大数据筛选、检索技术问题的重要手段。目前国内智能分析技术可以分为两大类:一类是通过前景提取等方法对画面中的物体的移动进行检测,通过设定规则来区分不同的行为,如拌线、物品遗留、周界等;另一类是利用模式识别技术对画面中所需要监控的物体进行针对性的建模,从而达到对视频中的特定物体进行检测及相关应用,如车辆检测、人流统计、人脸检测等应用。 视频透雾增透技术 视频透雾增透技术,一般指将因雾和水气灰尘等导致朦胧不清的图像变得清晰,强调图像当中某些感兴趣的特征,抑制不感兴趣的特征,使得图像的质量改善,信息量更加丰富。由于雾霾天气以及雨雪、强光、暗光等恶劣条件导致视频监控图像的图像对比度差、分辨率低、图像模糊、特征无法辨识等问题,增透处理后的图像可为图像的下一步应用提供良好的条件。 数字图像宽度动态的算法 数字图像处理中宽动态范围是一个基本特征,在图像和视觉恢复中占据了重要的位置,关系着最终图像的成像质量。其动态的范围主要受保护信号量和平均噪声比值来决定的,其中动态范围可以从光能的角度来定义。 数字的信号处理会受到曝光量中曝光效果、光照度和强度的影响和作用。动态范围跟图案的深度息息相关,如果图像动态范围宽,则在图像处理时亮度变化较为明显,但如果动态范围较窄,在亮度转化时,亮暗程度的变化并不明显。目前图像的宽动态范围在视频监控、医疗影像等领域应用较为广泛。 超分辨率重建技术 提高图像分辨率最直接的办法就是提高采集设备的传感器密度。然而高密度的图像传感器的价格相对昂贵,在一般应用中难以承受;另一方面,由于成像系统受其传感器阵列密度的限制,目前已接近极限。

【CN110085300A】一种医学影像高速传输处理系统及方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910211224.X (22)申请日 2019.03.20 (71)申请人 南京巨鲨显示科技有限公司 地址 210036 江苏省南京市鼓楼区汉中门 大街301号01幢八层A座 申请人 南京巨鲨医疗科技有限公司 (72)发明人 王卫 麦志纯  (74)专利代理机构 南京纵横知识产权代理有限 公司 32224 代理人 董建林 张赏 (51)Int.Cl. G16H 30/20(2018.01) (54)发明名称 一种医学影像高速传输处理系统及方法 (57)摘要 本发明公开一种医学影像高速传输处理系 统及方法,系统包括影像源输入设备、信号转换 单元一、编码单元、接收单元、缓存单元、传输单 元、图像处理单元、信号转换单元二和显示客户 端;影像源输入设备获取影像数据信号,经过信 号转换模块一进行格式统一,再经过编码单元进 行编码操作,减少传输数据量,经过接收单元快 速将数据保存到缓存单元,再从缓存单元读出给 传输单元,传输单元将数据传输给图像处理单元 进行影像数据优化,再到信号转换单元二转换成 符合显示客户端的输出信号显示到显示客户端。 本发明在高速传输的同时完好保持影像质量。权利要求书2页 说明书3页 附图1页CN 110085300 A 2019.08.02 C N 110085300 A

权 利 要 求 书1/2页CN 110085300 A 1.一种医学影像高速传输处理系统,其特征在于,包括影像源输入设备,信号转换单元一,编码单元,接收单元,缓存单元,传输单元,图像处理单元,信号转换单元二和显示客户端; 所述影像源输入设备获取不同类型的影像数据; 所述信号转换单元一用于将影像源输入设备获取的影像数据进行格式转换; 所述编码单元用于对进行格式转换后的影像数据进行编码,得到压缩后的影像数据; 所述接收单元用于接收压缩后的影像数据,并传输至缓存单元; 所述缓存单元用于存储压缩后的影像数据; 所述传输单元用于将缓存单元的影像数据传输至图像处理单元; 所述图像处理单元用于对传输单元传输的影像数据进行滤波处理; 所述信号转换单元二用于将优化处理后的影像数据进行信号转换,转换为原影像数据格式; 所述显示客户端用于对影像数据进行显示。 2.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述影像源输入设备包括影像采集输入设备与视频源输入设备;所述影像采集输入设备包括静态的固定摄像头影像采集设备与动态的可移动可旋转的摄像头影像采集设备;所述视频源输入设备包括视频源主机输入设备;所述影像源输入设备获取静态和动态摄像头信号,获取不同类型的视频源信号;所述视频源信号类型包括HDMI、DVI和VGA。 3.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述信号转换单元一将影像数据转换为RGB的数据格式。 4.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述编码单元采用逐点编码、区域编码或变换编码的编码形式,且编码压缩后的影像数据可恢复。 5.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述接收单元以内部模块形式呈现,数据接收方式支持串行的、串行转并行的接收方式。 6.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述缓存单元连接多个接收单元和多个传输单元。 7.根据权利要求6所述的一种医学影像高速传输处理系统,其特征在于,所述接收单元与传输单元能够实现一对一关联,或者一对多关联的传输。 8.根据权利要求1所述的一种医学影像高速传输处理系统,其特征在于,所述显示客户端为医用显示器或民用显示器。 9.基于权利要求1至8任意一项所述的医学影像高速传输处理系统进行医学影像传输的方法,其特征在于,包括以下步骤: 1)影像源输入设备获得原影像信号; 2)信号转换单元一对原影像信号的信号格式进行判断,并把所有格式的信号转换成RGB的数据格式传输至编码单元; 3)编码单元对RGB格式的影像数据进行编码操作,得到压缩后的影像数据; 4)接收单元对压缩的影像数据进行高速接收并发送至缓存单元; 5)缓存单元对影像数据进行缓存,并发送至传输单元; 6)传输单元对缓存单元发送来的影像数据进行并行转串行的高频率传输,传输至图像 2

相关文档
最新文档